INSTALLATION OPERATION & MAINTENANCE MANUAL PROVIDING SOLUTIONS **FLATAIR** FLCK / FLHK WARNING: Read this manual before installation, reparation o maintenance works. #### TABLE OF CONTENTS | POINTS TO KEEP IN MIND | PAGE 2 | |---|--------| | | | | DATA PAGE FOR UNIT COMMISSIONING | PAGE 3 | | | | | 1 GENERAL CHARACTERISTICS | PAGE | | 1.1 PHYSICAL DATA | 4 | | 1.2 ELECTRICAL DATA | 5 | | 1.3 FAN SERVICES | 6 | | 1.4 OPERATING LIMITS | 7 | | 1.5 UNIT DIMENSIONS | 8-11 | | 1.6 SIZES OF STANDARD AND OPTIONAL OPENINGS | 12-15 | | 1.7 AVAILABLE OPTIONS | 16-17 | | 2 INSTALLATION | PAGE | | 2.1 PRELIMINARY PREPARATIONS | 18 | | 2.2 UNIT RECEPTION | 18 | | 2.3 OPTIONAL TASKS PRIOR TO UNIT INSTALLATION: | | | CHANGING THE POSITION OF BLOWERS AND AIR INTAKE | 19-20 | | 2.4 UNIT LOCATION AND WEIGHT DISTRIBUTION | 21 | | 2.5 INSTALLATION CLEARANCES | 22 | | 2.6 DRAINS | 22 | | 2.7 ELECTRICAL CONNECTIONS | 23-24 | | 3 COMMISSIONING AND OPERATION | PAGE | | 3.1 PRELIMINARY CHECKS | 25 | | 3.2 STEPS TO FOLLOW FOR COMMISSIONING THE UNIT | 26 | | 4 MAINTENANCE | PAGE | | 4.1 PREVENTIVE MAINTENANCE | 27 | | 4.2 CORRECTIVE MAINTENANCE | 28 | | 4.3 FAILURE DIAGNOSIS | 29 | Lennox have been providing environmental solutions since 1895, our range of FLATAIR continues to meet the standards that have made LENNOX a household name. Flexible design solutions to meet YOUR needs and uncompromising attention to detail. Engineered to last, simple to maintain and Quality that comes as standard. Information on local contacts at www.lennoxeurope.com. All the technical and technological information contained in this manual, including any drawing and technical descriptions provided by us, remain the property of Lennox and must not be utilised (except in the operation of this product), reproduced, issued to or made available to third parties without the prior written agreement of Lennox. #### POINTS TO KEEP IN MIND #### **DANGER AND WARNING SIGNS** Low temperatures High temperatures Risk of injury with moving objects Electrical voltage Risk of injury with rotating objects #### **ELECTRICAL CONNECTIONS** Make sure to open the power off switch before to install, repair or make maintenance works in the unit, in order to prevent serious electrical injuries. To install the unit, keep in mind local and national legislation. #### **ATTENTION - WARNING** Electric shock hazard can cause injury or death. Before attempting to perform any service or maintenance on the unit, turn OFF the electrical power, and check that the fan has stopped. **FILTER CLEANING** Check the air filter and make sure it is not blocked with dust or dirt. The air filter cleaning operations do not require technical service; however when an electrical or mechanical operation is required call an Engineer. If the filter is dirty, wash it in a bowl with neutral soap and water, drying it in the shade before inserting it in the unit. #### Standard Guidelines to Lennox equipment All technical data contained in these operating instructions including the diagrams and technical description remains the property of Lennox and may not be used (except for the purpose of familiarizing the user with the equipment), reproduced, photocopied, transferred or transmitted to third parties without prior written authorization from Lennox. The data published in the operating instructions is based on the latest information available. We reserve the right to make modifications without notice. We reserve the right to modify our products without notice without obligation to modify previously supplied goods. These operating instructions contain useful and important information for the smooth operation and maintenance of your equipment. The instructions also include guidelines on how to avoid accidents and serious damage before commissioning the equipment and during its operation and how to ensure smooth and fault-free operation. Read the operating instructions carefully before starting the equipment, familiarize yourself with the equipment and handling of the installation and carefully follow the instructions. It is very important to be properly trained in handling the equipment. These operating instructions must be kept in a safe place near the equipment. Like most equipment, the unit requires regular maintenance. This section concerns the maintenance personnel and management. If you have any queries or would like to receive further information on any aspect relating to your equipment, do not hesitate to contact us. ## DATA PAGE FOR UNIT COMMISSIONING | UNIT: | - SERIAL Nr.: | | |---|---------------------------------------|----| | CONTROL PANEL IDENTIFICATION CODE | | | | INSTALLATION ADDRESS: | | | | INSTALLER: | INSTALLER TEL.: | | | INSTALLER ADDRESS: | | | | DATE OF COMMISSIONING: | - | | | CHECKS: | | | | SUPPLY VOLTAGE: RAT | ED VOLTAGE OF THE UNIT: | | | | YES NO | | | UNIT ON SHOCK ABSORBERS | | | | DRAINAGE WITH TRAP | | | | CLEAN INTERIOR AIR FILTER | | | | GENERAL POWER SUPPLY CONNECTION | | | | CONTROL PANEL CONNECTION | ПП | | | COMPRESSOR OIL LEVEL INDICATOR | — —
П П | | | DATA INPUT: | | | | COLD CYCLE | HEATING CYCLE | | | Air Intake Temperature, Outdoor Coil:°C | Air Intake Temperature, Outdoor Coil: | °C | | Air Output Temperature, Outdoor Coil:°C | Air Output Temperature, Outdoor Coil: | °C | | Air Intake Temperature, Indoor Coil:°C | Air Intake Temperature, Indoor Coil: | °C | | Air Output Temperature, Indoor Coil:°C | Air Output Temperature, Indoor Coil: | °C | | High Pressure: | High Pressure: | | | Low Pressure: | Low Pressure: | | | ELECTRIC POWER CONSUMPTION (Amps) | | | | Compressor/ | Compressor/ | | | Fan outdoor section/ | Fan outdoor section// | _ | | Fan indoor section/ | Fan indoor section// | _ | | Options Installed: | | | | Comments: | | | | | | | #### 1.1.- PHYSICAL DATA Type of unit Type of Refrigerant Horizontal compact **FLATAIR** Heat pump units FLH A: R-22 K: R-407C Kg 205 FLHA: Heat pump unit R-22 FLCK: Cooling only unit R-407C FLHK: Heat pump unit R-407C | UNIT MODELS | | 10 | 12 | 16 | 22 | 24 | 28 | 30 | | |---------------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|--| | COMPRESSOR Nr. / | Туре | 1 / Scroll | | FAN OUTDOOR SECTIO | N | | | | | | | | | | Maximum air flow | m ³ /h. | 3500 | 3400 | 4950 | 5900 | 6600 | 6400 | 6400 | | | Minimum air flow | m ³ /h. | 2350 | 2400 | 3750 | 4350 | 4500 | 5000 | 5250 | | | Maximum available press | 100 | 90 | 120 | 150 | 160 | 120 | 100 | | | | FAN INDOOR SECTION | | | | | | | | | | | Maximum air flow | m ³ /h. | 2350 | 2300 | 3700 | 5350 | 6300 | 6000 | 6000 | | | Minimum air flow | m ³ /h. | 1500 | 1650 | 2400 | 3200 | 4000 | 4250 | 4500 | | | Maximum available press | sure (1) Pa | 120 | 110 | 160 | 180 | 240 | 200 | 180 | | | (1) With admissible minin | num air flow. | | | | | | | | | | NET WEIGHT | | | | | | | | | | | Cooling only units FLC | Kg | 200 | 205 | 280 | 325 | 405 | 425 | 430 | | | UNIT MODELS | | FLHA 10 | FLHA 12 | FLHA 16 | FLHA 22 | FLHA 24 | FLHA 28 | FLHA 30 | |-------------------------|---------|---------|---------|---------|---------|---------|---------|---------| | Cooling capacity | (*) kW | 9,4 | 11,3 | 14,7 | 19,2 | 21,0 | 26,0 | 27,6 | | Heating capacity | (**) kW | 10,3 | 12,3 | 15,6 | 20,0 | 22,8 | 27,0 | 29,8 | | Refrigerant charge R-22 | gr. | 2900 | 3100 | 3900 | 5400 | 8400 | 8600 | 8700 | 210 285 330 410 430 435 | UNIT MODELS | | | FLCK 10
FLHK 10 | FLCK 12
FLHK 12 | FLCK 16
FLHK 16 | FLCK 22
FLHK 22 | FLCK 24
FLHK 24 | FLCK 28
FLHK 28 | FLCK 30
FLHK 30 | |------------------------------|-----|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Cooling capacity | (| *) kW | 9,8 | 11,8 | 15,3 | 19,5 | 22,0 | 26,3 | 28,1 | | Heating capacity | (| **) kW | 10,0 | 12,0 | 15,5 | 20,2 | 22,5 | 27,0 | 28,7 | | Refrigerant charge
R-407C | ar | FLCK | 2240 | 2560 | 3550 | 5000 | | | 7000 | | | gr. | FLHK | 2620 | 2920 | 4000 | 5500 | 7500 | 8000 | 8200 | (*) Air intake temperature in the indoor exchanger: 27°C DB/19°C WB (*) Air intake temperature in the outdoor exchanger: 35°C DB (**) Air intake temperature in the indoor exchanger: 20°C DB / 12°C WB (**) Air intake temperature in the outdoor exchanger: 7°C DB / 6°C WB DB.- Dry bulb temperature WB.- Wet bulb temperature ## 1.2.- ELECTRICAL DATA | UNIT MODELS | | FLHA 10 | FLHA 12 | FLHA 16 | FLHA 22 | FLHA 24 | FLHA 28 | FLHA 30 | |---|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Voltage v | /f (50 Hz) | 230V/ 1Ph | | | | | | | | voltage v/ | и (50 нг) | | | 23 | 30V-400V/ 3 | Ph | | | | Rated absorbed power | | | | | | | | | | Compressor (cooling cyc | , | 2,60 | 3,41 | 4,11 | 5,02 | 5,85 | 7,41 | 8,83 | | Compressor (heating cy | cle) kW | 2,03 | 2,54 | 2,94 | 3,70 | 4,85 | 5,48 | 6,48 | | Fan outdoor section | kW | 0,52 | 0,52 | 1,10 | 1,60 | 1,60 | 1,60 | 1,60 | | Fan indoor section | kW | 0,38 | 0,38 | 0,90 | 1,30 | 1,35 | 1,35 | 1,35 | | Total power in cooling cy | ^{/cle} kW | 3,50 | 4,31 | 6,11 | 7,92 | 8,80 | 10,36 | 11,78 | | Total power in heating cy | ycle kW | 2,93 | 3,44 | 4,94 | 6,60 | 7,80 | 8,43 | 9,43 | | Maximum current | | 18,6 | 1 | | | | | | | Compressor | Α | 16,7/7,2 | 19,3/8,7 | 19,9/11,5 | 22,4/12,9 | 25,3/14,6 | 28,5/16,3 | 36,5/21,0 | | Fan outdoor section | | 3,1 | 3,1 | | | | | | | | Α | | | 4,8/2,8 | 7,4/4,3 | 8,1/4,7 | 8,1/4,7 | 8,1/4,7 | | Fan indoor section | Α | 2,6 | 2,6 | | | | | | | | | | | 7/4 | 7,4/4,3 | 7,4/4,3 | 7,4/4,3 | 7,4/4,3 | | Total current | Α | 24,3 | | 0.4.=//.0.0 | | | 11.010-1 | | | | | 22,4/12,9 | 25,0/14,4 | 31,7/18,3
| 37,2/21,5 | 39,8/23,0 | 44,0/25,4 | 52,0/30,0 | | Start up current | Α | 97/52 | 104/56 | 145/73 | 193/110 | 182/108 | 226/132 | 240/136 | | | | 31132 | 104/30 | 143/13 | 133/110 | 102/100 | 220/102 | 240/100 | | UNIT MODELS | | FLCK 10
FLHK 10 | FLCK 12
FLHK 12 | FLCK 16
FLHK 16 | FLCK 22
FLHK 22 | FLCK 24
FLHK 24 | FLCK 28
FLHK 28 | FLCK 30
FLHK 30 | | Voltage v | /f (50 Hz) | 230V/ 1Ph | | | 2017 400177 01 | | | | | | | 230V-400V/ 3Ph | | | | | | | | Rated absorbed power Compressor (Cooling cy | cle) kW | 2,79 | 3,68 | 4,41 | 5,20 | 6,05 | 7,43 | 9,25 | | Compressor (heating cyc | | | | | | | | <u> </u> | | Fan outdoor section | , | 2,26
0,52 | 3,21
0,52 | 3,60
1,10 | 3,84
1,60 | 5,65
1,60 | 6,25
1,60 | 7,37
1,60 | | | kW | | _ | | | | | | | Fan indoor section | kW | 0,38 | 0.38 | 0,90 | 1,30 | 1,35 | 1,35 | 1,35 | | Total power in Cooling cy | | 3,69 | 4,58 | 6,41 | 8,10 | 9,00 | 10,38 | 12,20 | | Total power in heating cy | /cle kW | 3,16 | 4,11 | 5,60 | 6,74 | 8,60 | 9,20 | 10,32 | | Maximum current | Α | 18,6 |] | | | | | | | Compressor | | 16,7/7,2 | 19,3/8,7 | 19,9/11,5 | 22,4/12,9 | 25,3/14,6 | 28,5/16,3 | 36,5/21,0 | | Fan outdoor section | Α | 3,1 | 3,1 | | | | | | | | | 0.0 | | 4,8/2,8 | 7,4/4,3 | 8,1/4,7 | 8,1/4,7 | 8,1/4,7 | | Fan indoor section | Α | 2,6 | 2,6 | 7/4 | 7,4/4,3 | 7,4/4,3 | 7,4/4,3 | 7,4/4,3 | | | | 24,3 | <u> </u> | 1/4 | 1,4/4,3 | 1,4/4,3 | 1,4/4,3 | 1,4/4,3 | | Total Current | Α | 22,4/12,9 | 25,0/14,4 | 31,7/18,3 | 37,2/21,5 | 39,8/23,0 | 44,0/25,4 | 52,0/30,0 | | | | 101 |] | , , , , , , , | ,,, | , | ,, , | , , , , , , , | | Start up current | Α | 97/52 | 104/56 | 145/73 | 193/110 | 182/108 | 226/132 | 240/136 | #### 1.3.- FAN SERVICES | NDOOR UNITS | | | | | , | AIR FLOV | V m ³ /h | | | | |-------------|--|-------|------|------|------|----------|---------------------|------|------|------| | | MOD | ELS | 10 | 12 | 16 | 22 | 24 | 28 | 30 | | | | | 0 | 2350 | 2300 | 3700 | 5350 | 6300 | 6000 | 6000 | | | | | 10 | 2275 | 2250 | 3625 | 5200 | 6225 | 5925 | 5925 | | | | | 20 | 2240 | 2200 | 3550 | 5090 | 6140 | 5860 | 5860 | | | | a. | 30 | 2190 | 2150 | 3475 | 4960 | 6100 | 5800 | 5800 | | | | <u> </u> | 40 | 2140 | 2100 | 3400 | 4850 | 6010 | 5725 | 5725 | | | | RE | NE NE | 50 | 2080 | 2040 | 3320 | 4725 | 5930 | 5650 | 5650 | | | SU | 60 | 2025 | 1975 | 3240 | 4610 | 5875 | 5600 | 5600 | | | | S | 70 | 1975 | 1925 | 3160 | 4505 | 5790 | 5510 | 5510 | | | NOMINIAL | STATIC PRESSURE | 80 | 1925 | 1860 | 3090 | 4400 | 5710 | 5440 | 5440 | | | NOMINAL | | | 90 | 1840 | 1800 | 3000 | 4300 | 5620 | 5350 | 5350 | | AIR FLOW | | | 100 | 1775 | 1730 | 2915 | 4160 | 5540 | 5275 | 5275 | | | \(\begin{array}{c} \begin{array}{c} \end{array} \end{array} | 110 | 1625 | 1650 | 2825 | 4040 | 5450 | 5190 | 5190 | | | | | 120 | 1500 | | 2750 | 3925 | 5350 | 5100 | 5100 | | | | H | 130 | | | 2670 | 3800 | 5320 | 5000 | 5000 | | | | AE | 140 | | | 2580 | 3700 | 5150 | 4910 | 4910 | | | | | 160 | | | 2400 | 3525 | 4940 | 4700 | 4700 | | | AVAILABLE | } | 180 | | | | 3200 | 4700 | 4500 | 4500 | | | | | 200 | | | | | 4425 | 4250 | | | | | | 220 | | | | | 4175 | | | | | | 240 | | | | | 4000 | | | | | | OUTDOOR UNI | ΓS | | | | , | AIR FLOV | V m³/h | | | |-------------|--------|-----|------|------|------|----------|--------|------|------| | | MOD | ELS | 10 | 12 | 16 | 22 | 24 | 28 | 30 | | | | 0 | 3500 | 3400 | 4950 | 5900 | 6600 | 6400 | 6400 | | | | 10 | 3410 | 3325 | 4850 | 5800 | 6490 | 6300 | 6300 | | | Ра | 20 | 3300 | 3160 | 4750 | 5700 | 6340 | 6200 | 6200 | | | | 30 | 3190 | 3075 | 4625 | 5600 | 6225 | 6100 | 6100 | | | SSURE | 40 | 3080 | 2980 | 4525 | 5495 | 6100 | 5980 | 5980 | | | SS | 50 | 2970 | 2890 | 4425 | 5390 | 5960 | 5870 | 5870 | | | PRE | 60 | 2840 | 2790 | 4325 | 5280 | 5850 | 5725 | 5725 | | | | 70 | 2700 | 2690 | 4225 | 5180 | 5710 | 5600 | 5600 | | NOMINAL | STATIC | 80 | 2560 | 2580 | 4125 | 5075 | 5600 | 5490 | 5490 | | AIR FLOW | '⊴ | 90 | 2410 | 2400 | 4040 | 4975 | 5480 | 5375 | 5375 | | AIRTLOW | | 100 | 2350 | | 3940 | 4875 | 5350 | 5250 | 5250 | | | Ш | 110 | | | 3840 | 4775 | 5200 | 5100 | | | | ABLE | 120 | | | 3750 | 4675 | 5090 | 5000 | | | | = | 130 | | | | 4575 | 4950 | | | | | AVAIL | 140 | | | | 4460 | 4800 | | | | | ⋖ | 150 | | | | 4350 | 4650 | | | NOTE: Keep in mind reduction on air flow and static pressure services if you use mufflers or external air filter. --- 150 160 4350 --- 4650 4500 #### 1.4.- OPERATING LIMITS #### **OPERATING LIMITS FOR (COOLING ONLY) UNITS** | | | MAXIMUM TEMPERATURES | MINIMUM TEMPERATURES | |---------------|------------------------|---------------------------------|--| | COOLING CYCLE | INDOOR
TEMPERATURE | 32°C DB / 23°C WB | 21°C DB / 15°C WB | | OPERATION | OUTDOOR
TEMPERATURE | DEPENDING ON MODEL
(TABLE 1) | 0°C (MODELS 22/24/28/30)
19°C (MODELS 10/12/16) (*)
-10°C (**) | ^(*) With condensation pressure control (optional), 0 °C minimum outdoor operating temperature. #### **OPERATING LIMITS FOR (HEATING PUMP) UNITS** | | | MAXIMUM TEMPERATURES | MINIMUM TEMPERATURES | | | |---------------|------------------------|---------------------------------|--|--|--| | COOLING CYCLE | INDOOR
TEMPERATURE | 32°C DB / 23°C WB | 21°C DB / 15°C WB | | | | OPERATION | OUTDOOR
TEMPERATURE | DEPENDING ON MODEL
(TABLE 1) | 0° C (MODELS 22/24/28/30)
19° C (MODELS 10/12/16) (*)
-10°C (**) | | | | HEATING CYCLE | INDOOR
TEMPERATURE | 27°C DB | 15°C DB | | | | OPERATION | OUTDOOR
TEMPERATURE | 24°C DB / 18°C WB | -10°C DB / -11°C WB | | | ^(*) With condensation pressure control (optional), 0 °C minimum outdoor operating temperature. DB.- Dry Bulb Temperature WB.- Wet Bulb Temperature #### TABLE 1- COOLING CYCLE MAXIMUM OUTDOOR OPERATING TEMPERATURES #### MODELS WITH REFRIGERANT R-407C | MODELS | 10 | 12 | 16 | 22 | 24 | 28 | 30 | |----------------------|----|----|----|----|----|----|----| | Rated outdoor flow | 45 | 43 | 44 | 45 | 46 | 42 | 41 | | Minimum outdoor flow | 43 | 43 | 41 | 41 | 42 | 39 | 38 | #### MODELS WITH REFRIGERANT R-22 | MODELS | 10 | 12 | 16 | 22 | 24 | 28 | 30 | |----------------------|----|----|----|----|----|----|----| | Rated outdoor flow | 48 | 48 | 47 | 48 | 48 | 46 | 44 | | Minimum outdoor flow | 46 | 45 | 45 | 46 | 44 | 42 | 40 | ^(**) With kit got gas bypass valve. ^(**) With kit got gas bypass valve. #### 1.6.- UNIT OPENING SIZES MODELS 10-12 - **←** STANDARD CONFIGURATION - <> OPTIONAL CONFIGURATION - F ELECTRICAL BOX If the unit is going to be hung using the anchor supports and the optional air return opening, the supports must be repositioned so that the air filter may be removed. #### 1.6.- UNIT OPENING SIZES MODEL 16 - STANDARD CONFIGURATION - <> OPTIONAL CONFIGURATION - F ELECTRICAL BOX If the unit is going to be hung using the anchor supports and the optional air return opening, the supports must be repositioned so that the air filter may be removed. #### 1.6.- UNIT OPENING SIZES MODEL 22 - STANDARD CONFIGURATION - <> OPTIONAL CONFIGURATION - F ELECTRICAL BOX If the unit is going to be hung using the anchor supports and the optional air return opening, the supports must be repositioned so that the air filter may be removed. #### 1.6.- UNIT OPENING SIZES MODELS 24-28-30 - STANDARD CONFIGURATION - OPTIONAL CONFIGURATION - € ELECTRICAL BOX If the unit is going to be hung using the anchor supports and the optional air return opening, the supports must be repositioned so that the air filter may be removed. #### 1.7.- AVAILABLE OPTIONS #### **ELECTRIC HEATER** Optionally, these units can contain shielded element electric heating batteries that are mounted on the inside of the unit in the schematic opposite. The electric heater must get its power from the unit's electrical box. | MODELS LFXO | | | 10 | | 12-16-22 | | 24-28-30 | | |----------------|-----|-----------|------|------|----------|------|----------|------| | POWER kW | | | 6 | 9 | 6 | 9 | 7,5 | 12 | | NAA VINALINA | | 230 / I | 26,1 | | | | | | | MAXIMUM (A) | (A) | 230 / III | 15,1 | 22,7 | 15,1 | 22,7 | 18,9 | 30,2 | | | | 400 / III | 8,7 | 13,1 | 8,7 | 13,1 | 10,9 | 17,4 | | WEIGHTS Kg (*) | | | 7 | | 7 | | 8 | | | STAGES | | | | 1 | 1 | | 1 | | ^(*) Add to the unit's weight. #### **HOT WATER COIL** It is based on a refrigerating coil made of copper tubing with aluminum swirl fins with water inlet and outlet connections. It is supplied mounted inside the unit as picture shows. | MODELS
FLC/FLH
INDOOR UNIT | DIFFERENCE IN TEMPERATURES BETWEEN HOT WATER INTAKE AND THE AIR WHICH ENTERS THE COIL | | WATER
FLOW
L/H | WATER COIL
PRESSURE
DROP
kPa | AIR
PRESSURE
DROP
Pa | ROWS | WEIGHT
Kg | WATER
OUTLET
DIAMETER
Inches | | |----------------------------------|---|-------------|----------------------|---------------------------------------|-------------------------------|-----------------------------|--------------|---------------------------------------|------| | | 50°C | 60°C | 70°C | | | nominal-minimum
air flow | | | | | 10-12 | | CAPACITY IN | | | | | | | | | 10 12 | 9000 | 11000 | 12800 | 500 | 0,5 | 35-30 | 2 | 4 | 3/4" | | 16 | | CAPACITY IN | I W | | | | | | | | 16 | 14500 | 17500 | 20400 | 1000 | 1,5 | 35-30 | 2 | 5 | 3/4" | | 22 | | CAPACITY IN | I W | | | | | | | | | 15000 | 18000 | 21000 | 1000 | 1,5 | 30-25 | 2 | 6 | 3/4" | | 24-28-30 | CAPACITY IN W | | | | | | | | | | 24-20-30 | 24500 | 29500 | 34400 | 1500 | 3 | 25-20 | 2 | 7 | 3/4" | #### PROTECTION AGAINST FREEZING: - Use glycol water. GLYCOL IS THE ONLY EFFECTIVE PROTECTION AGAINST FREEZING. - Regulation components should be used and in addition security components if they
are needed. - Drain the installation. You must ensure that the manual or automatic air vents have been installed on all high points in the system. In order to drain the system check that all the drain cocks have been installed on all low points of the system. A HEATING COIL FROZEN DUE TO LOW AMBIENT CONDITIONS IS NOT COVERED BY THE WARRANTY. #### **MAIN SWITCH** The main switch is located on the access panel to the electrical box in the outdoor section in such a way that the unit is disconnected when the panel is opened. (Refer to the size diagram on pages 8 to 11 to see the position of the electrical box access panel). Check to make sure that the main switch is large enough to handle the current for the unit if electric heaters are installed. #### PHASE SEQUENCER (THREE-PHASE UNIT) The phase sequencer is located in the electrical box in the outdoor section, thus assuring that the unit will not begin operation while the phase connection of the compressor is not correct. Should this occur, then just switch two phase connections. #### **ON/OFF CONDENSATION PRESSURE CONTROL (MODELS 10-12-16)** The condensation pressure control consists of a pressure switch, which starts and stops the outdoor fan regulating the condensation temperature, thus the unit will be able to operate in the cooling cycle when the outdoor temperature is below 19°C (until 0°C). #### **HOT GAS BYPASS VALVE** The purpose of the BYPASS valve is to make it possible for the unit to operate at low outdoor temperatures (until -10°C), to be used in cooling-only and heat-pump units in the cooling cycle. It regulates the capacity of the compressor by injecting hot gas from the compressor discharge side to the evaporator. #### **CONTROL USING A PROGRAMMABLE CONTROLLER:** With the programmable controller option, the desired temperature can be programmed in the area 24 hours a day, 7 days a week. #### 1.7.- AVAILABLE OPTIONS #### REMOTE ROOM-TEMPERATURE SENSOR, REMOTE DUCT SENSOR These sensors may be used in conjunction with remote controller, allowing the controller to be mounted in a room away from the conditioned space. - REMOTE DUCT SENSOR: The sensor will be located in the return-air duct, detecting the air temperature of the air being air-conditioned. - REMOTE ROOM-TEMPERATURE SENSOR: The sensor will be placed in the area to be air-conditioned. #### FREECOOLING THERMOSTAT KIT The Freecooling Thermostat Kit will only operate in cooling-only or heat-pump units in the cooling cycle. This is an energy saving system that regulates the dampers doors through which outdoor air is taken in when the outdoor temperature is lower than the area to be air-conditioned. This kit consists of the damper, a motor, power card and a controller with specific programming, safety thermostat for air discharge and outdoor sensor, completely factory-assembled. #### **CRANKCASE HEATER (COOLING-ONLY UNITS)** When the unit is operating at low outdoor temperatures it is advisable to fit a crankcase heater. The purpose of the heater is to keep the oil in the compressor at the correct temperature while the compressor is stopped so that it can be properly lubricated when started again. #### **SOUND MUFFLER** Available for models 16, 22, 24, 28, 30. Field assembled, designed to be installed at the extractor opening of the outdoor unit in order to reduce noise, particularly when the outdoor unit is installed without ducts, free discharge. This kit contains the sound muffler and adapter parts for fixing it to the unit. #### **OUTDOOR MOUNTING KIT** Field assembly. This option has to be ordered for packaged units when they will be installed outside. The kit includes an air filter and grille for outdoor air intake which should be installed on the suction side of the outdoor unit, an anti-rain hood which should be installed on the discharge side of the outdoor fan. For units 10-12-16 it includes also an anti-rain plate which should be installed on the electrical box. | MODELO | DIMENSIONS | | | | | | | | | | |----------|------------|-----|-----|-------|-----|-----|------|--|--|--| | MODELS | Α | В | С | D | Е | F | G | | | | | 10-12 | 180 | 432 | 459 | 280 | 313 | 356 | 104 | | | | | 16 | 180 | 507 | 429 | 311,8 | 364 | 330 | 104 | | | | | 22 | 180 | 505 | 470 | 304,9 | 363 | 332 | 96,5 | | | | | 24-28-30 | 180 | 544 | 685 | 304,9 | 363 | 418 | 96,5 | | | | #### FREECOOLING EXTERNAL MOUNTED KIT Field assembly. This option has to be ordered for packaged units with freecooling when they will be installed outside, it includes: - FREECOOLING 1-DAMPER: It includes an outdoor air inlet grille to cover damper and actuator. - FREECOOLING 2-DAMPER: It includes an anti-rain cap to cover return air damper. External mounted freecooling 2-damper | MODELC | | DIMENSIONS | | | | | | | | |----------|-----|------------|-----|-----|-------|-------|-------|-----|-------| | MODELS | Α | В | С | D | Е | F | G | Н | I | | 10-12 | 200 | 465 | 400 | 635 | 187,4 | 162 | 192 | 461 | 153 | | 16 | 200 | 460 | 600 | 723 | 163 | 174 | 192 | 456 | 174 | | 22 | 200 | 600 | 600 | 708 | 187,5 | 159 | 192,5 | 592 | 159 | | 24-28-30 | 200 | 712 | 600 | 784 | 187,5 | 158,5 | 191 | 706 | 158,5 | External mounted freecooling 1-damper #### **OUTDOOR AIR FILTER KIT** Field assembly. The outdoor air filter should be installed on the outdoor air inlet of the outdoor unit and is recommended when working in heavily contaminated areas that may soil or clog the outdoor Coil. #### 2.1.- PRELIMINARY PREPARATIONS # All INSTALLATION, SERVICE and MAINTENANCE operations must be carried out by QUALIFIED PERSONNEL. The unit must be transported in a HORIZONTAL POSITION on its metal bedplate profiles and TRANSPORTATION BLOCKS. Any other position may cause serious damage to the machine. When the unit is received, it should be checked to assure that there are no bumps or other damage, following the instructions on the packaging. If there is damage, the unit may be rejected by notifying the LENNOX Distribution Department and reporting why the machine is unacceptable on the transport agent's delivery notice. Any later complaint or claim made to the LENNOX Distribution Department, for this type of anomaly, cannot be considered under the Guarantee. Sufficient space must be allowed to facilitate placement of the unit. The unit may be mounted outdoors. There should be NO possibility of flooding if floor mounted. When positioning the unit, be sure that the Rating Plate will always be visible since this data will be necessary to assure proper maintenance. The units are designed to be installed with ducts, calculated by qualified technical staff. The joints to be used between ducts and the openings to the unit should be Elastic Joints. Avoid the use of BYPASS joints between the extraction air and input air in both the outdoor and indoor sections. The structure where the unit is placed must be able to support the weight of the unit during operation. #### 2.2.- UNIT RECEPTION All the units have Metal Bedplate Profiles and Wooden Blocks for transportation. These wooden blocks must be removed when positioning the unit in its final position. #### 2.3.- OPTIONAL OPERATIONS PRIOR TO UNIT INSTALLATION: CHANGE IN THE POSITION OF BLOWERS AND AIR INTAKE FOR UNIT MODELS 10-12-16-22 #### STANDARD AIR INTAKE AND BLOWERS Service Panel Air Filter Panel Intake Opening D0Extension Extension Collar Collar **OUTDOOR** INDOOR **SECTION SECTION** Α0 MMM핲 Blower Panel **Blower Panel** Service Motor with Opening with Opening Motor Panel Service Fan-motor assembly Fan-motor assembly Indoor Section Panel **OUTDOOR SECTION** #### **BLOWER:** From the position (A0) 1) Remove the ceiling of the unit, the Blower Panel with Opening and the Service Panel. **Outdoor Section** - 2) Remove the motor-fan assembly from the unit unscrewing the supports from the base, and throwing away the extension collar, if there is one. - 3) Unscrew the supports that have been left on the fan-motor assembly. - 4) Turn the fan-motor assembly to its new position 90° horizontally and 180° on its shaft. The motor should now be accessible from the Service Panel in this new position. - 5) Screw down the fan-motor assembly in its new position using the supports. - 6) Assemble the Blower Panel with Opening and the Service Panel in its new position, taking special care with the weather striping. - 1) Remove the Intake Opening and the Service - 2) Switch the position of the Opening and Service Panels. #### OPTIONAL AIR INTAKE AND BLOWERS INDOOR SECTION #### **BLOWER:** From the position (C0) to the position (C1) - 1) Remove the ceiling of the unit, the Blower Panel with Opening and the Service Panel. - 2) Remove the motor-fan assembly from the unit unscrewing the supports from the base, and throwing away the extension collar, if there is one. - 3) Unscrew the supports that have been left on the fan-motor assembly. - 4) Turn the fan-motor assembly to its new position 90° horizontally and 180° on its shaft. The motor should now be accessible from the Service Panel in this new position. - 5) Screw down the fan-motor assembly in its new position using the supports. - 6) Assemble the Blower Panel with Opening and the Service Panel in its new position, taking special care with the weather striping. - 1) Remove the Air Filter Panel and the Service Panel. - 2) Switch the position of the Air Filter and Service Panels. SEE LOCATIONS AND SIZES FOR THE OPENINGS IN THEIR STANDARD AND OPTIONAL POSITIONS ON THE GENERAL MEASUREMENT DRAWINGS. #### 2.3.- OPTIONAL OPERATIONS PRIOR TO UNIT INSTALLATION: CHANGE IN THE POSITION OF BLOWERS AND AIR INTAKE FOR UNIT MODELS 24-28-30 #### STANDARD AIR INTAKE AND BLOWERS OPTIONAL AIR INTAKE AND BLOWERS (B1) Air Filter Service Intake Intake Panel Opening Opening Air Filter Panel Electrical box panel Electrical box panel D0Extension Service Extension Service Collar Panel **OUTDOOR** Collar **INDOOR INDOOR OUTDOOR** Panel SECTION **SECTION SECTION SECTION** Motor <u>WWW</u> Motor φ 嵒 φ φ
Blower Panel Blower Panel Service Fan motor with Opening Motor with Opening Blower Panel Motor Panel Outdoor Section with Opening Service Fan-motor assembly Blower panel Fan-motor assembly Fan-motor assembly Indoor Section Panel with Opening Indoor Section **Outdoor Section** #### **OUTDOOR SECTION** #### **BLOWER:** From the position (A0) - the Blower Panel with Opening and the Service Panel. - 2) Remove the motor-fan assembly from the unit unscrewing the supports from the base, and throwing away the extension collar, if there is one. - 3) Unscrew the supports that have been left on the fan-motor assembly. - 4) Turn the fan-motor assembly to its new position 90° horizontally and 180° on its shaft. The motor should now be accessible from the Service Panel in this new position. - 5) Screw down the fan-motor assembly in its new position using the supports. - 6) Assemble the Blower Panel with Opening and the Service Panel in its new position, taking special care with the weather striping. #### INLET: Not available #### INDOOR SECTION #### **BLOWER:** From the position (C0) to the position (C1) 1) Remove the ceiling of the unit, the Blower Panel with Opening and the Service Panel. - 2) Remove the motor-fan assembly from the unit unscrewing the supports from the base, and throwing away the extension collar, if there is one. - 3) Unscrew the supports that have been left on the fan-motor assembly. - 4) Turn the fan-motor assembly to its new position 90° horizontally and 180° on its shaft. The motor should now be accessible from the Service Panel in this new position. - 5) Screw down the fan-motor assembly in its new position using the supports. - 6) Assemble the Blower Panel with Opening and the Service Panel in its new position, taking special care with the weather striping. - 1) Remove the Air Filter Panel and the Service Panel. - 2) Switch the position of the Air Filter and Service Panels. SEE LOCATIONS AND SIZES FOR THE OPENINGS IN THEIR STANDARD AND OPTIONAL POSITIONS ON THE GENERAL MEASUREMENT DRAWINGS. #### 2.4.- UNIT LOCATION AND WEIGHT DISTRIBUTION The bedplate is made up of three galvanized metal channels, capable of withstanding the weight of the units whether hung from the ceiling or mounted on the floor. If the unit is floor mounted, then the profiles should be isolated with shock absorbing material such as anti-vibration or pads. If used, consult the weight distribution table below to make the correct selection. Keep in mind that fans rotate at approximately 850 rpm. If the unit is hung, M-10 threaded rods should be used along with shock absorbing ceiling supports. TABLE 1: WEIGHT DISTRIBUTION AND CENTRE OF GRAVITY COORDINATES | Point | | WEIG | HT D | STRIE | BUTIC | CENTRE O | F GRAVITY
S (G) (mm.) | | | |-------|----|------|------|-------|-------|----------|--------------------------|-----|-----| | Model | Α | В | С | D | E | F | Total | XG | YG | | 10 | 35 | 65 | 10 | 20 | 40 | 35 | 205 | 585 | 590 | | 12 | 35 | 65 | 15 | 20 | 40 | 35 | 210 | 565 | 615 | | 16 | 70 | 60 | 15 | 30 | 80 | 30 | 285 | 630 | 600 | | 22 | 80 | 70 | 20 | 40 | 75 | 45 | 330 | 710 | 685 | | 24 | 90 | 100 | 15 | 65 | 85 | 55 | 410 | 760 | 815 | | 28 | 95 | 110 | 20 | 65 | 85 | 55 | 430 | 715 | 825 | | 30 | 95 | 110 | 25 | 70 | 80 | 55 | 435 | 705 | 825 | #### 2.5.- INSTALLATION CLEARANCES Clearance around the unit for service and maintenance. For the unit with **optional FREECOOLING**, it should be kept in mind that the bedplate anchors cannot be used to **hang** the unit. Consult other options for outdoor mounting or changes in position of the air return duct if the unit is to be hung. #### 2.6.- **DRAINS** All indoor sections of these units (and the outdoor sections for the Heat Pump) have a ¾" steel threaded drain pipe welded to the condensation tray. One PVC drain trap is supplied with the Cooling-only units, and two with the heat pump units. Connect the trap/s to the drain pipe/s on the unit and mount the drain pipe with at least a 2% incline from the trap. Also slightly tip the unit (2%) toward the drainage side. Check that the condensation trays are clean and free from dirt and other debris from the works and that water drains correctly. #### 2.7.- ELECTRICAL CONNECTION - BEFORE MAKING ANY ELECTRICAL CONNECTIONS, BE SURE THAT ALL CIRCUIT BREAKERS ARE OPEN - IN ORDER TO CARRY OUT THE ELECTRICAL CONNECTIONS, FOLLOW THE ELECTRICAL DIAGRAM SUPPLIED WITH THE UNIT. - 1) Power supply WITHOUT electric heater. - 2 Power supply WITH electric heater. - (3) Connection to the Control Panel. | POWER SUPPLY | | Nr. OF CABLES x SECTION (mm²) | | | | | |------------------------|---------------|--------------------------------------|-----------------------------------|---------------------|--|--| | PENL X1 | UNIT
MODEL | Power supply without electric heater | Power supply with electric heater | ③
Shielded Cable | | | | 1N ~ 230V - 50 Hz + PE | 10 | 3 x 4 | 3 x 16 | 2 x 1 | | | | POWER SUPPLY | | Nr. OF CABLES x SECTION (mm ²) | | | | | |------------------------|---------------|--|-----------------------------------|---------------------|--|--| | 230V THREE-PHASE UNITS | UNIT
MODEL | Power supply without electric heater | Power supply with electric heater | 3
Shielded Cable | | | | | 10 | 4 x 4 | 4 x 10 | 2 x 1 | | | | PE L1 L2 L3 X1 | 12 | 4 x 4 | 4 x 10 | 2 x 1 | | | | | 16 | 4 x 6 | 4 x 16 | 2 x 1 | | | | | 22 | 4 x 10 | 4 x 16 | 2 x 1 | | | | | 24 | 4 x 10 | 4 x 25 | 2 x 1 | | | | 3 ~ 230V - 50 Hz + PE | 28 | 4 x 10 | 4 x 25 | 2 x 1 | | | | | 30 | 4 x 16 | 4 x 25 | 2 x 1 | | | - Connect the power supply cables to the terminals in the electric box through the rubber grommet. - The sections have been calculated for a length no longer than 50m and a voltage drop of 10V. Do not start the unit if the drop is greater than this. - The wiring and circuit breakers to be mounted in the installation must comply with the Regulations in force. - Ground wires must be properly connected and have a greater length than the phase wires. #### 2.7- ELECTRICAL CONNECTION #### **VOLTAGE OPERATING LIMITS** | MODELS | VOLTAGE | LIMIT | |-------------|---------------|---------------------| | 10 | 230V-1Ph-50Hz | 198-264V -1Ph- 50Hz | | 10-12-16-22 | 230V-3Ph-50Hz | 180-242V -3Ph- 50Hz | | 10-12-10-22 | 400V-3Ph-50Hz | 342-462V -3Ph- 50Hz | | 24-28-30 | 230V-3Ph-50Hz | 198-264V -3Ph- 50Hz | | 24-28-30 | 400V-3Ph-50Hz | 342-462V -3Ph- 50Hz | # A #### **IMPORTANT** THE SHIELDED CONNECTION CABLE BETWEEN THE CONTROL PANEL AND THE UNIT MUST BE SEPARATE FROM ANY OTHER TYPE OF ELECTRICAL WIRING. CONNECT IT TO THE ELECTRIC BOX LOCATED IN THE OUTDOOR UNIT. - For securing and connecting the Control Panel, consult the control Panel Manual supplied with the unit. - Keep in mind that the Control Panel cable is a SHIELDED CABLE and the wire mesh is only grounded on the electric box side. - The T+ and T- polarity must strictly agree with the electrical diagram supplied with the unit. Since this type of control panel is factory-configured for each application, an identification code located on the control panel of the terminal itself has been given to each panel. Any query or request for a replacement of the control panel must be accompanied by this identification code. #### 3.- COMMISSIONING AND OPERATION #### 3.1.- PRELIMINARY CHECKS - 1 Check that drain pipe connections and their fixtures are secure and that the level of the unit is tipped toward the drain. - (2) Inspect the state of the ducts and grilles (clean and open grilles, no breaks in the duct, etc.). - (3) Check that the power supply is the same as stated on the Rating Plate which is in agreement with the electrical diagram for the unit and that cable sizes are correct. - Check that tightness of the electrical connections to their terminals and to ground. - 4 Check the control panel connections. (If the connection is wrong, the unit will not operate and the control panel display will not light). - [5] Inspect the Air Filter, which should be in its housing and correctly positioned (the metal grille should be toward the inside). - 6 Check with your hand that the fans turn freely. #### FIGURE FOR THE STANDARD UNIT CONFIGURATION FOR MODELS 24-28-30 Close the unit and check that there are no loose panels. Units have the correct refrigerant charge. Do not change it. #### 3.- COMMISSIONING AND OPERATION #### 3.2.- STEPS TO FOLLOW FOR COMMISSIONING THE UNITS - On the heat pump units, the compressor has a single phase electric heating element to assure a separation between the Refrigerant and the oil in the housing. This heater is activated when the compressor is off and stops working when the compressor is on. - About eight hours before start up or after a long shutdown period, voltage should be supplied to the unit so that this heater will be activated. - To start the unit, follow the instructions given in the Control Panel Manual supplied with the unit (requesting operation in any of the modes, cooling, heating, or automatic). After a time lapse, the unit will start. - With unit operating, check that the fans are turning freely and in the proper direction. #### REMEMBER THAT THE COMPRESSOR IS A SCROLL TYPE COMPRESSOR: Scroll type compressors only compress in one direction of the rotation. Single phase models are always started up in the proper direction; however, the three phase models, turn in either direction depending on the order of the power supply phases. Therefore, it is essential that the phase connection for scroll-type three-phase compressors be carried out correctly (the correct direction of rotation can be checked when the pressure on the suction side decreases and the pressure on the discharge side increases when the compressor is activated. If the connection is wrong, the rotation will be reversed causing a high noise level and a reduction in the amount of current consumed. If this occurs, the compressor's internal protection system will kick
in shutting down the unit. The solution is to disconnect, switch the wires between two of the phases and connect again). - Check compressor oil level, if sight glass included (on the sides of the compressor, the level should be between 1/4 and 3/4 in the sight glass, while during operation the level should be between 3/4 and full). - Connect high and low pressure gauges and check that operating pressure values are normal. - Measure electrical consumption for the unit and check that it is near what is indicated on the Rating Plate. - Check the electrical consumption of the compressor and the fans with what is specified in the physical data sheets. - In the case of a Heat Pump unit, make a cycle change on the Control Panel checking that the 4-way valve makes the change correctly. Check the pressure values in the new cycle. - Remember the low pressure switch is reset automatically and the high pressure switch is reset electronically. - Check that pressure switches stop the unit: - FOR THE COOLING CYCLE UNIT: Stop the outdoor fan by disconnecting it. The high pressure should rise and the pressure switch should stop the compressor at 27.5 kg/cm². Reconnect the fan and electrically reset the pressure switch by pressing the "RESUME" button on the Control Panel for 5 seconds and wait for the anti-cycle time (5 minutes), afterwards, the unit will start-up again. Stop the indoor fan by disconnecting it. The low pressure should drop and the unit should stop when the pressure gauge reaches 1 kg/cm². The unit will start up again when the pressure rises and the pressure gauge indicates 2 kg/cm². Once this has been carried out, stop the unit and reconnect the fan. - Start the unit again and when everything is operating normally, take a reading of all the data and **fill out the**Commissioning Sheet. #### 4.- MAINTENANCE #### 4.1.- PREVENTIVE MAINTENANCE PREVENTIVE MAINTENANCE PREVENTS COSTLY REPAIRS. BECAUSE OF THIS PERIODIC INSPECTIONS ARE REQUIRED. #### -GENERAL STATE OF THE CASING: Furniture, paint, deterioration due to bumps, rust spots, leveling and supporting, state of the shock absorbers, if installed, screwed panels, etc. #### - ELECTRICAL CONNECTIONS: State of hoses, tightness of screws, grounding, current draw of the compressor and fans and checking that the unit is receiving the correct voltage. #### - COOLING CIRCUIT: Check that pressure values are correct and that there are no leaks. Check that there is no damage to the pipe insulation, that the state of the coils is correct and that there are no chips or clogs retained by the air flow, etc. #### - COMPRESSOR: Inspect the oil level, if sight glass is present. Inspect the state of the silent block fixtures. #### - DRAINS : Check that water drains correctly and that the drain trays are clean. #### - FANS Check that fans turn freely and in the correct direction without excesive noises. #### - CONTROL: Check Set Points and normal operation. #### - AIR FILTER: The air filter can be removed through the side by sliding it over the rail or down. (See figure). For down removal, remove the one or two profiles supporting it (depending on the model) which are under the filter guide rail and screwed into the unit. The filter should be cleaned with a vacuum cleaner or washed in soapy water. The frequency for cleaning or changing the air filters will depend on the quality air in the area (fumes, vapors, suspended dust particles, etc.). Remember that the metal grille should be always toward the inside of the unit. Remember that the Control Panel may program a notification parameter, for cleaning or replacement of air filters depending on the number of hours of fan operation in the indoor section. #### 4.- MAINTENANCE #### 4.2.- CORRECTIVE MAINTENANCE #### **IMPORTANT** # MAKE SURE THAT THE UNIT IS COMPLETELY DISCONNECTED FROM THE POWER SUPPLY WHEN CARRYING OUT ANY TYPE OF WORK ON THE MACHINE If some component in the cooling circuit must be replaced, follow these recommendations: - Always use original replacement parts. - Remove the entire refrigerant charge from the unit through the schrader valves located in the outdoor section. Create a slight vacuum as a safety measure. - Regulation prohibits the release on the refrigerant into the atmosphere. - If cuts must be made in the pipe work, use pipe cutters. Do not use saws or any other tools that produce filings. - All brazing must be carried out in a nitrogen atmosphere to prevent corrosion from forming. - Use silver alloy brazing rod. - Take special care that the flame from the torch is aimed in the opposite direction from the component to be welded and is covered with a wet rag in order to avoid overheating. - Take very special care if 4-way or check valves are to be replaced since these have internal components that are very heat-sensitive such as plastic, teflon, etc. - If a compressor must be replaced, disconnect it electrically and un-braze the suction and discharge lines. Remove the securing screws and replace the old compressor with the new one. Check that the new compressor has the correct oil charge, screw it to the base and connect the lines and electrical connections. - Carry out the vacuum above and below through the schrader valves of the outdoor unit until -750 mm Hg is reached. Once this level of vacuum has been reached, keep the pump in operation for at least one hour. **DO NOT USE THE COMPRESSOR AS A VACUUM PUMP.** - Charge the unit with refrigerant according to the data on the Rating Plate for the unit and **check that there are no leaks.** #### PRECAUTIONS TO BE TAKEN IN THE USE OF R-407C Refrigerant If R-407C Refrigerant is used in the unit, the following precautions characteristic of this gas should be taken: - The Vacuum Pump must have a Check Valve or Solenoid Valve. - Pressure Gauges and Hoses for the exclusive use with R-407C Refrigerant should be used. - The charge should be carried out in the Liquid Phase. - Always use scales to weight-in charge- Use the Leak Detector exclusive for R-407C Refrigerant. - Do not use mineral oil, only Synthetic oil to ream, expand or make connections. - Keep pipes closed before using them and be very thorough about any possible dirt (dust, filings, burrs, etc.). - When there is a leak, gather what is left of the charge, create a vacuum in the unit and completely recharge with new R-407C Refrigerant. - Brazing should always be carried out in a nitrogen atmosphere. - Reamers should always be well sharpened. #### 4.- MAINTENANCE #### 4.3.- FAILURE DIAGNOSIS In case of failure or malfunction of the unit, the Display on the Control Panel will show an Error or Alarm warning explained in the Control Panel Manual. Nevertheless, whenever there is an unit failure, the unit should be shut down and our Service Technicians consulted. | FAILURE | POSSIBLE CAUSES | POSSIBLE SOLUTIONS | | | |--|--|---|--|--| | | Failure in the power supply, or insufficient voltage. | Connect the power supply or check the voltage. | | | | UNIT DOES NOT START | Circuit breakers have opened. | Reset. | | | | | Power cable or Control Panel cable is defective. | Inspect and Correct. | | | | | High Pressure switch is defective. | Check Cut-off Pressure or change Pressure Switch if necessary. | | | | LINIT OTODO DUE TO LIIOU | Outdoor fan is not working. | Check for voltage, inspect the motor and turbine or replace if necessary. | | | | UNIT STOPS DUE TO HIGH
PRESSURE DURING THE
COOLING CYCLE | Outdoor Fan turns in the wrong direction. | Switch the power phases. | | | | | Outdoor Coil is dirty or clogged for passing air | Inspect and Clean. | | | | | Excess charge of the Refrigerant. | Remove the charge and charge according to the data on the Rating Plate. | | | | UNIT STOPS DUE TO HIGH
PRESSURE DURING THE
HEATING CYCLE | The same causes and solutions as the coils and Indoor Fan. | the Cooling Cycle but with reference to | | | | | Low pressure switch defective. | Check the Cut-off Pressure with a pressure gauge and change the Pressure switch if necessary. | | | | | Indoor Fan is not working. | Check for voltage and inspect the motor, turbine and replace if necessary. | | | | UNIT STOPS DUE TO LOW PRESSURE | Indoor Fan turns in the wrong direction. | Switch the power phases. | | | | | Lack of refrigerant. Leak. | Correct leak, create vacuum and charge. | | | | | Dirty Air Filter | Inspect and Clean. | | | | | Clogged Cooling Circuit. Dirty filter drier. | Inspect and Correct or Change the Filter drier. | | | | UNIT STARTS AND STOPS IN | Compressor overcharged. | Inspect suction and discharge pressure values and correct. | | | | SHORT CYCLES | Compressor cuts off due to Klixon. | Inspect input voltage and voltage drop. | | | | | Lack of Refrigerant. | Correct leak and replace. | | | | LOAD AND ABNORMAL
NOISE IN THE
COMPRESSOR (SCROLL) | Power supply phases inverted (three-phase compressor). | Inspect and switch power phases. | | | | | Clogged drainage. | Inspect and Clean. | | | | WATER LEAKS | Loose drainage pipe connections. | Correct connection. | | | | WATER LEARO | Dirty and overflowing trays. | Inspect and Clean. | | | ## www.lennoxeurope.com BELGIUM, **LENNOX BENELUX N.V./S.A.** **LUXEMBOURG:** www.lennoxbelgium.com **CZECH REPUBLIC:** LENNOX JANKA a.s. www.janka.cz FRANCE: **LENNOX FRANCE** www.lennoxfrance.com **GERMANY:** **LENNOX DEUTSCHLAND GmbH** www.lennoxdeutschland.com IRELAND: LENNOX IRELAND www.lennoxireland.com **NETHERLANDS:** **LENNOX BENELUX B.V.** www.lennoxbenelux.com POLAND: LENNOX POLSKA Sp. z o. o. www.lennoxpolska.com PORTUGAL: LENNOX PORTUGAL Lda. www.lennoxportugal.com **RUSSIA:** **LENNOX DISTRIBUTION MOSCOW** www.lennoxrussia.com SLOVAKIA: LENNOX SLOVENSKO s.r.o. www.lennoxdistribution.com SPAIN: LENNOX REFAC S.A. www.lennox-refac.com **UKRAINE:**
LENNOX DISTRIBUTION KIEV www.lennoxrussia.com **UNITED KINGDOM:** **LENNOX UK** www.lennoxuk.com **OTHER COUNTRIES:** **LENNOX DISTRIBUTION** www.lennoxdistribution.com COD: MIL60E-0501 03-2005 Due to Lennox's ongoing commitment to quality, Specifications, Ratings and Dimensions subject to change without notice and without incurring liability. Improper installation, adjustment, alteration, service or maintenance can cause property damage or personal injury. Installation and service must be performed by a qualified installer and servicing agency.