

OPERATION AND MAINTENANCE MANUAL

MICROPROCESSOR EMIPIUS

CONTENTS

1 1.1 1.2	GENERAL FEATURES Functions carried out by the system Hardware being utilised	Page 2 Page 2 Page 2
2 2.1 2.2 2.3 2.4	EMIPLUS OPERATOR INTERFACE The display The keypad The led The EMIplus board	Page 2 Page 2 Page 3 Page 5
3 3.1	PARAMETERS CONFIGURATION AND MODIFICATION Parameters configuration	Page 8 Page 9
4	TREE OF THE MASKS	Page 14
5	ALARMS	Page 26
6	LIST OF THE PROGRAMMABLE SETS	Page 30
7 7.1 7.2 7.3 7.4 7.5 7.6	NETWORK CONNECTION I/O board address	Page 33 Page 33 Page 34 Page 35 Page 36 Page 37 Page 38
8	STAND-BY	Page 39
9 9.1 9.2 9.3	DATABASE OF THE SUPERVISOR Digital variables Whole variables Analog variables	Page 41 Page 41 Page 43 Page 44

1 - GENERAL FEATURES

EMIplus is an electronic controller system which provides advanced microprocessor management of air-treatment and air-conditioning units.

1.1 Functions carried out by the system

- Temperature and relative humidity regulation.
- Control and signalling of the status of all the components in the plant.
- Possibility to set and modify the regulation parameters.
- Signalling of possible anomalies of the devices controlled by means of acoustic (BUZZER) and visual (ALARM MASK) signals.
- USER MACHINE (KEYPAD- DISPLAY) communication interface.
- Possibility of connection to remote supervisor through RS4485 and RS422 serial communication.
- Possibility of connection up to 8 EMIplus units in pLAN with STAND-BY management.
- Possibility to control all EMIplus units, using just 1 DISPLAY.

1.2. Hardware being utilised

- 8-Analog input EMIplus board.
- 4x20 LCD EMIplus terminal.
- Clock board with address (Only for EMIplus board n.1).
- Address board for the other EMIplus boards.

2 - EMIPLUS OPERATOR INTERFACE

The EMIplus microprocessor control kit is made of the display, the keypad, the Led and the power board.

2.1 The display

All operating information are supplied by means of the terminal through the LCD display where it is shown all values of the quantities controlled, the set-points, the alarm thresholds and also all other general information regarding the variables controlled and their specific configuration.

Special messages appear on the LCD display any time an alarm condition is present.

The display also shows all data detected by the probes, the operating parameters and all other information needed for a complete and accurate regulation.

During normal machine operation the display shows room temperature, room humidity, time and date, if the clock option is present.

All values, either for reading and for setting purpose, are displayed according a tree structure, which can be scrolled by means of the keypad situated on the front side of the user interface.

2.2 The keypad

The EMIplus is equipped with a 15-button keypad that along with the display represents the interface between the operator and the system.

The keypad allows the selection and configuration of the set-point limits, alarm thresholds, intervention delays of the alarms etc.

It allows also to scroll the masks and to move inside each of them and select desired values.

The buttons must be pressed with the machine on. The keypad provides the operator with the following functions:

ON / OFF button	on/off	Energises and de-energizes the unit. The unit has to be switched on by this button in order to carry out any control, verification or operation (See Regulation ON/OFF).
ALARM button	alarm	The pressure of this button displays the first active alarm window and simultaneously it switches off the buzzer. A second pressure of this button reactivates the alarm or the active alarm. The display of several alarm masks can be obtained by pressing the arrow buttons If there are no active alarms in storage, by pressing this button you go to the window NO ACTIVEALARM.(See the regulation of the Alarms).
INCREASE button	*	These buttons have a double functionality:
DECREASE buttone	٠	 Scrolling of the mask branches; when the cursor is on the upper left. Increasing and decreasing the parameters or changing the values, when the cursor is at the beginning of the parameter.
ENTER button	enter	In the value pre-setting masks, by pressing the button the first time, the cursor goes to the first parameter of the window. When pressing again, the selected parameter is confirmed and the cursor moves to the following parameter. Afterwards, from the last parameter you return to the position on the upper left (cursor in the 0.0 position of the display).

Operation and maintenance manual	MICROPROCESSOR EMIplus	Rev. 0 dtd 04/'02
MENU button	Go to the MAIN MASK window.	
	Coto the M VEDSION window	
	Goto the M_VERSION window.	
MANUT button	Go to the M_VIS_TIMER1 window.	
PRINT button	Usable in the version with printer.	
I/O button	Go to the M_SYNOPTIC1 window.	
CLOCK button	Go to the M_REG_CLOCK window.	
SET button set	Go to the M_CALC_SETP window.	
PROG button prog.	The password is requested. If properly introduced M_PARAM_USER13 window.	d, you move to the
MENU+PROG button prog.	The buttons must be pressed and released simultaneo requested. If properly introduced, you move to the window.	usly. The password is e M_MANUF_PASS

Even if the machine has been switched off from the keypad, the electrical board results still powered. Open the main general switch and turn it to 0 position in order to completely isolate the electrical board.

2.3 The led

At the side of each button a green LED is found which lights up when the associated button is being pressed and indicates in which group of masks the user is situated.

Three other LED are placed under the rubber buttons and indicate respectively:

ON / OFF button	green LED
	indicates that the instrument is ON and operating.
ALARM button	red LED
	indicates the presence of an alarm condition.
ENTER button	yellow LED
	Indicates that the instrument is properly supplied.

2.4 The EMIplus board

The control board represents the heart of the system, as it contains the microprocessor that executes the control algorithm.

Operation and maintenance manual MICROPROCESSOR EMIPlus

- 1) Power supply connector 24 Vac 50/60 Hz 15 VA or 24 Vdc, 10 W.
- 2) EMIplus LAN connector.
- 3) Telephone-type connector for connection to the User terminal unit (MMI, Man Machine Interface) or to local network.
- 4) Yellow LED indicating the mains power present.
- 5) 250 Vac, 2A slow-blow fuse (2TA).
- 6) EPROM containing the application program.
- 7) Address/real time clock board (optional).
- 8) RS422 or RS485 card for connection to serial line for CAREL supervisor and/or telemaintenance network.
- 9) Jumpers to select the local network communication mode:
 - J8 at position 1-2 allows you to connect the board to a terminal unit or, possibly, to the supervisory PC; at position 2-3 allows you to connect the board to the local network;
 - J9 at position 1-2 allows the supervisory PC to reset the pCO; at position 2-3 prevents the supervisory PC from resetting the pCO.
- 10) Jumpers for selecting the analogue inputs: J14=B5; J15=B6; J28=B7; J29=B8.
- Analogue inputs: B(n): Analogue input 1÷6 (8 for boards with 8 analogue inputs, code PCOB000**1) AVSS: Common reference for analogue inputs B(n). From B1 to B4 preset to accept Carel NTC probes. B5 and B6 can be selected to accept either 0÷1 Vdc or 4÷20 mA signals (see point 10).
- 12) Additional analogue inputs no.7 and no.8 (only in the boards with 8 analogue inputs) can be selected to accept either 420mA or 01VDC signals.
- 13)
 Digital inputs, 24 Vac (10 mA):

 ID(n):
 Digital inputs 1÷10;

 IDCM1:
 Common reference for digital inputs 1÷5;

 IDCM2:
 Common reference for digital inputs 6÷10.
- Digital inputs available at 230 Vac or 24VAC (10 mA):
 ID11-230 Vac, ID12-230 Vac: Digital inputs 11 and 12 for signals at 230 Vac;
 ID11-24 Vac, ID12-24 Vac: Digital inputs 11 and 12 for signals at 24 Vac;
 ID11R, ID12R: common reference for, respectively, digital inputs ID11 and ID12.

230 VAC signals must not be connected to 24 VAC terminals, as this will damage the board itself.

- 15) Digital outputs (commutable power 2500 VA, 10A/250 Vac):
 - NO(n): Normally open contact output(n);
 - NC(n): Normally closed contact output(n);
 - C(n): Common contact output(n).
- 16) Analogue outputs, 0÷10 Vdc:
 - Y(n): Analogue outputs (0 and 1), 10 mA max;
 - VG1: External power for analogue outputs (24 Vac or 24 Vdc);
 - VG0: Reference for power and for the analogue output signal Y0 and Y1.

The "Reference" column indicates the contacts on the EMIlus board.

Table 1 - Input and output I/O

Digital Inputs			
REFERENCE	DIGITAL INPUT		
ID1 - IDCM1	COMPRESSOR 1 GENERAL ALARM (HIGH PRESSURE OR THERMAL)		
ID2 - IDCM1	COMPRESSOR 2 GENERAL ALARM (HIGH PRESSURE OR THERMAL)		
ID3 - IDCM1	COMPRESSOR 1 LOW PRESSURE		
ID4 - IDCM1	COMPRESSOR 2 LOW PRESSURE		
ID5 - IDCM1	DIRTY FILTER SIGNALLING		
ID6 - IDCM2	FAN THERMAL		
ID7 - IDCM2	AIR FLOW CONTROLLER		
ID8 - IDCM2	REMOTE ON / OFF		
ID9 - IDCM2	THERMAL RESISTANCE 1		
ID10 - IDCM2	THERMAL RESISTANCE 2		
ID11 - ID11R	HUMIDIFIER LEVEL CONTACT		
ID12 - ID12R	PRESENCE OF FIRE		

Analog Inputs

REFERENCE	ANALOG INPUT
B1 - AVSS	AMBIENT TEMPERATURE PROBE
B2 - AVSS	AIR THROW TEMPERATURE PROBE
B3 - AVSS	OUTLET WATER TEMPERATURE PROBE
B4 - AVSS	EXTERNAL AIR / INLET WATER TEMPERAT URE PROBE
B5 - AVSS	AMBIENT HUMIDITY PROBE
B7 - AVSS	CURRENT MEASUREMENT PROBE IN THE HUMIDIFIER
B8 - AVSS	HUMIDIFIER INLET-WATER CONDUCTIVITY PROBE

Digital Outputs

REFERENCE	DIGITAL OUTPUT		
C1-NO1	DEHUMIDIFICATION		
C2-NO2	MAIN FAN - (ACTIVE UNIT)		
C3-NO3	ENERGY SAVING VALVE		
C4-NO4	HUMIDIFICATION / HUMIDIFIER POWER REMOTE-CONTROL SWITCH		
C5-NO5	COMPRESSOR 1 CAPACITY CONTROL / HUMIDIF. WATER-LOAD		
C6-NO6	COMPRESSOR 2 CAPACITY CONTROL / HUMID. WATER-DRAIN		
C-7-NO7	3 POINT COLD VALVE OPENING / COMPRESSOR 1		
C-8-NO8	3 POINT COLD VALVE CLOSING / COMPRESSOR 2		
C-9-NO9 or C9-NA9	3 POINT WARM VALVE OPENING / RESISTAN CE 1		
C10-NO10 or C10-NA10	3 POINT WARM VALVE CLOSING / RESISTANCE 2		
C11-NO11 or C11-NA11	GENERIC ALARM SITUATION		

Analog Outputs

REFERENCE	ANALOG OUTPUT		
VG0 - Y0	COLD WATER RAMP		
VG0 - Y1	WARM WATER RAMP		

3 - PARAMETERS CONFIGURATION AND MODIFICATION

The parameters are divided into four levels:

A **USER** part, not protected by password, which allows monitoring the quantities being regulated, selecting the set-point of principal control, displaying the active alarms and the stored alarms.

A **USER** part, protected by password, which allows selecting all the control parameters of the various functions and processes managed by the program. Only the parameters regarding functions enabled under manufacturer's password will be displayed and consequently selectable.

A **MAINTENANCE** part, protected by password, intended for the maintenance service, for the hour counter management of the compressors and machine, for the calibration of the connected probes and for forcing of the relay outputs.

A **MANUFACTURER** part, protected by Password, enables the configuration of the system with the selection and activation of the functions of the devices to be controlled.

A wrong configuration of the parameters protected by password can cause damages, also very serious, to the machine and can also generate hazardous situations for persons and properties. For this reason, the configuration of these parameters must be done only by trained and qualified personnel authorised by the manufacturer.

3.1 Parameters configuration

The first 10 buttons of the keypad allow the user to carry out every type of operation, ranging from configuration to simple check of the parameters. The blue and red buttons are not employed. Their function is to select the desired loop (or the chain of masks).

The 5 grey rubber buttons are utilised for configuration or for parameters control. When the operations inside a loop, selected by pressing a button, are completed the simple pressure of another button immediately allow the user to move to another loop of masks.

Some features are common to all of them:

1) A green led next to every button lights up when the button is pressed. The led remains lighted as long as operations are done inside the same loop of masks. The led is essential in case the user forget which loop of masks were initially selected. It is important to note that only one, out of 8 led of the blue buttons, can remain lighted; one lighted led automatically switches the other off. Moreover, the user must remember that it will never happen to have all led switched off, even if no operation is done or even if the machine has just reset from a black-out, the menu mask is always present on the display and therefore it is lighted the led next to the Menu button menu

2) The automatic return to the menu mask display and the automatic re-light of the led next to the Menu button are both implemented in the program.

If, for example, the last operation was Printer parameters configuration, the mask employed by the user remains displayed for some minutes and also the Print button for mains lighted.

Expired the set up time, automatically the led next to the Print button switches off and the one next to the Menu button lights up and the display shows temperature and humidity values.

3) Every loop of masks is structured. This means that pressing a button it is always displayed the first mask of the relevant loop. If the user then moves among the other masks of the loop and for any reasons presses the same button again, the display will shows again the first mask.

MENU BUTTON

menu

This button allows the display of the values detected from the selected probes (the temperature probe is the only one always present and not selectable).

The operation is:

- press the MENU button once.

Result of the operation:

- the display shows the mask indicating temperature, room humidity, hour, date and status of the machine.

The operation is:

- press the Increase/ Decrease button

Result of the operation:

- cyclical display of the masks of the loop for probes reading.

MAINTENANCE BUTTON

This button enables to display the zero setting of the total operation hours of the main devices.

The operation is:

-press the Maintenance button once.

Result of the operation:

- the display of the operation hours of the first three selected devices.

The operation is:

-press the Increase/Decrease button.

Result of the operation:

- cyclical display of the masks indicating, for every device (heating elements excluded): hours of operation, thresholds pre-setting and zero setting hours.

Reset of the operation hours: it is necessary to press ENTER in order to reach with the cursor the word "NO". In order to perform the reset operation keep the Increase/Decrease button pressed for few seconds until YES appear. Then release the button and wait for the word NO to appear again.

This button enables the printer to work and to select desired parameters.

The operation is:

- press the Print button once.

Result of the operation:

- the display shows a mask for the selection of immediate print. Just press ENTER button to print.

The operation is:

-press the Increase/Decrease button

Result of the operation:

- cyclic repetition of the masks for the selection of immediate print, cyclic print, and the mask for cyclic print break setting.

INPUT/OUTPUT BUTTON

N 1/0

This button displays the interface card inputs and outputs status. **The operation is:** -press the Input/Output button once. **Result of the operation:**

- the display shows the status of all digital inputs.

The operation is: - press the Increase/Decrease button

Result of the operation:

- the repetition of the masks indicating the status of the digital outputs, analog outputs and digital inputs.

The analog inputs are already read in the Menu branch, therefore they do not appear here in this branch.

Since the digital outputs 7 - 8 - 9 - 10 can manage different devices, according to the selections carried out in the manufacturer branch, the masks I/O will show the name of the device beside the number of its output.

CLOCK/TIMEBANDS BUTTON

This button allows setting of hour, month, year and time bands.

The operation is:

-press the clock button once.

Result of the operation:

- it appear the mask for setting of the date(day, month, year).

The operation is:

-press the Increase/Decrease button.

Result of the operation:

- the repetition of the masks for time setting, for password configuration to restrict access to the time bands branch, and again date setting.

The operation is:

- press the Enter button once, when in the Password configuration mask .

Result of the operation:

- the display shows the field in which the password must be set. If the password is correctly set, by pressing Enter button time bands branch will show, otherwise it returns to the clock loop.

Time bands pre-setting:

After above operations are done, it will appear a mask asking for time bands activation: in case the answer is Yes, the further masks displayed enable setting of time and set-points for temperature and humidity; while if the answer is No, the first mask of the clock branch will be displayed.

set

This button allows the configuration of the set-points for room temperature and room humidity regulation.

The operation is:

-press the Set button once.

Result of the operation:

-the display shows the mask for the temperature set-point selection.

The operation is:

-press the Increase/Decrease button.

Result of the operation:

-the display shows the mask for the humidity set-point selection.

PROG BUTTON prog.

This button enables to open the masks where configuring Parameters of the system are operated by the user in order to customise the regulation.

The operation is:

- press the PROG button once.

Result of the operation:

- it is displayed the mask for user password configuration. If the password is correctly set, by pressing Enter button the user branch appear, otherwise the present mask remains.

The operation is:

-press more times Increase/Decrease button.

Result of the operation:

- the display shows a series of masks dedicated to the pre-setting of all the necessary values which control temperature and humidity and to the pre-setting of set-points and differentials for the devices present in the machine.

The button allows the display of the software version.

The operation is:

-press the Info button once.

Result of the operation:

- the display shows the version of the software.

It enables to switch, in sequence, to the different units, when more than one unit is present in the network.

MANUFACTURER BUTTONS menu

These are the buttons that allow to show the mask for the manufacturer password configuration. If the password is correctly set, it enables to enter the probes activation branch for the connected devices, their main functions and their default pre-setting (standard values).

The operation is:

-press both PROG button and Menu button at the same time for few seconds .

Result of the operation:

- the display shows a mask for the password configuration. If the password is correctly set, by pressing Enter button it enables to enter the probes activation branch, otherwise the password configuration mask will appear.

MANUAL BUTTONS These buttons pressed

seconds enable to enter the manual activation of the devices loop.

The operation is:

- press the Menu and Set buttons together for few seconds.

, iner for

menu

set

Result of the operation:

- the display shows a mask asking to proceed or not with the manual activation of the devices. If the answer is Yes, it appears a loop of masks that offers the possibility to activate all the devices. These masks can be reached by pressing Increase/Decrease button.

ON/OFF BUTTON

This button allows the machine switch on and switch off.

The operation is:

-press the ON/OFF button once.

Result of the operation:

- the led $\,$ placed under the button ON/OFF is lighted up:

- the led placed under the button ON/OFF is turned off:

unit switched on (ON); unit switched off (OFF).

Even if the unit is switched off from the keypad, the electrical board remains under tension. In order to isolate the electrical board, it is necessary to open the main general switch and rotate it to 0 position.

ALARM BUTTON

This button switches off the buzzer activated by an alarm state and cancels the alarms after the cause that generated it has been removed.

The operation is:

- press the Alarm button once.

Result of the operation:

- If before performing this operation there is no active alarm (led under the Alarm button switched off, buzzer off, and no alarm messages present on the display), the display shows a mask informing about absence of alarms. The mask disappears when pressing any other button.

- If before performing this operation there is at least one active alarm (led under the Alarm button lighted, buzzer on, and display showing an alarm message), the pressure of the Alarm button switches the buzzer off and let appear on the display the exact alarm message, which can be the only one or the first of a series. At this point it is possible to check if there is more than one active alarm and find which alarm occurs, press the Increase/Decrease button to do that. In case there is more than one active alarm, a list of alarm messages is shown.

- If before carrying out this operation a buzzer switch off has been performed and the display shows an alarm mask, two possibility occurs: if the causes that had generated the alarms are removed the led under the Alarm button switches off and the automatic return to the menu mask is executed (this operation is called Clear); if the causes that had generated the alarms have not been removed yet the buzzer activates.

- If before carrying out this operation a buzzer switch off has been performed and the display shows any mask (not an alarm mask), an immediate jump to the alarm branch occurs, where it is possible to proceed with the Clear operation.

INCREASE / DECREASE BUTTON

This button allows to move among the masks which make up the loop. If employed after having pressed the Enter button, it enables to set the parameters values.

1) If a loop is made up of masks 1, 2, 3, 4 and 5 and mask 1 is displayed, by pressing more times the Increase button the scrolling of the masks according the order: 1, 2, 3, 4, 5, 1 etc... is shown.

The scrolling of the masks according the order: 1, 5, 4, 3, 2, 1 etc...is shown instead by pressing more times the Decrease button.

2) Referring to the above example, if mask 3 is displayed and the Enter button is pressed, the jump of the cursor from position 0,0 to the numerical field occurs. Push the Increase button to increase the value of the number. Push the Decrease button to decrease the value of the number.

ENTER BUTTON

This button allows to set up values (by means of the Increase/Decrease button) and permit to confirm the data after that they have been inserted.

For example, if a mask like "Pre-setting of temperature set-point" is displayed, by pressing the Enter button the cursor moves from position 0,0 to the numerical field where a figure type 020,0 (20 °C) is present.

The value of this data can be changed by pressing Increase/Decrease button. Pushing the Enter button again the cursor goes back to 0,0 position and at the same time the modified value is stored.

4 - TREE OF THE MASKS

START

-WAIT PLEASE-READING INPUTS Appears when the pCO is switched on. Remains visible for about 5 seconds and is used as a warning to wait for the machine to be initialised.

INFO BUTTON - M_VERSION

STANDARD C.AR.EL.			
CONDIT. HUMIDIF. OPT.			
Code EPSTDECZUA			
Ver. 1.002 - 04/06/98			

Current version of the software.

menu MENU BUTTON - MAIN_MASK

00:00 00/00/00 Unit1 Room temp. 00.0°C Room humid 00.0% Displays the current working modes of temperature and humidity.

WORK_MODE

Displays the current working mode. The blackened box means that the specific function at issue is now activated.

Operating hours: Main fan 000000 Compressor 1 000000 Compressor 2 000000 Shows the operating time of the equipment/s.

M_MAINT_PASS

Enter maintenance password:			
0000			
Right password!			

M_SEL_TIMER1

Main fan ho	our meter:
Threshold:	000x1000
Req.reset:	N 000000

Pre-setting of the fan time operating time established before the maintenance.

M_SEL_TIMER2

Compressor meter:	1	hour
Threshold:	00	00x1000
Req.reset:	N	000000

Pre-setting of the fan time operating time established before the maintenance.

M_SEL_TIMER3

Compressor	2	hour
meter: Threshold:	00	0x1000
Req.reset:	N	000000

Pre-setting of the fan time operating time established before the maintenance.

M CALIBRATION1

Probe adjustment:		
Room temp.:	0.0°C	
Supply air:	0.0°C	
Out water:	0.0°C	

Probe calibration window no. 1.

M_CALIBRATION2

Probe adjustment: 0.0°C Inlet water 0.0% Room humid

Probe calibration window no. 2.

M_MANUAL1

Manual procedur	e:
Main fan:	N
Energy saving:	N

Manual activation of the devices.

M_MANUAL2

Manual procedure:	
Dehumidifier	N
Humidifier	N

Manual activation of the devices.

M MANUAL3

Manual procedure:	
Open cool.fl.v.	N
Close cool.fl.v.	N

Manual activation of the devices.

MICROPROCESSOR EMIplus

M_MANUAL4

Manual procedure:	
Unloader 1	N
Unloader 2	N

Manual activation of the devices.

M_MANUAL5

Manual procedure	:
Open heat.fl.v.	N
Close heat.fl.v.	N

Manual activation of the devices.

M_MANUAL6

Manua	l proce	edu	re:
Cool.	valve	N	00.0V
Heat.	valve	N	00.0V

Manual activation of the devices.

M_DISABLE_HUMID

Integr.humidifier:		
Disable humid.	N	
Manual drain		
(120 sec of timeou	ıt)	

Integrated humidifier disabling. Manual drainage activation (maximum 120 sec.).

PRINTER BUTTON - M_PRINTER

Printer management Cycling print: 000 h Immediate print of unit report: N Time interval for the cyclic print. Activation / forcing of a print.

1/0

I/O BUTTON - M_SYNOPTIC1

Analog inputs		
Room Temo.	00.0°C	
Supply air	00.0°C	
Room humid.	00.0%	

Displays the state of the analog inputs and outputs. It is displayed with the I/O button.

M_SYNOPTIC2

Analog Inputs Inlet water 00.0°C Outlet water 00.0°C Displays the state of the analog inputs and outputs. It is displayed with the I/O button.

M_SYNOPTIC3

. inputs
0= open
06:CCCCC

Displays the state of the analog inputs and outputs. It is displayed with the I/O button.

M_SYNOPTIC4

Analog outputs		
Cooling valve	00.0 V	
Heating valve	00.0 V	

Displays the state of the analog inputs and outputs. It is displayed with the I/O button.

Operation and maintenance manual

MICROPROCESSOR EMIPIUS

M_SYNOPTIC5

Digital outputs		
C= close	0= open	
01:000	04:000	
07:000	10:00	

Displays the state of the analog inputs and outputs. It is displayed with the I/O button.

M_SYNOPTIC6

Humidifier	
Main switch	OFF
Fill valve	OFF
Drain valve	OFF

Displays the state of the analog inputs and outputs. It is displayed with the I/O button.

M_SYNOPTIC7

Humidifier		
Measur.Amps 000.00A		
Target.Amps	A00.00A	
Nomin.Amps	000.00A	

Current absorbed by the humidifier. Current to be maintained. Maximum current allowed by the cylinder.

M_SYNOPTIC8

Humidifier		
Water le	vel:	open
Conduct.	0000	uS/cm

Current absorbed by the humidifier. Current to be maintained. Maximum current allowed by the cylinder.

M_SYNOPTIC9

Humidifier		
Cyl.worn out N		
Mode		
Status h.		

Current absorbed by the humidifier. Current to be maintained. Maximum current allowed by the cylinder.

CLOCK BUTTON - M_REG_CLOCK

Clock	&	date setting
Time Date		00:00 00/00/00

Regulation of the internal clock (it is necessary to mount the watch card).

M_CLOCK_PASS

Enter the clock password	
Right password!	0000

M_DAILY_TEMP

Daily time zone	
with automatic	
temper. set-point	
variation	N

Enabling of the automatic operation with change of the temperature set-point.

M_DAILY1_TEMP

Temperature		
Daily time	zone 1	
Start time	00:00	
Set-point	00.0°C	

Pre-setting of the time band no. 1.

The time band starting hour and the relevant temperature set-point will be selected. The time band ending will be the beginning of the following one.

Operation and maintenance manual

MICROPROCESSOR EMIplus

M_DAILY2_TEMP

Temperature		
Daily time zone 2		
Start time	00:00	
Set-point	00.0°C	

Pre-setting of the time band no. 2.

The time band starting hour and the relevant temperature set-point will be selected. The time band ending will be the beginning of the following one.

M_DAILY3_TEMP

Temperature		
Daily time	zone 3	
Start time	00:00	
Set-point	00.0°C	

Pre-setting of the time band no. 3.

The time band starting hour and the relevant temperature set-point will be selected. The time band ending will be the beginning of the following one.

M_DAILY4_TEMP

Temperature		
Daily time	zone 4	
Start time	00:00	
Set-point	00.0°C	

Pre-setting of the time band no. 4.

The time band starting hour and the relevant temperature set-point will be selected. The time band ending will be the beginning of the following one.

Enabling of the automatic operation with change of the humidity set-point.

M_DAILY_HUMID

·	
Daily time	zone
with automa	atic
humidity se	et-point
variation	N

M_DAILY_HUMID1

Humidity			
Daily time zone 1			
Start time	00:00		
Set-point 00.0°C			

Time band no. 1 pre-setting.

The band hour-start and relevant humidity set-point will be preset. The end of the time band will be the start of the following one.

M_DAILY_HUMID2

Humidity		
Daily time	zone 2	
Start time	00:00	
Set-point	00.0°C	

Time band no. 2 pre-setting.

The band hour-start and relevant humidity set-point will be preset. The end of the time band will be the start of the following one.

M_DAILY_HUMID3

Humidity		
Daily time	zone 3	
Start time	00:00	
Set-point	00.0°C	

Time band no. 3 pre-setting.

The band hour-start and relevant humidity set-point will be preset. The end of the time band will be the start of the following one.

M_DAILY_HUMID4

Humidity		
Daily time	zone 4	
Start time	00:00	
Set-point	00.0°C	

Time band no. 4 pre-setting.

The band hour-start and relevant humidity set-point will be preset. The end of the time band will be the start of the following one.

SET BUTTON - M_CALC_SETP

Actual set-poins:		
Temperature 00.0°C		
Humidity	000.0%	
_		

Displays the values of the active set-points (if the functions are active of time and temperature compensation and humidity or compensation).

set

MICROPROCESSOR EMIPIUS

M_SELECT_SETP

Set-points	
Temperature	00.0°C
Humidity	000.0%
_	

Change of the set-points. The values must be included within the limits being preset in the M_PARAM -USERx masks.

PROG BUTTON - M_SERV_PASS

Enter	the	servi	ce
1			0000
Right	pass	word!	

M_PARAM_USER1

Temperature limits	setpoint
Minimum	00.0°C
Maximum	00.0°C

Presetting of the temperature set-point limits.

M_PARAM_USER2

Humidity limits	setpoint
Minimum	00.0°C
Maximum	00.0°C

Presetting of the humidity set-point limits.

M_PARAM_USER3

Temperature	
Band	00.0°C
Neutral zone	00.0°C

Presetting of the proportional band and of the neutral zone for the temperature regulation.

M_PARAM_USER4

Humidity Band 00.0% Production 00.0kg/h Humidity proportional band. Maximum preset production.

M_PARAM_USER5

Automatic restart after power fail.	N
Remote on/off enabled	N

Automatic start enabling after voltage drop. Enabling / disabling ON/OFF remote (from digital input).

M_PARAM_USER6

Presetting of the offset parameter energy saving.

M_PARAM_USER7

Enabling of the temperature set-point compensation.

MICROPROCESSOR EMIplus

M_PARAM_USER8

Compensation:	
Setpoint	00.0°C
Band	00.0°C
Offset	00.0°C

Parameters for the compensation.

M_PARAM_USER9

Room temperature alarms:	
Offset low	00.0°C
Offset high	00.0°C

Values that limit the temperature range.

Value to be subtracted from the temperature set-point. Value to be added to the temperature set-point.

M_PARAM_USER10

Room humidity alarms:	
Offset low	000.0%
Offset high	000.0%

As above for the humidity.

M_PARAM_USER11

Outlet water temp. thresholds alarms	
Low	00.0°C
High	00.0°C

Values within which the outlet water temperature has to be maintained.

M_PARAM_USER12

Identific.address for supervisor system network: 000 Address for the serial connexion to an external supervisory system.

M_PARAM_USER13

Enter new service password 0000 New user password presetting.

prog

MENU+PROG BUTTON - M_MANUF_PASS

Enter manufacturer password 0000 Right password!

M_MANUF_MENU

Submenu of the manufacturer's branch.

To preset the item being requested you move downwards with arrow and presetting is made with ENTER.

M_MANUF_CONF1

Clock board	N
Printer	N
Supervisor board	N
_	

The devices present in the machine are enabled.

Supply air temper. probe enabled

Outlet water temper probe enabled

Ν

N

MICROPROCESSOR EMIPIUS

M MANUF CONF2

The devices present in the machine are enabled.

M MANUF CONF3

External air temper. probe enabled N	
Inlet water temper. probe enabled N	

The devices present in the machine are enabled.

M_MANUF_CONF4

Room humidity probe enabled N	
Integr.humidifier enabled N	

The devices present in the machine are enabled.

M MANUF CONF5

Energy saving	N
Heaters no.	0
Compressors no.	0
Unloader comp.	N

The devices present in the machine are enabled.

M MANUF CONF6

Cooling valve N	
Heating valve N	
Cooling fl.valve	N
Heating fl.valve	N

The devices present in the machine are enabled.

M_MANUF_CONF7

Select if the unit will work in rotation (Auto Sequence) or indipendently (Stand-Alone).

M_MANUF_PARAM1

Compresser with valve in energy N saving

In this window, if at least one compressor is installed, it is specified if the valve will be operating in energy saving with the compressors.

M MANUF PARAM2

If two compressors are instassed, operation in rotation of the compressors; no. of compressors for the dehumidification; capacity control logic: normally closed or normally open. The regulation proportional (P) or proportional + integral (P + I).

M_MANUF_PARAM3

Logic of the dehumidification relay.

MICROPROCESSOR EMIplus

M_MANUF_PARAM4

Step compressor 1 without energy sav.	
Position	000.0%
Hysteresis	000.0%

Positioin of the steps with respect to the proportional band. To better understand the function go to the paragraph "Concept of step", see "regulation graphs".

M_MANUF_PARAM5

Step compressor 2 without energy sav.	
Position	000.0%
Hysteresis	000.0%

Positioin of the steps with respect to the proportional band. To better understand the function go to the paragraph "Concept of step", see "regulation graphs".

M_MANUF_PARAM6

Step unloade without ener	er 1 ogy sav.
Position	000.0%
Hysteresis	000.0%

Positioin of the steps with respect to the proportional band. To better understand the function go to the paragraph "Concept of step", see "regulation graphs".

M_MANUF_PARAM7

Step unloader 2 without energy sav.	
Position	000.0%
Hysteresis	000.0%

Position of the steps with respect to the proportional band. To better understand the function go to the paragraph "Concept of step", see "regulation graphs".

M_MANUF_PARAM8

	4
Step compres	sor 1
with energy	saving
Position	000.0%
Hysteresis	000.0%

Parameters relevant to the position of the compressors, capacity controls with energy saving. See "Unit with a compressor in energy saving".

M_MANUF_PARAM9

2 con
000.0%
000.0%

Parameters relevant to the position of the compressors, capacity controls with energy saving. See "Unit with a compressor in energy saving".

M MANUF PARAM10

Step unloade with energy	er 1 saving
Position	000.0%
Hysteresis	000.0%

Parameters relevant to the position of the compressors, capacity controls with energy saving. See "Unit with a compressor in energy saving".

M_MANUF_PARAM11

Step unloader energy saving	2 with
Position	000.0%
Hysteresis	000.0%

Parameters relevant to the position of the compressors, capacity controls with energy saving. See "Unit with a compressor in energy saving".

M_MANUF_PARAM12

Step heater	1
Position	000.0%
Hysteresis	000.0%

Presetting of the step relevant to the resistance heating. See paragraph "Concept of step".

MICROPROCESSOR EMIplus

M_MANUF_PARAM13

Step heater	2
Position	000.0%
Hysteresis	000.0%

Presetting of the step relevant to the resistance heating. See paragraph "Concept of step".

M_MANUF_PARAM14

Step heater control	binary
Position	000.0%
Hysteresis	000.0%

Presetting of the step relevant to the resistance heating. See paragraph "Concept of step".

M_MANUF_PARAM15

Cooling 0	/10V valve
Begin	000.0%
End	000.0%

Parameters for the regulation of the 0/10V modulating cooling valve type. The operating features are described in the paragraph "Temperature regulation graphs".

M_MANUF_PARAM16

Heating	0/10V	valve
Begin End		000.0% 000.0%

Parameters for the regulation of the 0/10V modulating cooling valve type. The operating features are described in the paragraph "Temperature regulation graphs".

M_MANUF_PARAM17

Cooling 3p	valve	
Begin End	000.0% 000.0%	

Parameters for the three-point modulating valve. See "Temperature regulation graphs".

M_MANUF_PARAM18

Heating	Зр	valve
Begin End		000.0% 000.0%

Parameters for the three-point modulating valve. See "Temperature regulation graphs".

M_MANUF_PARAM19

Step humidification		
Position	000.0%	
Hysteresis	000.0%	

Humidification step regulation. See "Humidity control graphs".

M_MANUF_PARAM20

Step dehumidific.		
Position	000.0%	
Hysteresis	000.0%	

Humidification step regulation. See "Humidity control graphs".

M_MANUF_PARAM21

Low temperature		
limit (stop dehum.)		
Position	000.0%	
Hysteresis	000.0%	
1 -		

Dehumidification stop step. See "Humidity control graphs".

Operation and maintenance manual

MICROPROCESSOR EMIPIUS

M_MANUF_PARAM22

High temperature		
limit (stop dehum.)		
Position	000.0%	
Hysteresis	000.0%	

Dehumidification stop step. See "Humidity control graphs".

M_MANUF_PARAM23

Nomin. prod.	00 kg/h	
Voltage	000 V	
Phase number	1	
TAM model	050	

Parameters for the identification of humidifier type.

M_MANUF_PARAM24

Enable drain voltage	without N
Parameter CO	0000
Parameter C1	0000

Enabling of the drain without voltage.

M_MANUF_PARAM25

Units Number 0 Sequence Reset N Select total Unit's number engaged for rotation.

Rotation's Reset and restart.

M_MANUF_PARAM26

Select Hour/Minute		
HOUR		
Rotation Type		
NORMAL		

Select rotation cycle: Hours (normal) or Minutes (test).

Rotation can be cyclic (1, 2, 3, 1, 2...) or depending by the unit who have the major amount of Running Hours.

M_MANUF_PARAM27

Test change over P. 00 minutes Change over period 000 hours Select minutes number for Rotation test.

Select Rotation hours.

M_MANUF_TIME1

Time delay switching main fan on 000 sec Time delay switching main fan off 000 sec Fan start time delay.

Fan stop time delay.

M_MANUF_TIME2

Integral time			
(only P+I) 0000 sec			
Float.valve running			
time 0000 sec			

Constant for the temperature control proportional + integral. Three point modulating valve opening time.

M_MANUF_TIME3

Low pressure alarm delay. Starts when the compressor starts. High / low humidity alarm delay.

Operation and maintenance manual MICROPROCESSOR EMIplus

Air flow alarm delay

0000 sec

M_MANUF_TIME4

time

Air flow controller acquisition delay.

M_MANUF_TIME5

Minimum compressor off time 0000 sec
Minimum compressor on time 0000 sec

Compressor timing.

M_MANUF_TIME6

Delay be	etween	starts
same com	p. 000	00 sec
Delay be	ntween	starts
diff. co	17.00	000 sec

Compressor timing.

M_MANUF_TIME7

Delay between starts	Delay	betwe	en st	arts
diff. heat. 0000 sec	two u	nload	0000	sec
	Delay	betwee	en sta	erts
	diff.	heat.	0000	sec

Resistance timing.

M DEFAULT

PRESS KEY ENTER TO INSERT MANUFACTURER PARAMETERS WAIT PLEASE

Storage loading of the factory values. See table "Programmable sets".

M_PASS_MANUF

Enter new manufacturer password	
1	0000

HIGH-TECH AIR CONDITIONING AND REFRIGERATION

5 - ALARMS

The alarm state is shown in all masks where "AL" is found on the upper right corner of the display and enables to see all masks containing news in relation to the occurred fault.

Every state of alarm is signalled:

- acoustically by the buzzer incorporated into the EMIplus relay card;

- visually by the LED lighting of the ALARM button.

It is possible to recall a message relevant to an alarm occurred by pressing the *ALARM* button. To re-set the alarms simply press the ALARM button when an alarm window is displayed.

The alarms are divided into three categories:

	LED signalling	Window signalling	Remote signalling	Stops the unit	Stops the device
Serious alarms	yes	yes	yes	yes	yes
Device alarms	yes	yes	yes	no	no
Signalling alarms	yes	yes	yes	no	no

 AL_1

AL01	00:00	00/00/00		
Compressor 1				
General Alarm				

High pressure alarm or thermal of the compressor number 1.

AL_2

AL02	00:00	00/00/00		
Compressor 2				
General Alarm				

High pressure alarm or thermal of the compressor number 1.

AL_3

AL03	00:00	00/00/00	
Low pressure			
Circuit 1 Pressostat			

AL_4

AL_5

AL05	00:00	00/00/00	
Ai	r Flow	Alarm	
(serious alarm)			
UNIT OFF			

AL_6

AL06	00:00	00/00/00	
Main	Fan C	verload	
(serious alarm)			
UNIT OFF			

AL_7

AL_8 AL08 00:00 00/00/00 Heater 2 Overload AL_9 AL09 00:00 00/00/00 Fire or Smoke Alarm (serious alarm) UNIT OFF AL_10 AL10 00:00 00/00/00 Air Filter Alarm AL_11 AL11 00:00 00/00/00 High Room Temperature Alarm AL_12 AL12 00:00 00/00/00 Low Room Temperature Alarm AL_13 AL13 00:00 00/00/00 High Room Humidity Alarm AL_14 AL14 00:00 00/00/00 Low Room Humidity Alarm AL 15 AL15 00:00 00/00/00 High Outlet Water Temperature Alarm AL_16 AL16 00:00 00/00/00 Low Outlet Water Temperature Alarm AL_17 AL17 00:00 00/00/00 Compressor 1 Operation Hour

Alarm

The operating threshold preset in the maintenance branch has been exceeded.

Operation and maintenance manual

00:00 00/00/00 Compressor 2 Operation Hours Alarm

MICROPROCESSOR EMIPIUS

AL_18

AL18

The operating threshold preset in the maintenance branch has been exceeded.

The operating threshold preset in the maintenance branch has been exceeded.

AL_19

AL19 00:00 00/00/00 Main Fan Operation Hours Alarm

AL_20

AL20	00:00	00/00/00	
Roa	n Tempe	erature	
Probe	Faulty	y or not	
Connected			

AL_21

AI.21	00:00	00/00	0/00	
Outlet Water Temp.				
Probe Faulty or not				
Connected				

AL_22

AL22	00:00	00/00/00	
Inle	t water	temp.	
Probe	Faulty	or not	
Connected			

AL_23

AL23	00:00 00/00/00	
Sup	ply Air Temp.	
Probe	e Faulty or not	
Connected		

AL_24

<u>AI24</u>	00:00	00/00/00		
Room Humidity				
Probe	Faulty	or not		
Connected				

AL_25

AI.25	00:	00	00/00/00
	Ala	rm	E06
	High	Cu	rrent
in	the	Hu	midifier

AL_26

AL26	00:00	00/00/00
	Alarm	E09
La	ck of	Water
int	the Hu	midifier

AL_27

AL27	00:00	00/00/00
	Alarm	E10
	-16 /	a
l Ta	CK OI (current
	the The	mi di fi am
ш	ше пш	inditter.

AL_28

AL28	00:00	00/00/00
C	lock B	bard
Fa	ulty a	r not
	Connec	ted

AL_29

AI.29 00:00 00/00/00 EPROM Faulty Call Assistance

6 - LIST OF THE PROGRAMMABLE SETS

Following table shows the factory configured value (value column) for all different parameters.

Factory values being taken as machine parameters whenever initialising the unit (M_MANUF_MENU, M_DEFAULT mask), are shown in the PRE-SET column.

SELECTABLE QUANTITIES	LEVEL	RANGE	PRE-SET
Fan hour threshold		0 / 999 (x1000)	200h
Compressor 1 hour threshold		0 / 999 (x1000)	100h
Compressor 2 hour threshold		0 / 999 (x1000)	100h
Temperature probe calibration		-99°C / 99°C	0°C
Delivery air temp. probe calibration		-99°C / 99°C	0°C
Outlet water probe calibration		-99°C / 99°C	0°C
External air temp. probe calibration		-99°C / 99°C	0°C
· · ·			
Manual procedure			
Fan			N
Energy saving			Ν
Dehumidifier			N
Humidifier			N
Compressor 1			N
Compressor 2			N
Resistance 1			N
Resistance 2			N
Cold fan		0 / 10.0V	N OV
Warm fan		0 / 10.0V	N OV
Temperature set-point		variable	23°C
Humidity set-point		variable	50%
Temperature minimum set-point limits		-99.9 / 99.9°C	-99.9°C
Temperature maximum set-point limits		-99.9 / 99.9°C	99.9°C
Humidity minimum set-point limits set-point		0%	0%
Humidity minimum set-point limits		100%	100%
Temperature band		0 / 99.9°C	3°C
Temperature neutral zone		0 / 99.9°C	0°C
Humidity band		0 / 99.9%	10%
Capacity		variable	3 kg/h
Automatic restart after voltage drop			Ν
Remote ON/OFF enabling			N
Compensation enabling			Ν
Compensation set-point		-99.9 / 99.9	
Compensation band		-99.9 / 99.9	

SELECTABLE QUANTITIES	LEVEL	RANGE	PRE-SET
Compensation offset		-99.9 / 99.9	
Temperature alarm			
low offset		0 / 100°C	10°C
high offset		0 / 100°C	10°C
Humidity alarm			
low offset		0 / 100%	20%
high offset		0 / 100%	30%
Outlet water temperature threshold alarm			
low offset		-99.9 / 99.9°C	2°C
high offset		-99.9 / 99.9°C	20°C
Print repetition		0 / 999h	24h
Temperature set-point automatic variation			N
Temperature time band (1-4)			
Start time		00:00 / 23:59	00:00
Set-point		variable	0°C
Humidity time band (1-4)			
Start time		0:00 / 23:59	00:00
Set-point		variable	0%
(MANUFACTURER'S PARAMETERS)			
Clock card enabling			N
Printer enabling			N
Supervisory system enabling			N
Delivery air probe enabling			N
Outlet water probe enabling			S
External air probe enabling			N
Inlet water probe enabling			N
Humidity probe enabling			S
Integrated humidifier enabling			N
Energy Saving enabling			N
No. resistance		0 / 2	2
No. compressors		0 / 2	2
Compressor capacity control enabling			N
Cold modulating valve enabling			S
Warm modulating valve enabling			S
Cold 3 point valve enabling			N
Warm 3 point valve enabling			N
Configuration Unit Type		Rotation / Stand-Alone	Rotation
Regulation time		Prop. / Prop.+Integral	Prop.
Dehumidification logic			Normal - Open
1/2 compressor step with/without Energy			
Saving			
Position		0 / 100 %	0%
Hysteresis		0 / 100 %	100%
1/2 capacity control step with/without Energy			
Saving			
Position		0 / 100 %	0%
Hysteresis		0 / 100 %	100%
1/2/binary resistance step			
Position		0 / 100 %	0%
Hysteresis		0 / 100 %	100%
Cold modulating valve			

SELECTABLE QUANTITIES	LEVEL	RANGE	PRE-SET
Start		0%	0%
End		100%	100%
Warm modulating valve			
Start		0%	0%
End		100%	100%
Colt 3 point valve			
Start		0 / 100%	0%
End		0 / 100%	100%
Warm 3 point valve			
Start		0 / 100%	0%
End		0 / 100%	100%
Humidification step			
Position		0 / 100%	50%
Hysteresis		0 / 100%	50%
Dehumidification step			
Position		0 / 100%	50%
Hysteresis		0 / 100%	50%
Low temp. limit (stop dehumidification)			
Position		0 / 100%	50%
Hysteresis		0 / 100%	35%
High temp. Limit (stop dehumidification)			
Position		0 / 100%	50%
Hysteresis		0 / 100%	35%
Humidifier nominal capacity		0 / 42	3 kg/h
Humidifier Voltage		0 / 660	220V
Humidifier phase No.		1 o 3	1
Humidifier TAM model		50 / 700	100
Drain enabling withour voltage			N
C0 parameter		0 / 1000	93
C1 parameter		0 / 1000	75
Number of units engaged for rotation		1 / 8	0
Rotation's Reset		0 / 1	0
Select Hours / Minutes of rotation		Hours / Minutes	Hours
Rotation's type		Cyclic / Running Hours	Cyclic
Rotation Cycle Test		1 / 10	0
Rotation Cycle Time		1 / 168	0
Fan start delay time		0 / 999	10 sec.
Fan stop delay time		0 / 999	20 sec.
Integration time		0 / 9999	600 sec.
3 point valve opening time		0 / 9999	180 sec.
Low pressure alarm delay		0 / 9999	180 sec.
Probe alarm delay (temperature, humidity,		0 / 9999	600 sec.
outlet water)			
Air flow controller alarm delay		0 / 9999	10 sec.
Delay between 2 capacity controller start		0 / 9999	10 sec.
Delay between different resistance start		0 / 9999	3 sec.

7 - NETWORK CONNECTION

Every pLAN device must be addressed to be identified by the other ones. In case two or more devices have the same identifying address the network cannot work.

Since the terminals and the boards have the same type of address, it cannot exit the same identifying address assigned to EMIplus board and terminal.

The max address number selectable is in the 1-16 range for the Terminals and 1-16 for the I/O boards.

Because of hardware characteristics it is possible to connect up to 16 addresses.

A example of combinations could be : 8 Terminals + 8 I/O boards

The terminals are addressed by means of the dip-switch placed on the rear, while for the I/O boards it is the optional pLAN card is necessary.

7.1 I/O Board address

The optional pLAN card is available in two different version:

- dip-switch and led only;
 - dip-switch, led and calendar clock;

These cards must be present on every EMIplus I/O board for a correct networking.

Adr	Sw1	Sw2	Sw3	Sw4
0		not po	ssible	
1	on	off	off	off
2	off	on	off	off
3	on	on	off	off
4	off	off	on	off
15	off	on	on	on
16	on	on	on	on

	Sw1		S١	Sw2 Sw3		Sw3		v4
State	off	on	off	on	off	on	off	on
Ρ	0	1	0	2	0	4	0	8
Addr=P(Sw1)+P(Sw2)+P(Sw3)+P(Sw4)								

In the application standard air conditioning + humidifier unit, the addresses for the EMIplus board are the following:

7.2 Terminals address selection

Terminal board rear side view.

Terminal address is programmed by means of the dip-switches set on the Terminal board rear side. Terminal address is selectable in the 1-16 range using the 1-5 dip-switch. Refer to the addressing table below for setting Terminal address (see also previous chapter):

	S۱	w1	S۱	v2	S١	v3	S١	v4	S۱	v5
State	off	on								
Р	0	1	0	2	0	4	0	8	0	16
Addr=P(Sw1)+P(Sw2)+P(Sw3)+P(Sw4)+P(Sw5)										

In the application standard air conditioning + humidifier unit, the terminals of the 8 EMIplus relay must have address higher than 8:

7.3 Terminals management

- A maximum number of three (3) terminals can be software-driven by only one EMIplus board linked to the network. The messages appear on the display simultaneously and not independently; just like keyboards and displays in parallel connexion.
- Every terminal linked to a board can be PRIVATE or SHARED.
- A terminal is PRIVATE if it is dedicated to work with only one I/O board and shows its output.
- A terminal is SHARED, in automatic mode or by keyboard, if it can be associated to more control boards.
- Every EMIplus keeps up to date the PRIVATE terminal display, while if there is a SHARED terminal, this is updated only if the EMIplus actually keeps it under control. The logical point of view is showed in the diagram below:

- Switching can also take place automatically upon direct request of the program. For example, a I/O board can demand the control of the shared terminal in order to display alarms or, to the contrary, pass the control over to following card when pre-set time expire(cyclic rotation).

In the standard configuration air conditioners + humidifiers the user can have two possibilities. The first is to have a private terminal for every EMIplus boards. The second is to have only one terminal (number 16) shared among all units. A mixed configuration is also possible, i.e., private terminals plus one shared.

The number and the type of terminals is established during initial network configuration. The relevant data are stored in the EPROM memory of each I/O board.

7.4 pLAN configuration procedure

- At start up of a pLAN network or at I/O board replacement the first operation to carry out is to activate the procedure for terminals configuration.
- Before beginning this procedure make sure that to every I/O board and to every terminal have been assigned their correct address established during the planning of the network. It is important to remember that the address set through the dip-switch is stored only if a re-set of the device is carried out. In case of wrong address assignment (more cards with the same address) it is a good practice to carry out a general re-set of all the devices present in the network.
- The configuration procedure must be activated for every I/O board and must involve all terminals of the network. Such procedure can be activated from any terminal, even from a temporary one connected just to carry out the configuration operations and later removed.

The operations to perform are the following:

Stage 1: I/O board selection

• The procedure is activated by pushing simultaneously the keys 0-1-2 for at least 5 seconds (the same function is activated also by the keys 14, 15 and 13):

• This mask appears on the display:

Terminal Adr: nn I/O Board Adr: 01

Terminal Adr is not changeable.

It represents the address set on the dip-switch on the rear side of the Terminal.

I/O Board Adr field shows the EMIplus board address that is connected to the Terminal. If no EMIplus board is connected with the Terminal a '--' is shown. Push Arrow Keys for changing it.

The value shown during the selection are the addresses of the boards. If no EMIplus board is active at that moment it is not possible to change the '--' displayed.

Enter: Exit from the STAGE 1 procedure. STAGE 2 first mask appears. The configuration procedure is automatically cleared if no key is pushed within 15 seconds from the former key-stroke.

STAGE 2: Selection of Terminals associated

The masks displayed are:

Terminal Config	
Press ENTER to continue	
Enter	

P:01 Adr	Priv/Shared	
Trm1 09	Pr	
Trm2 none		
Trm3 16	Sh Ok? No	
Trm2 none Trm3 16	 Sh Ok? No	

- Enter key allows to move the cursor among the mask fields, while the keys allow to change the current value of the field. P:01 means in this case, that the selected I/O board has address 1.
- For exiting the procedure and storing changes into memory select the field "OK ? no" and with the cursor let appear "YES", then push ENTER. For exiting without storing changes into memory just wait for 30 seconds without pushing any key.
- For standard installation air conditioning + humidifier the terminal with address 16 must be always configured as third terminal in Shared mode. This will give the possibility to operate with the terminal Shared. For first terminal configure instead, progressive addresses from 9 to 16 in Private mode. The relation between I/O Board and Terminal are shown in the table below.

Board	1	2	3	4	5	6	7	8
Terminal	9	10	11	12	13	14	15	16

7.5 Terminal running messages

• If the pCO main board controlling the Terminal is faulty or there is some problem in communication or it was disconnected from the Terminal this message occurs:

I/O Board xx fault	

• If the Terminal does not receive any token message (network syncro signal) for at least 10 sec., it cancels completely the display and this message appears:

NO LINK

• This message corresponds to the Green LED OFF information for the I/O boards.

7.6 Network status display: NetSTAT

- The program is provided with a procedure that allows to display in real time the status of the currently connected peripheral devices.
- Such procedure is activated by the simultaneous pressure of buttons 0-1-2 (Increase Decrease Enter) for at least 10 seconds (the terminals configuration procedure is entered after 5 seconds). The displayed mask is the following:

NetSTAT	1 🗌 🖬 🖬 💷 – – – 8
T: xx	9 🗖 _ 16
Enter	17 24
To Exit	25 32

- the number after T:xx indicates the terminal address on which the procedure has been activated, the symbols indicate the type of peripheral device (EMIplus], Terminal]) and its relevant address.
- The mask above shows that the network is made up of 2 EMIplus boards with address 1, 2, and of 3 terminals with address 3, 4, 15.

8 - STAND-BY

The connection of the EMIplus boards in a pLAN local network allows them to communicate with one another and exchange variables. The main function of this exchange of variables is to allow all the units to be controlled by one single EMIplus terminal.

In addition, it allows the units to be rotated according to a time schedule, with the possibility to leave one of them in Stand-By, i.e., ready in the case where one of the units in operation malfunctions.

Below is a schematic diagram of the connections which need to be made.

The connection between boards in the pLAN network is made using an AWG20/22 shielded cable, twisted pair + shield. The boards are connected in parallel, using terminal J11 as reference. WARNING: make sure the order of connection is respected.

The following parameters manage the rotation of the units and are present only in the screen of unit number 1. They are listed and described below.

- screen M_MANUF_PARAM25 (manuf. branch). *Number Units*: indicates the total number of units involved in the scheduled rotation (the number set must also take into account unit number 1).
- screen M_MANUF_PARAM25 (manuf. branch). *Reset Rotation*: if enabled, this parameter resets the rotation; this should be set after having completed the parameter installation procedures.
- screen M_MANUF_PARAM26 (manuf. branch). Select. Hours/Minutes: determines if the rotations are performed in minutes (test only) or in hours (normal conditions)
- screen M_MANUF_PARAM26 (manuf. branch). *Type of Rotation*: if Cyclical the units in Stand-By follow the order 1, 2, 3...1, etc...; if Op. Time, at the end of the rotation time the unit with the highest number of operating hours is placed Stand-By (referred to the number of operating hours of the main fan)
- screen M_MANUF_PARAM27 (manuf. branch). Test Rotation Cycle: sets the number of minutes for the rotation test
- screen M_MANUF_PARAM27 (manuf. branch). *Rotation Cycle*: sets the number of hours of rotation in normal operation.

One further parameter is however present on all units:

• screen M_MANUF_CONF7 (manuf. branch). *Unit Configuration*: sets if the unit functions alone (INDEPENDENT UNIT), that is without being part of the rotation, or in rotation (UNIT IN ROTATION).

After all these parameters have been correctly set, the rotation reset should be performed using the Reset Rotation parameter, and then the units should be started.

It is good practice for the units which are part of the rotation to have sequential addresses. If, for example, an installation to be configured with 4 units in rotation and 2 independent units, the first 4 units must have addresses from 1 to 4, and the other 2 must have addresses 5 and 6.

When a critical alarm occurs in one of the units, this unit may continue to function and the stand-by unit is switched on. List of critical alarms :

- compressor high pressure
- compressor low pressure
- electrical element thermal cut-out
- high / low ambient temperature
- high / low water temperature at outlet
- faulty ambient temperature / water outlet / external air / supply air probe
- high current at humidifier
- no current at humidifier
- no water in humidifier
- EPROM malfunction
- interruption to the pLAN local network

When a serious alarm occurs in one of the units, this unit is switched off and the stand-by unit is switched on. List of serious alarms:

- air flowmeter
- main fan thermal cut-out
- fire / smoke
- unit black-out

The clock board installed in unit number 1 allows the cyclical rotation. The timer and the address of the unit in stand-by to be store in the clock's buffer RAM. Following a black-out, the system recommences from the state before the black-out (same unit in stand-by, the cyclical rotation timer does not start from 0 but rather counts the hours already passed).

9 - DATA BASE OF THE SUPERVISOR

The variables listed below will be transmitted between EMIplus and supervisor only, if all following conditions will be met:

- the serial card is inserted into the proper connector that is found on the interface;
- the supervisory function is enabled in the M_MANUF_CONF1 window protected by user's password;
- the address of the unit is properly select with reference to the supervisory network in the M_PARAM_USER12 window protected by user password;
- the equipment have been correctly connected to the network (supervisor and pCO).

9.1 Digital variables

Address	Description	Туре	Communication type
1	Compressor 1 general alarm digital input	Digital	Reading
2	Compressor 2 general alarm digital input	Digital	Reading
3	Pressure controller 1 low pressure circuit digital input	Digital	Reading
4	Pressure controller 2 low pressure circuit alarm digital input	Digital	Reading
5	Air filter alarm digital input	Digital	Reading
6	Fan thermal alarm digital input	Digital	Reading
7	Air flow controller alarm digital input	Digital	Reading
8	ON/OFF remote	Digital	Reading
9	Resistance 1 thermal alarm digital input	Digital	Reading
10	Resistance 2 thermal alarm digital input	Digital	Reading
11	fire / smoke alarm digital input	Digital	Reading
12	Dehumidification	Digital	Reading
13	ON /OFF unit	Digital	Reading
14	Energy saving	Digital	Reading
15	Humidification / Humidification power contact	Digital	Reading
16	Compressor 1 capacity control / Integrated humidifier loading	Digital	Reading
17	Compressor 2 capacity control / Integrated humidifier unloading	Digital	Reading
18	3p cold valve opening contact	Digital	Reading
19	3p cold valve closing contact	Digital	Reading
20	3p warm valve opening contact	Digital	Reading
21	3p warm valve closing contact	Digital	Reading
22	General alarm	Digital	Reading
23	Compressor 1 general alarm	Digital	Reading
24	Compressor 2 general alarm	Digital	Reading
25	Circuit 1 low pressure pressure-controller alarm	Digital	Reading
26	Circuit 2 low pressure pressure-controller alarm	Digital	Reading
27	Air flow controller alarm	Digital	Reading
28	Fan thermal alarm	Digital	Reading
29	Resistance 1 thermal alarm	Digital	Reading
30	Resistance 2 thermal alarm	Digital	Reading
31	Fire / smoke alarm	Digital	Reading
32	Air filter alarm	Digital	Reading
33	Ambient high temperature alarm	Digital	Reading
34	Ambient low temperature alarm	Digital	Reading
35	Ambient high humidity alarm	Digital	Reading
36	Ambient low humidity alarm	Digital	Reading
37	Compressor 1 operating time alarm	Digital	Reading
38	Compressor 2 operating time alarm	Digital	Reading
40	Fan operating time alarm	Digital	Reading
43	Outlet water high temperature alarm	Digital	Reading
44	Outlet water low temperature alarm	Digital	Reading

Address	Description	Туре	Communication type
45	Air supply temperature probe failure alarm	Digital	Reading
46	Outlet water temperature probe failure alarm	Digital	Reading
47	External air temperature probe disconnection alarm	Digital	Reading
48	Humidity probe failure alarm	Digital	Reading
49	EPROM failure alarm	Digital	Reading
51	Temperature regulation type	Digital	Reading
53	Humidity probe enabling	Digital	Writing/Reading
55	Outlet water probe enabling	Digital	Writing/Reading
56	External water probe enabling	Digital	Writing/Reading
57	Inlet water probe enabling	Digital	Reading
58	Supply air probe enabling	Digital	Writing/Reading
59	Binary combination resistance enabling	Digital	Writing/Reading
60	Cold modulating valve 0/10V enabling	Digital	Reading
61	Energy saving enabling	Digital	Writing/Reading
62	Enabling of simultaneous operation of compressors with 0/10V valve	Digital	Writing/Reading
63	Warm 0/10V modulating valve enabling	Digital	Writing/Reading
64	Capacity control enabling	Digital	Writing/Reading
65	Compressor rotation enabling	Digital	Writing/Reading
66	Compressor 1dehumidification enabling	Digital	Writing/Reading
67	Compressor 2 dehumidification enabling	Digital	Reading
68	Temperature time band enabling	Digital	Reading
71	ON/OFF from supervisor enabling	Digital	Writing/Reading
73	3p cold valve enabling	Digital	Writing/Reading
74	3p warm valve enabling	Digital	Reading
75	Manual procedure enabling	Digital	Reading
76	Alarm-stopped machine alarm	Digital	Reading
77	Humidity time band enabling	Digital	Reading
78	High current in the humidifier alarm	Digital	Writing/Reading
80	Water absence in the humidifier alarm	Digital	Reading
82	No current in the humidifier alarm	Digital	Reading
83	Integrated humidifier enabling	Digital	Reading
90	Supervisor internal variable for version check	Digital	Reading
100	Air supply temperature probe failure alarm	Digital	Reading

9.2 Whole variables

Address	Description	Туре	Communication type
10	Cold 0/10V valve ramp start	Whole	Writing/Reading
11	Cold 0/10V valve ramp end	Whole	Writing/Reading
12	Warm 0/10V valve ramp start	Whole	Writing/Reading
13	Warm 0/10V valve ramp end	Whole	Writing/Reading
16	Compressor 1 step without energy saving	Whole	Writing/Reading
17	Compressor 1 hysteresis without energy saving	Whole	Writing/Reading
18	Compressor 2 step without energy saving	Whole	Writing/Reading
19	Compressor 2 hysteresis without energy saving	Whole	Writing/Reading
22	Compressor 2 hysteresis without energy saving	Whole	Writing/Reading
23	Compressor 1 step with energy saving	Whole	Writing/Reading
24	Compressor 1 hysteresis with energy saving	Whole	Writing/Reading
25	Compressor 2 step with energy saving	Whole	Writing/Reading
26	Compressor 2 hysteresis with energy saving	Whole	Writing/Reading
28	Time interval between same compressor switching on	Whole	Writing/Reading
29	Low pressure delay alarm	Whole	Writing/Reading
30	Stop minimum time	Whole	Writing/Reading
31	Time interval between different compressor switching on	Whole	Writing/Reading
32	Resistance no.	Whole	Writing/Reading
33	Compressor no.	Whole	Writing/Reading
34	High / low temperature / humidity alarm delay	Whole	Writing/Reading
38	Resistance switching on time interval	Whole	Writing/Reading
39	Capacity control 1 step without energy saving	Whole	Writing/Reading
40	Capacity control 1 hysteresis without energy saving	Whole	Writing/Reading
41	Capacity control 2 step without energy saving	Whole	Writing/Reading
44	Capacity control 2 hysteresis without energy energy saving	Whole	Writing/Reading
45	Capacity control 1 step saving	Whole	Writing/Reading
46	Capacity control 1 hysteresis with energy saving	Whole	Writing/Reading
47	Capacity control 2 step with energy saving	Whole	Writing/Reading
48	Capacity control 2 hysteresis with energy saving	Whole	Writing/Reading
50	Integration time	Whole	Writing/Reading
51	Fan operation time limit	Whole	Writing/Reading
52	Compressor 1 operation time limit	Whole	Writing/Reading
54	Compressor 2 operation time limit	Whole	Writing/Reading
55	Cold 3p valve ramp start	Whole	Writing/Reading
56	Cold 3p valve ramp end	Whole	Writing/Reading
57	Warm 3p valve start ramp	Whole	Writing/Reading
58	Warm 3p valve end ramp	Whole	Writing/Reading
59	3p valve complete opening time	Whole	Writing/Reading
61	Fan switching on delay	Whole	Reading
62	Cold valve ramp limit	Whole	Reading
63	Warm valve ramp limit	Whole	Reading
65	Fan operating-hour carried out high part	Whole	Reading
66	Compressor 1 operating-hour carried out high part	Whole	Reading
67	Compressor 2 operating-hour carried out high part	Whole	Reading
68	Fan operating-hour low part	Whole	Reading
69	Compressor 1 operating-hour carried out low part	Whole	Reading

9.3 Analog variables

Address	Description	Туре	Communication type
1	Ambient temperature	Analog	Reading
2	Ambient humidity	Analog	Reading
3	Outlet water temperature	Analog	Reading
4	External air temperature	Analog	Reading
5	Supply air temperature	Analog	Reading
6	Dead zone in temperature	Analog	Writing/Reading
7	Ambient humidity band	Analog	Writing/Reading
8	Ambient humidity set	Analog	Writing/Reading
9	Low temperature alarm offset	Analog	Writing/Reading
10	High temperature alarm offset	Analog	Writing/Reading
11	Low humidity alarm offset	Analog	Writing/Reading
12	High humidity alarm offset	Analog	Writing/Reading
13	Ambient temperature set	Analog	Writing/Reading
17	Ambient temperature band	Analog	Writing/Reading
18	Water low temperature limit	Analog	Writing/Reading
19	Water high temperature limit	Analog	Writing/Reading

