Automation and control Soft starters and variable speed drives

Catalogue

September

04

Art. 55053 - MKTED203041EN
AS-Interface
cabling system

2003

Control and Protection, Detection,
Automation,
Human/Machine dialogue,
Communication

Control and signalling units Art. 28697 - MKTED299014EN

Human/Machine dialogue Communication

Control and Protection,

Detection,
Automation
Human/Machine dialogue

| Control and protection

Detection

Soft starters and
 variable speed drives

1 - Soft starters for asynchronous motors
Altistart 01 page 1/8
Altistart U01 and TeSys model U page 1/24
Altistart 48 soft start - soft stop units page 1/41
2 - Variable speed drives for asynchronous motors
2.1 Altivar 11 page 2/12
2.2 Altivar 31 page 2/38
2.3 Altivar 38 page 2/88
2.4 Altivar 58
standard page 2/132
ready-assembled page 2/182

- Altivar 58F - Flux Vector Control with sensor page 2/214
2.5 Altivar 68
- standard page 2/146
- Altivar 68F - Flux Vector Control with sensor page 2/247
- ready-assembled page 2/289
3 - PowerSuite software workshop PowerSuite software workshop page 3/2
4 - Communication
Starters, drives and communication
page 4/2
5 - Technical appendices and substitution
Technical appendices
speed drive. page $5 / 2$
electronic speed drive. page 5/11
Substituting starters page 5/24
Substituting variable speed drives page 5/26
6 - Services
Technical information page 6/2
Product reference index page 6/8
Schneider Electric wordwide page 6/10
Altistart 01- Soft starters for 0.37 to 5.5 kW motorspage $1 / 8$
- Soft start/soft stop units for 0.75 to 75 kW motors page 1/8
- Combinations
- 400 V power supply, type 1 coordination. page 1/18
- 690 V power supply, type 1 coordination. page 1/19
Altistart U01 and TeSys model U
- Soft start/soft stop units for 0.75 to 15 kW motors. page 1/24
- TeSys model U starter and soft start unit combinations page 1/24
Altistart 48
- Selection criteria page $1 / 36$
- Line voltage 230/415 V
ㅁ Connection in the motor supply line. page $1 / 40$
- Connection to the motor delta terminals page 1/41
- Line voltage 208/690 V
- Motor power in HP page 1/42
- Motor power in KW page 1/43
- Options
- Remote terminal page $1 / 45$
\square Line chokes page 1/45
- Protective covers page $1 / 45$
- Documentation. page 1/45
- Communication options page 1/47
- Combinations page 1/58
- Functions page 1/58

Soft starters for asynchronous motors

Applications

Starting simple machines

Soft starting and deceleration of simple machines

Power range for $50 . . .60 \mathrm{~Hz}$ supply (kW)
Single phase 110...230 V (kW)
3 -phase 200... 240 V (kW)
3 -phase 200...480 V (kW)
3 -phase 230...415 V (kW)
3-phase 208...690 V (kW)
3-phase 230...690 V (kW)
3-phase 380...415 V (kW)
3-phase 400 V (kW)

Drive	Output frequency Type of control Transient overtorque

Functions Number of functions	
Number of preset speeds Number of $/ O$	Analog inputs
	$\frac{\text { Logic inputs }}{\text { Analog outputs }}$
Comic outputs	
	Relay outputs

Standards and certifications

References

Pages

$0.37 \ldots 5.5$

$$
0.37 \ldots 1.5
$$

$$
0.37 \ldots 5.5
$$

-

$0.75 \ldots 75$

-
$0.75 \ldots 7.5$
-
-
-
$7.5 \ldots 75$
$1.5 \ldots 15$
$22 \ldots .45$

IEC/EN 60947-4/2
C-TICK, CSA, UL, CE, CCC
ATS 01N1coFT

Soft starting and deceleration of pumping and ventilation machines

TCS (Torque Control System)

Modbus

Fipio, Profibus DP, DeviceNet, Ethernet TCP/IP

IEC/EN 60947-4-2, EMC class A and B
DNV, C-TICK, GOST, CCIB, NOM, UL, CE, CCC, CSA

ATS 48000Q

Soft starters for asynchronous motors

 Altistart 01

 Altistart 01}

Presentation

The Altistart 01 soft starter operates either as a torque limiter on starting or as a soft start/soft stop unit for asynchronous motors.
Using the Altistart 01 starter enhances the starting performance of asynchronous motors by allowing the motor to start gradually and smoothly in a controlled manner. Using it can also prevent mechanical shocks, which lead to wear and tear, maintenance work and production downtime.
The Altistart 01 limits the starting torque and current peaks on starting on machines which do not require a high starting torque.
These starters are designed for the following simple applications:

- conveyors
- conveyor belts
- pumps
- fans
- compressors
- automatic doors
- small cranes
- belt-drive machines, etc.

The Altistart 01 is compact, easy to install and can be mounted horizontally next to another unit, complies with standards IEC/EN 60947-4-2, UL and CSA certifications, and has $C \in$ marking.
The Altistart 01 soft starter offer comprises 3 product ranges:

- 1 ATS 01N10ee soft starters

\square Control one phase of the motor power supply (single phase or 3-phase) to limit the starting torque.

- Internal Bypass relay
- Motor power ratings range from 0.37 kW to 5.5 kW .
- Motor supply voltages range from 110 V to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. An external power supply is required for controlling the starter.
A contactor is always required to switch off the motor.

2 ATS 01N2eee soft start/soft stop units

- Control two phases of the motor power supply to limit the starting current and for deceleration.
- Internal Bypass relay
- Motor power ratings range from 0.75 kW to 75 kW .
\square The motor supply voltages are as follows: $230 \mathrm{~V}, 400 \mathrm{~V}, 480 \mathrm{~V}$ and $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. The use of a line contactor is not necessary on machines where electrical isolation is not required.
- ATSU 01N2ee日 soft start/soft stop units

See pages $1 / 20$ to $1 / 27$.

Description

- Altistart 01 soft starters (ATS 01N1eee) are equipped with:
- a potentiometer 1 for controlling the starting time
- a potentiometer 2 for adjusting the start voltage threshold according to the motor load
- 2 inputs 3:
$-1 \approx 24 \mathrm{~V}$ input or $1 \sim 110 \ldots 240 \mathrm{~V}$ input for powering the control part that controls the motor

■ Altistart 01 soft start/soft stop units (ATS 01N2eee) are equipped with:

- a potentiometer 6 for controlling the starting time
- a potentiometer 8 for controlling the deceleration time
- a potentiometer 7 for adjusting the start voltage threshold according to the motor load
ㅁ 1 green indicator LED 4: device switched on
- 1 yellow indicator LED 5: motor powered at nominal voltage
- a connector 9 :
- 2 logic inputs for Run/Stop commands
- 1 logic input for the BOOST function
- 1 logic output to indicate the end of starting
- 1 relay output to indicate the starter has a power supply fault or the motor has reached a standstill at the end of the deceleration stage.

Characteristics:	References:	Dimensions:
pages $1 / 6$ and $1 / 7$	page $1 / 8$	page $1 / 9$

Soft starters for asynchronous motors

Altistart 01
 Functions

Characteristics:	References:	Dimensions:
pages $1 / 6$ and $1 / 7$	page $1 / 8$	page $1 / 9$

Environment characteristics

(1) For the $230 \ldots 415 \mathrm{~V}$ range, ATS 01N200LV starters can be connected to the motor delta terminals to reduce the starter rating.

Type of starter	ATS		01N206ee to 01N222ee		01N23200		01N2eeLY/01N2eeQ	
1 Starting time	Starting time	s	1	5	1	5	1	12
	Maximum number of cycles per hour		310	20	180	10	360	30
$\xrightarrow{\text { Operating cycle }}$								

| Presentation:
 pages $1 / 4$ and $1 / 5$ | References:
 page $1 / 8$ | Dimensions:
 page $1 / 9$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $1 / 10$ to $1 / 17$ |

Altistart 01

Electrical characteristics (continued)							
Type of starter ATS 01N1			03FT	06FT	09FT/12FT		
Control power supply consumption			$\begin{aligned} \sim & 24 \mathrm{~V}, 25 \mathrm{~mA} \\ \sim & 110 \mathrm{~V}, 30 \mathrm{~mA} \\ \sim & 240 \mathrm{~V}, 65 \mathrm{~mA} \end{aligned}$		$\begin{aligned} \sim & 24 \mathrm{~V}, 30 \mathrm{~mA}, \\ \sim & 110 \mathrm{~V}, 35 \mathrm{~mA}, \\ \sim & 240 \mathrm{~V}, 80 \mathrm{~mA} \end{aligned}$		
Power dissipated	At full load at end of starting	W	4	1	1	1	
	In transient state	W	19	31	46	61	
Current at nominal load (1)		A	15	30	45	60	
Type of starter	ATS 01N2		06LU/QN/RT	09LU/QN/RT	12LU/QN/RT	22LU/QN/RT	32LU/QN/RT
Power dissipated	At full load at end of starting	W	4	4	4	4.5	4.5
	In transient state	W	64	94	124	224.5	324.5
Current at nominal load (1)		A	30	45	60	110	160
Type of starter ATS 01N2			30LY/Q	44LY/Q	72LY/Q	85LY/Q	
Power dissipated	At full load at end of starting	W	22	22	23	23	
	In transient state	W	184	268	436	514	
Current at nominal load (1)		A	90	132	216	255	
Type of starter ATS 01N2			-0LU/QN/RT			-0LY/Q	
Logic input power supply: For LI1, LI2 and BOOST only (electrically isolated between power and control) LI +, COM			24 V power supply Max. current available 10 mA . No short-circuit and overload protection			-	
Logic inputs LI1, LI2, BOOST (01, 02, 03 for ATS 01N2ee LY/Q) Stop, run and boost on start-up functions			Logic inputs with impedance $27 \mathrm{k} \Omega$ 24 V power supply (U max. 40 V) Max. current consumption 8 mA State 0 if $\mathrm{U}<5 \mathrm{~V}$ and $\mathrm{I}<0.2 \mathrm{~mA}$ State 1 if $\mathrm{U}>13 \mathrm{~V}$ and $\mathrm{I}>0.5 \mathrm{~mA}$			Input with internal control relay, internal 24 V power supply Max. current 8 mA State 0 if $\mathrm{l}<=3 \mathrm{~mA}$ State 1 if $\mathrm{I}>=10 \mathrm{~mA}$	
Logic output LO1 End of starting signal			Open collector logic output External 24 V power supply (min. 6 V , max. 30 V) Max. current 200 mA			-	
Relay outputs R1A R1C (04, 05 for ATS 01N2ee LY/Q)			Normally open (N/O) contact (contact open in fault mode) Minimum switching capacity: 10 mA for $-\mathrm{-a} 6 \mathrm{~V}$ Max. switching capacity on inductive load $(\cos \varphi=0.5$ and $\mathrm{L} / \mathrm{R}=20 \mathrm{~ms}$): 2 A for $\sim 250 \mathrm{~V}$ or =-- 30 V (AC-15) Max. operating voltage 440 V			Operating category AC-15: le 3 A, Ue 250 V , DC-13: le 2 A, Ue 24 V , Minimum switching capacity: 10 mA for $-\mathrm{-} 17 \mathrm{~V}$ Maximum operating voltage 250 V	
LED signalling	Green LED		Starter powered up				
	Yellow LED		Nominal voltage reached				

(1) Acceleration current complying with the maximum conditions of use (see page 1/6).

Connections (Maximum connection capacity and tightening torque)						
Type of starter		ATS		01N103FT, 01N106FT	01N109FT, 01N112FT, 01N206ee to 01N232ee	01N20eLY and 01N200Q
Power circuit				Cage type connector	Connection via $\varnothing 4 \mathrm{~mm}$ screw clamp	
Flexible wire without cable end	1 conductor		$\mathrm{mm}^{\mathbf{2}}$	2.514 AWG	1.5... 108 AWG	6... 25
	2 conductors		mm^{2}	117 AWG	1.5...6 10 AWG	6... 25
Flexible wire with cable end	1 conductor		mm^{2}	2.514 AWG	1...6 10 AWG	4... 25
	2 conductors		mm^{2}	0.7518 AWG	1... 610 AWG	4... 16
Rigid wire	1 conductor		mm^{2}	2.514 AWG	1...10 8 AWG	6... 35
	2 conductors		mm^{2}	117 AWG	1...6 10 AWG	6... 25
Tightening torque			N.m	0.8	1.9...2.5	5
Control circuit				Cage type connector	Screw connector	
Flexible wire without cable end	1 conductor		$\mathrm{mm}^{\mathbf{2}}$	2.514 AWG	0.5...2.5 14 AWG	0.75...1.5
	2 conductors		$\mathrm{mm}^{\mathbf{2}}$	117 AWG	0.5...1.5 16 AWG	0.75...1.5
Flexible wire with cable end	1 conductor		mm^{2}	2.514 AWG	0.5...1.5 16 AWG	0.75...1.5
	2 conductors		mm^{2}	0.7518 AWG	0.5...1.5 16 AWG	0.75...1.5
Rigid wire	1 conductor		mm^{2}	2.514 AWG	0.5...2.5 14 AWG	0.75...1.5
	2 conductors		mm^{2}	117 AWG	0.5... 17 AWG	0.75...1.5
Earth connection				-	-	Tinned connector. Fixed using $\varnothing 6$ screws
Tightening torque			N.m	0.8	0.5	0.7

Torque characteristics (typical curves)

The diagram opposite shows the torque/speed characteristic of a cage motor in relation to the supply voltage.
The torque varies in line with the square of the voltage at a fixed frequency.
The gradual increase in the voltage prevents the instantaneous current peak on power-up.

Presentation:
pages $1 / 4$ and $1 / 5$
References:
page 1/8

Altistart 01

ATS 01N103FT

ATS 01N212QN

ATS 01N230LY

Soft starter for 0.37 to 5.5 kW motor								
Motor						Starter		
Motor power (1)						Nominal current	Reference	Weight
Single phase	3-phas							
230 V	210 V	230 V	230 V	400 V	460 V			
kW	HP	kW	HP	kW	HP	A		kg
Single phase 110... 230 V or 3-phase 110... 480 V supply voltage, $50 / 60 \mathrm{~Hz}$								
0.37	-	0.37	0.5	1.1	0.5	3	ATS 01N103FT	0.160
	-	0.55	-	-	1.5			
0.75	0.5	0.75	1	2.2	2	6	ATS 01N106FT	0.160
	-	1.1	1.5	3	3			
1.1	1	1.5	2	4	5	9	ATS 01N109FT	0.280
1.5	1.5	2.2	3	5.5	7.5	12	ATS 01N112FT	0.280

Soft start/soft stop unit for 0.75 to 15 kW motor

Soft start/soft stop unit for 15 to $\mathbf{7 5}$ kW motor
3-phase supply voltage: $230 . . .690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

3-phase supply voltage: $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

Motor	Starter		
Motor power (1)	Nominal current	Reference	Weight
kW HP	A		kg
22.25	44	ATS 01N244Q	2.400
$37 \quad 40$	72	ATS 01N272Q	3.800
45	85	ATS 01N285Q	3.800
Accessories			
Description	Used for starter	Reference	Weight kg
Plate for quick mounting on DIN rail	ATS 01N230LY, ATS 01N244•	VY1 H4101	-
Adaptor for mounting on $_$DZ5 MB rail	ATS 01N103FT, ATS 01N106FT	RHZ 66	0.005
Auxiliary contact, provides information that the motor is at full voltage	ATS 01N2•eeLY, ATS 01N2•eッQ	LAD 8N11	-

| Presentation:
 pages $1 / 4$ and $1 / 5$ | Characteristics:
 pages $1 / 6$ and $1 / 7$ | Dimensions:
 page $1 / 9$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $1 / 10$ to $1 / 17$ |

Soft starters for asynchronous motors
 Altistart 01

ATS 01N103FT，ATS 01N106FT
Mounting on $\longleftarrow(35 \mathrm{~mm})$ rail or
\square rail with adaptor RHZ 66

ATS 01N206ee to ATS 01N212ee
Mounting on \downarrow 〕 $(35 \mathrm{~mm})$ rail
Screw fixing

ATS 01N109FT，ATS 01N112FT
Mounting on 乙（ 35 mm ）rail
Screw fixing

（1）Retractable fixings
ATS 01N22200 to ATS 01N232•0
Mounting on \longleftarrow（ 35 mm ）rail
Screw fixing

，

ATS 01N272LY，ATS 01N285LY，ATS 01N272Q，ATS 01N285Q

ATS 01N230LY，ATS 01N244LY，ATS 01N244Q
Quick mounting on 乙 rail（ 35 or 70 mm ）using plate VY1 H4101（1）

Soft starters
 for asynchronous motors

Altistart 01
For 0.37 to 5.5 kW motors

ATS 01N1eoFT soft starters

Single-phase or 3-phase power supply

Note : For single-phase motors, use the ATS 01N1 coFT without connecting the $2^{\text {nd }}$ phase 3/L2, 4/T2.
Wait 5 seconds after switching the soft starter off before switching it on again.
(1) A line contactor must be used in the sequence.

Compatible components (for full references, see pages $1 / 18$ and $1 / 19$ or refer to our catalogue: "Motor starter solutions - Control and protection components".) Code Description	
A1	Soft starter
Q1	GV2 ME circuit-breaker
KM1	LC1 $\mathbf{0}+0$ LA4 DA2U
F1, F2	Control protection fuses
S1, S2	XB4 B or XB5 B pushbuttons

Function chart

Presentation:	Characteristics:	References:
pages $1 / 4$ and $1 / 5$	pages $1 / 6$ and $1 / 7$	page $1 / 8$

Soft starters for asynchronous motors

Altistart 01
For 0.75 to 15 kW motors

ATS 01N2eoLU/QN/RT soft start/soft stop units
Manual control without deceleration (freewheel), Automatic control with reversal of operating direction, without deceleration with GV2 and GV3 motor circuit-breaker
ATS 01N206ee to ATS 01N232••

(freewheel)
ATS 01N206ee to ATS 01N232ee

(1) For type 2 coordination.

Compatible components (for full references, see pages $1 / 18$ and $1 / 19$ or refer to our catalogue: "Motor starter solutions - Control and protection components".)

Code	Description
Q1	Soft start/soft stop unit
KM1, KM2, KM3	GV2 ME circuit-breaker
F1, F2	LC1 ee® + LA4 DA2U
F3	Control protection fuses
$\mathbf{S 1 , ~ S 2 , ~ S 3 ~}$	3 fast-acting fuses

Presentation: $1 / 5$	Characteristics:	References:
pages $1 / 4$ and $1 / 5$	pages 1/6 and $1 / 7$	page 1/8

Soft starters for asynchronous motors

Altistart 01

For 0.75 to 15 kW motors

ATS 01N2eoLU/QN/RT soft start/soft stop units

Automatic control with or without deceleration (freewheel), without contactor
ATS 01N206ee to ATS 01N232••

Automatic control with or without deceleration (freewheel), with contactor

ATS 01N206ee to ATS 01N232•e

(1) Use shielded wires above 1 m .
(2) For type 2 coordination.

Compatible components (for full references, see pages $1 / 18$ and $1 / 19$ or refer to our catalogue: "Motor starter solutions - Control and protection components".) Code Description	
A1	Soft start/soft stop unit
Q1	GV2 ME circuit-breaker
$\mathbf{Q 2}$	Fuse switches
F4	Thermal overload relay
KM1	LC1 ©e0 + LA4 DA2U
F1, F2	Control protection fuses
F3	3 fast-acting fuses
S1, S2, S3	XB4 B or XB5 B pushbuttons

Function charts

2-wire control with deceleration

3-wire control with deceleration

Presentation:	Characteristics:	References:
pages $1 / 4$ and $1 / 5$	page $1 / 8$	Dimensions: pages $1 / 6$ and $1 / 7$

Soft starters for asynchronous motors

Altistart 01

For 0.75 to 15 kW motors

ATS 01N200LU/QN/RT soft start/soft stop units

Automatic control without deceleration (freewheel), with a maintaining function
ATS 01N206eゃ to ATS 01N232e•

(1) For type 2 coordination.

Compatible components (for full references, see pages $1 / 18$ and $1 / 19$ or refer to our catalogue: "Motor starter solutions - Control and protection components".) Code Description	
A1	Soft start/soft stop unit
Q1	GV2 ME circuit-breaker
KM1	LC1 •e® + LA4 DA2U
F1, F2	Control protection fuses
F3	3 fast-acting fuses
S1, S2	XB4 B or XB5 B pushbuttons

Soft starters
 for asynchronous motors

Altistart 01

For 15 to 75 kW motors

ATS 01N200LY and ATS 01N200Q soft start/soft stop units (compatible components, see page 1/15)
Manual control without deceleration (freewheel), with GV3 and GV7 motor circuit-breaker
ATS 01N230LY to ATS 01N285LY
ATS 01N244Q to ATS 01N285Q

Automatic control with reversal of operating direction, without deceleration (freewheel)

ATS 01N230LY to ATS 01N285LY

[^0]| Presentation: | | |
| :--- | :--- | :--- |
| pages $1 / 4$ and $1 / 5$ | Characteristics: | References: |
| pages $1 / 6$ and $1 / 7$ | page $1 / 8$ | Dimensions: |

Soft starters for asynchronous motors

Altistart 01
For 15 to 75 kW motors

ATS 01N2eoLY and ATS 01N2eeQ soft start/soft stop units
Automatic control with or without deceleration (freewheel), without contactor ATS 01N230LY to ATS 01N285LY

ATS 01N244Q to ATS 01N285Q

(1) Use shielded wires above 1 m .
(2) For type 2 coordination.

(1) Use shielded wires above 1 m .
(2) For type 2 coordination.

Compatible components (for full references, see pages $1 / 18$ and $1 / 19$ or refer to our catalogue: "Motor starter solutions - Control and protection components".)

Code	Description
Q1	Soft start/soft stop unit
KM2, KM3	GV3 or GV7 circuit-breaker
F1, F2	LC1 •e॰ + LA4 DA2U
F3	Control protection fuses
S1, S2, S3	3 fast-acting fuses

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 4$ and $1 / 5$	pages $1 / 6$ and $1 / 7$	page $1 / 8$	page $1 / 9$

Soft starters
 for asynchronous motors

Altistart 01
For 15 to 75 kW motors

ATS 01N2eeLY and ATS 01N2eeQ soft start/soft stop units (continued)
Automatic control with or without deceleration (freewheel), with contactor
ATS 01N230LY to ATS 01N285LY
ATS 01N244Q to ATS 01N285Q

Compatible components (for full references, see pages $1 / 18$ and $1 / 19$ or refer to our catalogue: "Motor starter solutions - Control and protection components".) Code Description	
A1	Soft start/soft stop unit
Q1	GK1 disconnector
KM1	LC1 ©e0 + LA4 DA2U
F1, F2	Control protection fuses
F4	LR2 D thermal overload relay
$\mathbf{S 1 , S 2 , S 3}$	XB4 B or XB5 B pushbuttons

Presentation:	Characteristics:	References:
pages $1 / 4$ and $1 / 5$	pages $1 / 6$ and $1 / 7$	page $1 / 8$

Soft starters for asynchronous motors

Altistart 01
For 15 to 75 kW motors

ATS 01N2eoLY and ATS 01N2eeQ soft start/soft stop units (continued)
Automatic control without deceleration (freewheel), with a maintaining function
ATS 01N230LY to ATS 01N285LY
ATS 01N244Q to ATS 01N285Q

(1) For type 2 coordination.
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Compatible components (for full references, see pages } 1 / 18 \text { and } 1 / 19 \text { or refer to our catalogue: "Motor starter solutions - Control and protection components".) } \\
\text { Code } \\
\text { D1 }\end{array}
$$

\hline Description\end{array}\right]\)| Soft starter | |
| :--- | :--- |
| K1, F2 | GV3 circuit-breaker |
| F3 | LC1 $\bullet e 0+$ LA4 DA2U |
| S1, S2 | Control protection fuses |

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 4$ and $1 / 5$	pages $1 / 6$ and $1 / 7$	page $1 / 8$	page $1 / 9$

Soft starters for asynchronous motors

Altistart 01
 400 V power supply, type 1 coordination

Components to be combined in accordance with standards IEC 60947-1 and IEC 60947-4-2										
Combine either circuit-breaker (light blue columns), contactor, starter, or switches/fuses (dark blue columns), contactor, starter										
Motor		Starter Class 10	Type of circuit-breaker		Type of contactor	Type of switch or switch disconnector (base unit)	Am fuses Reference	Rating A	$I^{2} t$$A^{2} s$	Thermal overload relay
kW	A			A						
M1		A1	Q1		KM1, KM2, KM3 Q2					F4
0.37	0.98	ATS 01N103FT	GV2 ME05	1	LC1 K06 or LC1 D09	LS1 D2531	DF2 CA02	2	265	$\begin{aligned} & \text { LR2 K0306 } \\ & \text { LRD } 05 \end{aligned}$
0.55	1.5	ATS 01N103FT	GV2 ME06	1.6	LC1 K06 or LC1 D09	LS1 D2531	DF2 CA02	2	265	$\begin{aligned} & \text { LR2 K0307 } \\ & \text { LRD } 06 \\ & \hline \end{aligned}$
0.75	2	ATS 01N103FT	GV2 ME07	2.5	LC1 K06 or LC1 D09	LS1 D2531	DF2 CA02	2	265	$\begin{aligned} & \text { LR2 K0308 } \\ & \text { LRD } 07 \\ & \hline \end{aligned}$
1.1	2.5	ATS 01N103FT	GV2 ME08	4	LC1 K06 or LC1 D09	LS1 D2531	DF2 CA04	4	265	$\begin{aligned} & \text { LR2 K0308 } \\ & \text { LRD } 08 \end{aligned}$
		ATS 01N206QN	GV2 ME08	4	LC1 K06 or LC1 D09	LS1 D2531	DF2 CA04	4	265	$\begin{aligned} & \text { LR2 K0308 } \\ & \text { LRD } 08 \end{aligned}$
1.5	3.5	ATS 01N106FT	GV2 ME08	4	LC1 K06 or LC1 D09	LS1 D2531	DF2 CA06	6	265	$\begin{aligned} & \text { LR2 K0310 } \\ & \text { LRD } 08 \\ & \hline \end{aligned}$
		ATS 01N206QN	GV2 ME08	4	$\begin{aligned} & \text { LC1 K06 or } \\ & \text { LC1 D09 } \end{aligned}$	LS1 D2531	DF2 CA06	6	265	$\begin{aligned} & \text { LR2 K0310 } \\ & \text { LRD } 08 \\ & \hline \end{aligned}$
2.2	5	ATS 01N106FT	GV2 ME10	6.3	$\begin{aligned} & \text { LC1 K06 or } \\ & \text { LC1 D09 } \end{aligned}$	LS1 D2531	DF2 CA08	8	265	$\begin{aligned} & \text { LR2 K0312 } \\ & \text { LRD } 10 \end{aligned}$
		ATS 01N206QN	GV2 ME10	6.3	$\begin{aligned} & \text { LC1 K09 or } \\ & \text { LC1 D09 } \end{aligned}$	LS1 D2531	DF2 CA08	8	265	$\begin{aligned} & \text { LR2 K0312 } \\ & \text { LRD } 10 \end{aligned}$
3	6.5	ATS 01N106FT	GV2 ME14	9	$\begin{aligned} & \text { LC1 K09 or } \\ & \text { LC1 D09 } \end{aligned}$	LS1 D2531	DF2 CA12	12	265	$\begin{aligned} & \text { LR2 K0314 } \\ & \text { LRD } 12 \end{aligned}$
		ATS 01N206QN	GV2 ME14	9	$\begin{aligned} & \text { LC1 K09 or } \\ & \text { LC1 D09 } \end{aligned}$	LS1 D2531	DF2 CA12	12	265	$\begin{aligned} & \text { LR2 K0314 } \\ & \text { LRD } 12 \end{aligned}$
4	8.4	ATS 01N109FT	GV2 ME14	9	LC1 K09 or LC1 D09	LS1 D2531	DF2 CA12	12	610	$\begin{aligned} & \text { LR2 K0316 } \\ & \text { LRD } 14 \end{aligned}$
		ATS 01N209QN	GV2 ME14	9	LC1 K09 or LC1 D09	LS1 D2531	DF2 CA12	12	610	$\begin{aligned} & \text { LR2 K0316 } \\ & \text { LRD } 14 \end{aligned}$
5.5	11	ATS 01N112FT	GV2 ME16	13	LC1 K12 or LC1 D12	LS1 D2531	DF2 CA16	16	610	$\begin{aligned} & \text { LR2 K0321 } \\ & \text { LRD } 16 \end{aligned}$
		ATS 01N212QN	GV2 ME16	13	LC1 K12 or LC1 D12	LS1 D2531	DF2 CA16	16	610	$\begin{aligned} & \text { LR2 K0321 } \\ & \text { LRD } 16 \end{aligned}$
7.5	14.8	ATS 01N222QN	GV2 ME20	17	LC1 D18	LS1 D2531	DF2 CA20	20	6050	LRD 21
9	18.1	ATS 01N222QN	GV2 ME21	21	LC1 D25	LS1 D2531	DF2 CA25	25	6050	LRD 21
11	21	ATS 01N222QN	GV2 ME22	23	LC1 D25	LS1 D2531	DF2 CA25	25	6050	LRD 22
15	28.5	ATS 01N232QN	GV2 ME32	32	LC1 D32	GK1 EM	DF2 EA40	40	7200	LR2 D3353
18.5	35	ATS 01N244Q	GV3 ME40	40	LC1 D38	GK1 EM	DF2 EA40	40	8000	LR2 D3355
22	42	ATS 01N244Q	GV3 ME63	63	LC1 D50	GK1 FM	DF2 FA63	63	8000	LR2 D3357
30	57	ATS 01N272Q	GV3 ME63	63	LC1 D65	GK1 FM	DF2 FA63	63	9000	LR2 D3359
37	69	ATS 01N272Q	GV3 ME80	80	LC1 D80	GK1 FM	DF2 FA80	80	9000	LR2 D3363
45	81	ATS 01N285Q	GV7 RE100	100	LC1 D95	GK1 FM	DF2 FA100	100	9000	LR2 D3365

Soft starters for asynchronous motors

Altistart 01

690 V power supply, type 1 coordination

Components to be combined in accordance with standards IEC 60947-1 and IEC 60947-4-2
Combine either circuit-breaker (light blue columns), contactor, starter, or switches/fuses (dark blue columns), contactor, starter

Motor		Starter Class 10	Type of circuit-breaker		Type of contactor	Type of switch or switch disconnector (base unit)	Am fuses Reference	Rating A	$I^{2} t$$A^{2} s$	Thermal overload relay	
		Telemecanique	Rating								
kW	A			A							
M1			A1	Q1		KM1	Q2				F4
30	33	ATS 01N230LY	$\begin{aligned} & \text { GV3 ME40 + } \\ & \text { GV3 A01 } \end{aligned}$	25... 40	LC1 D50	GK1 EM	DF2 EA40	40	7200	LR2 D3355	
37	40	ATS 01N244LY	$\begin{aligned} & \text { GV3 ME63 + } \\ & \text { GV3 A01 } \end{aligned}$	40... 63	LC1 D65	GK1 FM	DF2 FA63	63	8000	LR2 D3359	
55	58	ATS 01N272LY	$\begin{aligned} & \text { GV3 ME80 + } \\ & \text { GV3 A01 } \end{aligned}$	56... 80	LC1 D115	GK1 FM	DF2 FA80	80	9000	LR2 D3363	
75	75.7	ATS 01N285LY	$\begin{aligned} & \text { GV7 RE100 + } \\ & \text { GV7 A11 } \end{aligned}$	60... 100	LC1 D150	GK1 FM	DF2 FA100	100	9000	LR2 D3365	

Soft starters for asynchronous motors
 Altistart U01 and TeSys model U

Presentation

The Altistart U01 is a soft start/soft stop unit for asynchronous motors. It is designed primarily for combinations with TeSys model \mathbf{U} controller-starters.

When combined with a TeSys model $\mathbf{U} 1$ controller by means of a connector 2, the Altistart U01 3 is a power option which provides the "Soft start/soft stop" function. The result is a unique, innovative motor starter.

Using the Altistart U01 starter enhances the starting performance of asynchronous motors by allowing the motor to start gradually, smoothly and in a controlled manner. It can also prevent mechanical shocks which lead to wear and tear, and limits the amount of maintenance work and production downtime.
The Altistart U01 limits the starting torque and current peaks on starting, on machines which do not require a high starting torque.

The Altistart U01 is designed for the following simple applications:

- conveyors
- conveyor belts

■ pumps

- fans
- compressors
- automatic doors
- small cranes
- belt-driven machines, etc.

The Altistart U01 is compact, easy to install and complies with standards IEC/EN 60947-4-2, with UL, CSA and C-Tick certifications, and has C \in marking.

■ ATSU 01N200LT soft start/soft stop units

- Control two phases of the motor power supply to limit the starting current and for deceleration.
- Internal Bypass relay.
- Motor power ratings range from 0.75 kW to 15 kW .
- Motor supply voltages range from 200 V to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$.

An external power supply is required for controlling the starter.

Description

■ Altistart U01 soft start/soft stop units are equipped with:

- a potentiometer for controlling the starting time 6
- a potentiometer for controlling the deceleration time 8
- a potentiometer for adjusting the start voltage threshold according to the motor load 7
- 1 green indicator LED 4: device switched on
$\square 1$ yellow indicator LED 5: motor powered at nominal voltage
- a connector 9:
- 2 logic inputs for Run/Stop commands
- 1 logic input for the BOOST function
-1 logic output to indicate the end of starting
- 1 relay output to indicate the starter has a power supply fault or the motor has stopped at the end of the deceleration ramp.

Characteristics:	References:	Dimensions:
pages $1 / 22$ and $1 / 23$	page $1 / 24$	page $1 / 25$

Soft starters for asynchronous motors Altistart U01 and TeSys model U

Description of a TeSys model U controller-starter

Please consult our "TeSys model U Starters-open version" specialist catalogue.

ATSU 01N200LT soft start unit functions

- 2-wire control:

The run and stop commands are controlled by a single logic input. State 1 of logic input LI2 controls the run process and state 0 controls the stop process.

Wiring diagram for 2-wire control

- 3-wire control:

The run and stop commands are controlled by 2 different logic inputs.
Stopping is achieved when logic input LI1 opens (state 0).
The pulse on input LI2 is maintained until input LI1 opens.

Wiring diagram for 3 -wire control

- Starting time

The starting time setting can be used to adjust the voltage ramp time applied to the motor and to obtain a gradual starting time depending on the motor load.

■ Voltage BOOST function via logic input:
Activating the BOOST logic input enables the function for supplying a starting overtorque capable of overcoming any mechanical friction.
When the input is at state 1 , the function is active (input connected to the +24 V) and the starter supplies a fixed voltage to the motor for a limited time before starting.

Application of a voltage BOOST equal to 100% of the nominal motor voltage

- End of starting
- Logic output LO1 application function

ATSU 01 N2eoLT soft start/soft stop units are equipped with an open collector logic output LO, which indicates the end of starting when the motor has reached nominal speed.

- Fault relay

ATSU 01N2eeLT soft start/soft stop units have a relay which opens when a fault is detected.
The contact of relay R1A-R1C closes when the LI2 run command is sent and opens when the motor voltage approaches OV on a decelerated stop or instantly in the event of a fault.
This information can be used for controlling the line contactor and achieving motor deceleration (by maintaining the line contactor until the motor has stopped).

Characteristics:	References:	Dimensions:
pages $1 / 22$ and $1 / 23$	page $1 / 24$	page $1 / 25$

Environment characteristics

Type of starter			A
Conforming to standards			
Electromagnetic compatibility EMC			
	Conducted and radiated emissions		
	Harmonics		IE
	EMC immunity		
	Electrostatic discharge		
	Immunity to radiated radioelectrical interference		
	Immunity to electrical transients		
	Voltage/current impulse		
	Conducted and radiated emissions		
	Immunity to conducted interference caused by radioelectrical fields		IE
	Damped oscillating waves		IE
C¢ marking			
Product certification			
Degree of protection			
Degree of pollution			2
Vibration resistance			
Shock resistance			
Relative humidity			5
Ambient temperature around the unit	Storage	${ }^{\circ} \mathrm{C}$	
	Operation	${ }^{\circ} \mathrm{C}$	
Maximum operating altitude		m	1
Operating position Maximum permanent angle in re mounting position	lation to the normal vertical		

ATSU 01N2eeLT

Altistart U01 electronic starters have been developed to conform to the strictest international standards and the recommendations relating to electrical industrial control devices (IEC, EN), in particular standard IEC/EN 60947-4-2.

CISPR 11 level B, IEC 60947-4-2, level B
IEC 1000-3-2, IEC 1000-3-4
EN 50082-2, EN 50082-1
IEC 61000-4-2 level 3
IEC 61000-4-3 level 3
IEC 61000-4-4 level 4
IEC 61000-4-5 level 3
IEC 61000-4-6 level 3
IEC 61000-4-11

IEC 61000-4-12 level 3
The starters bear $C \in$ marking in accordance with the European low voltage directives IEC/EN 60947-4-2.
UL, CSA and C-Tick
IP 20
2 conforming to IEC/EN 60947-4-2
1.5 mm peak to peak from 3 to $13 \mathrm{~Hz}, 1 \mathrm{gn}$ from 13 to 150 Hz conforming to IEC/EN 60068-2-6
15 gn for 11 ms conforming to IEC/EN 60068-2-27
$5 . . .95 \%$ without condensation or dripping water, conforming to IEC/EN 60068-2-3
25... 70 conforming to IEC/EN 60947-4-2
$-10 \ldots+40$ without derating, up to $50^{\circ} \mathrm{C}$ with current derating of 2% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$
1000 without derating (above this, derate the current by 2.2% per additional 100 m)

Electrical characteristics

| Presentation:
 pages $1 / 20$ and $1 / 21$ | References:
 page $1 / 24$ | Dimensions:
 page $1 / 25$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $1 / 26$ and 1/27 |

Soft starters for asynchronous motors Altistart U01 and TeSys model U

Electrical characteristics (continued)

Logic input power supply (electrically isolated between power and control) +24 V , COM	$\begin{aligned} & 24 \mathrm{~V} \pm 10 \% \\ & \text { Isolated } \\ & \text { Max. current } 100 \mathrm{~mA} \end{aligned}$
Logic inputs LI1, LI2, BOOST Stop, run and boost on start-up functions	Logic inputs with impedance $27 \mathrm{k} \Omega ; 24 \mathrm{~V}$ power supply ($\mathrm{U} \max 40 \mathrm{~V}$) Max current 8 mA State 0 if $\mathrm{U}<5 \mathrm{~V}$ and $\mathrm{I}<0.2 \mathrm{~mA}$ State 1 if $\mathrm{U}>13 \mathrm{~V}$ and $\mathrm{I}>0.5 \mathrm{~mA}$
Logic output LO1 End of starting signal	Open collector logic output External 24 V power supply (minimum 6 V maximum 30 V) Max current 200 mA
Relay output R1A R1C	Normally open (N/O) contact (contact open in fault mode) Minimum switching capacity: 10 mA for $-\mathrm{-} 6 \mathrm{~V}$ Max. switching capacity on inductive load ($\cos \varphi=0.5$ and $L / R=20 \mathrm{~ms}$): 2 A for $\sim 250 \mathrm{~V}$ or $-\mathrm{-} 30 \mathrm{~V}$ (AC-15) Max. operating voltage 440 V
LED signalling Green LED	Starter powered up
Yellow LED	Nominal voltage reached

Connections (maximum connection capacity and tightening torque)

Power circuit Flexible wire without cable end	$\frac{1 \text { conductor }}{2 \text { conductors }}$	$\begin{array}{\|l\|} \hline \mathrm{mm}^{2} \\ \hline \mathrm{~mm}^{2} \\ \hline \end{array}$	Connection onto $\varnothing 4 \mathrm{~mm}$ screw terminals	
			1.5... 10	8 AWG
			1.5... 6	10 AWG
Flexible wire with cable end	1 conductor	mm^{2}	1... 6	10 AWG
	2 conductors	mm^{2}	1... 6	10 AWG
Rigid wire	1 conductor	mm^{2}	1... 10	8 AWG
	2 conductors	mm^{2}	1... 6	10 AWG
Tightening torque		N.m	1.9...2.5	
Control circuit			Screw connector	
Flexible wire without cable end	1 conductor	mm^{2}	0.5...2.5	14 AWG
	2 conductors	mm^{2}	0.5...1.5	16 AWG
Flexible wire with cable end	1 conductor	mm^{2}	0.5...1.5	16 AWG
	2 conductors	mm^{2}	0.5...1.5	16 AWG
Rigid wire	1 conductor	mm^{2}	0.5...2.5	14 AWG
	2 conductors	mm^{2}	0.5... 1	17 AWG
Tightening torque		N.m	0.5	
Torque characteristics (typical curves)				

The diagram opposite shows the torque/speed characteristic of a cage motor in relation to the supply voltage.
The torque varies in line with the square of the voltage at a fixed frequency. The gradual increase in the voltage prevents the instantaneous current peak on power-up.

Presentation:	References:	Dimensions:
pages $1 / 20$ and $1 / 21$	page 1/24	page 1/25

Soft starters for asynchronous motors
 Altistart U01 and TeSys model U

ATSU 01N222LT

Soft start/soft stop unit for 0.75 to 15 kW motors
(can be combined with the TeSys model U starter)

Motor				Starter		
	$\begin{aligned} & \text { r powe } \\ & 230 \mathrm{~V} \end{aligned}$	400 V	460 V	Nominal current	Reference	Weight
kW	HP	kW	HP	A		kg
3-phase supply voltage: $200 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
$\begin{aligned} & 0.75 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	6	ATSU 01N206LT	0.340
1.5	2	-	5	9	ATSU 01N209LT	0.340
-	-	4	-			
2.2	3	5.5	7.5	12	ATSU 01N212LT	0.340
3	-	-	-			
4	5	7.5	10	22	ATSU 01N222LT	0.490
5.5	7.5	11	15			
7.5	10	15	20	32	ATSU 01N232LT	0.490

Accessorie			
Description	Used for starter	Reference	Weight kg
Power connector between	ATSU 01N2eeLT	VW3 G4104	0.020
ATSU 01N2eeLT and			
TeSys model U			

TeSys model U starter and soft start unit combinations
Numerous possibilities for combinations and options are offered.
Please consult the "TeSys model U Starters-open version" specialist catalogue.

Motor power Voltage			Soft starter	TeSys model U	
				Power base	Control unit (2)
$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{~kW} / \mathrm{HP} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$			
0.75/1	1.5	2	ATSU 01N206LT	LUB 12	LUC•05BL
1.1/1.5	2.2/3	3	ATSU 01N206LT	LUB 12	LUC• 12BL
1.5/2	-	-	ATSU 01N209LT	LUB 12	LUC• 12BL
-	4	5	ATSU 01N209LT	LUB 12	LUC• 12BL
2.2/3	-	-	ATSU 01N212LT	LUB 12	LUC• 12BL
3/-	5.5	7.5	ATSU 01N212LT	LUB 32	LUC• 18BL
$4 / 5$	7.5	10	ATSU 01N222LT	LUB 32	LUC• 18BL
5.5/7.5	11	15	ATSU 01N222LT	LUB 32	LUC ${ }^{\text {a }}$ 32BL
7.5/10	15	20	ATSU 01N232LT	LUB 32	LUC• 32BL

Example of a starter-motor combination with:
1 non-reversing power base for DOL starting (LUB•2BL)
2 control unit (LUCM ••BL)
3 power connector (VW3 G4104)
4 Altistart U01soft start/soft stop unit (ATSU 01N2eeLT)

[^1]| Presentation:
 pages $1 / 20$ and $1 / 21$ | Characteristics: | Dimensions: |
| :--- | :--- | :--- |
| pages $1 / 22$ and $1 / 23$ | page $1 / 25$ | Schemes: |

Soft starters for asynchronous motors
Altistart U01 and TeSys model U

TeSys model U combination (non-reversing power base) and ATSU 01N206LT to ATSU 01N212LT
Mounting on \longleftarrow ـ $(35 \mathrm{~mm})$ rail with VW3 G4104 connector

-9.

TeSys model U combination (non-reversing or reversing power base) and ATSU 01N206LT to ATSU 01N212LT
Side by side mounting

TeSys model U combination (non-reversing or reversing power base) and ATSU 01N222LT to ATSU 01N232LT Side by side mounting
-9.

VW3 G4104 connector

ATSU 01N222LT to ATSU 01N232LT
Mounting on $\longleftarrow\ulcorner(35 \mathrm{~mm})$ rail with VW3 G4104 connector

- 9 .

Soft starters
 for asynchronous motors

Altistart U01 and TeSys model U
For 0.75 to 15 kW motors

ATSU 01N2eoLT soft start/soft stop units

Power wiring

Power wiring with reversing unit

Compatible components (For full references, see pages $1 / 18$ and $1 / 19$ or refer to our catalogue: "Motor starter solutions - Control and protection components")

Code	Description
A1	Soft start/soft stop unit
QF1	TeSys model U controller-starter
CU	TeSys model U control unit

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 20$ and $1 / 21$	pages $1 / 22$ and $1 / 23$	page $1 / 24$	page $1 / 25$

Soft starters for asynchronous motors

Altistart U01 and TeSys model U
For 0.75 to 15 kW motors

ATSU 01N2eoLT soft start/soft stop units (continued)
Automatic 2-wire control
Without deceleration

Functional diagrams

Automatic 3-wire control
Without deceleration

Functional diagrams

A1: Soft start/soft stop unit

S1, S2: XB4 B or XB5 B pushbuttons
QF1: TeSys model U controller-starter
t1: Acceleration time can be controlled by a potentiometer
t2: Deceleration time can be controlled by a potentiometer
U_{1} : Starting time can be controlled by a potentiometer

| Presentation:
 pages $1 / 20$ and $1 / 21$ | Characteristics:
 pages $1 / 22$ and $1 / 23$ | References:
 page $1 / 24$ |
| :--- | :--- | :--- | | Dimensions: |
| :--- |

Altistart U01 and TeSys model U
For 0.75 to 15 kW motors

ATSU 01N2eeLT soft start/soft stop units (continued)

Automatic 3-wire control, with reversing unit

Without deceleration

QF1: TeSys model U controller-starter with reversing unit A1: Soft start/soft stop unit
S1, S2, S3: XB4 B or XB5 B pushbuttons
S3: minimum depression time 500 ms
Boost on starting and end of starting signal

QF1: TeSys model U controller-starter with reversing unit A1: Soft start/soft stop unit
S1, S2, S3: XB4 B or XB5 B pushbuttons

Presentation:	Characteristics:	References:
pages $1 / 20$ and $1 / 21$	pages $1 / 22$ and $1 / 23$	page $1 / 24$

Soft starters for asynchronous motors

Altistart U01 and TeSys model U
 For 0.75 to 15 kW motors

ATSU 01N2eoLT soft start/soft stop units (continued)
Automatic control with Modbus communication module, with and without deceleration Without reversing unit

With reversing unit

Function	Register	Bit	Value
Powering down TeSys U and ATSU			
-	704	0	0
Automatic control without deceleration			
Run	700	0	1
Stop	704	0	0
Automatic control with deceleration			
Run	700	0	1
Soft stop	700	0	0

A1: Soft start/soft stop unit

Function	Register	Bit	Value
Powering up TeSys U and ATSU			
Forward	704	0	1
Reverse	704	1	1
Powering down TeSys U and ATSU			
Forward	704	0	0
Reverse	704	1	0
Automatic control without deceleration			
Run	700	0	1
Stop forward	704	0	0
Stop reverse	704	1	0
Automatic control with deceleration (forward or reverse)			
Run	700	0	1
Soft stop	700	0	0

A1: Soft start/soft stop unit
QF1: TeSys model \cup controller-starter with reversing unit
Automatic control with AS-Interface communication module, without deceleration
Without reversing unit
With reversing unit

Function	Bit	Value
Power-up and automatic control without deceleration		
Run	D0	1
Stop	D0	0

[^2]| Function | Bit | Value |
| :--- | :---: | :---: |
| Power-up and automatic control without deceleration | | |
| Run forward | D0 | 1 |
| Stop | D0 | 0 |
| Run reverse | D1 | 1 |
| Stop | D1 | 0 |

A1: Soft start/soft stop unit
QF1: TeSys model U controller-starter with reversing unit

Presentation:	Characteristics:	References:
pages $1 / 20$ and $1 / 21$	pages $1 / 22$ and $1 / 23$	page $1 / 24$

[^3]Altistart 48 soft start - soft stop units

Abstract

Applications The Altistart 48 soft start - soft stop unit is a controller with 6 thyristors which is used for the torque-controlled soft starting and stopping of three-phase squirrel cage asynchronous motors in the power range between 4 and 1200 kW .

It offers soft starting and deceleration functions along with machine and motor protection functions as well as functions for communicating with control systems. These functions are designed for use in state-of-the-art applications in centrifugal machines, pumps, fans, compressors and conveyors, which are primarily to be found in the construction, food and beverages and chemical industries. The highperformance algorithms of the Altistart 48 contribute significantly to its robustness, safety and ease of setup.

The Altistart 48 soft start - soft stop unit is a cost-effective solution which can: - reduce machine operating costs by reducing mechanical stress and improving machine availability, - reduce the stress placed on the electrical distribution system by reducing line current peaks and voltage drops during motor starts. The Altistart soft start - soft stop unit offer comprises 2 ranges: ■ three-phase voltages 230 to $415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, - three-phase voltages 208 to $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$.

In each voltage range, the Altistart soft start - soft stop units are dimensioned for standard and severe applications.

Functions

The Altistart 48 soft start - soft stop unit (1) is supplied ready for use in a standard application with motor protection class 10 (see page 1/71).
It comprises a built-in terminal (2) which can be used to modify programming, adjustment or monitoring functions in order to adapt and customise the application to meet individual customer requirements.

- Drive performance functions:

- exclusive Altistart torque control (patented by Schneider Electric), \square constant control of the torque supplied to the motor during acceleration and deceleration periods (significantly reducing pressure surges),
- facility for adjusting the ramp and the starting torque,
\square the starter can be bypassed using a contactor (3) at the end of the starting period whilst maintaining electronic protection (by-pass function),
- wide frequency tolerance for generator set power supplies,
\square the starter can be connected to the motor delta terminals in series with each winding.

■ Machine and motor protection functions:

- built-in motor thermal protection,
\square processing of information from PTC thermal probes,
- monitoring of the starting time,
\square motor preheating function,
- protection against underloads and overcurrents during continuous operation.

■ Functions facilitating the integration of the unit into control systems:
$\square 4$ logic inputs, 2 logic outputs, 3 relay outputs and 1 analogue output,

- plug-in I/O connectors,
- function for configuring a second motor and easy-to-adapt settings,
\square display of electrical values, the state of the load and the operating time,
- RS 485 serial link for connection to Modbus.

Options

A remote terminal (4) can be mounted on the door of a wall-fixing or floor-standing enclosure.
PowerSuite advanced dialogue solutions:
■ PowerSuite Pocket PC with PPC type terminal (5),

- PowerSuite software workshop (6).

A range of wiring accessories for connecting the starter to PLCs via a Modbus connection (7).
Bus communication and Ethernet, Fipio, DeviceNet and Profibus DP network communication options.

| Characteristics:
 pages $1 / 32$ to $1 / 35$ | References:
 pages $1 / 40$ to $1 / 43$ | Dimensions:
 pages $1 / 48$ to $1 / 51$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $1 / 52$ to $1 / 57$ |

Altistart 48 soft start - soft stop units

Environment characteristics

Conforming to standards			The electronic starters have been developed and performance tested in accordance with international standards, in particular with the starter product standard EN/IEC 60947-4-2.
C€ marking			Products have C \in marking in accordance with the harmonised standard EN/IEC 60947-4-2.
Product certifications			UL, CSA Pending: DNV, C-Tick, Gost, CCIB
Degree of protection	Starters ATS 48D17• to 48C11•		IP 20 (IP 00 in the absence of connections)
	Starters ATS 48C14• to 48M12• (1)		IP 00
Vibration resistance	Conforming to IEC 60068-2-6		1.5 mm from 2 to 13 Hz 1 gn from 13 to 200 Hz
Shock resistance	Conforming to IEC 60068-2-27		15 gn for 11 ms
Starter noise level (2)	Starters ATS 48D32セ to D47•	dBA	52
	Starters ATS 48D62 to C11•	dBA	58
	Starters ATS 48C14• to C17•	dBA	50
	Starters ATS 48C21 ${ }^{\text {to }}$ C32•	dBA	54
	Starters ATS 48C41• to C66•	dBA	55
	Starters ATS 48C79 to M12•	dBA	60
Fans	Starters ATS 48D17• and D22•		Natural convection
	Starters ATS 48D32 to M12•		Forced convection. The fans are activated automatically when a temperature threshold is reached. For flow rate: see page $1 / 51$.
Ambient temperature around the unit	Operation	${ }^{\circ} \mathrm{C}$	$-10 \ldots+40$ without derating (between +40 and +60 , derate the nominal current of the Altistart by 2% for each ${ }^{\circ} \mathrm{C}$).
	Storage, conforming to IEC 60947-4-2	${ }^{\circ} \mathrm{C}$	- $25 . . .+70$
Maximum relative humidity	Conforming to IEC 60068-2-3		95% without condensation or dripping water
Maximum ambient pollution	Conforming to IEC 60664-1		Level 3
Maximum operating altitude		m	1000 without derating (above this, derate the nominal current of the Altistart by 2.2 \% for each additional 100 m). Limit to 2000 m
Operating position Maximum permanent angle in relation to the normal vertical mounting position			
Electrical characteristics			
Operating category	Conforming to IEC 60947-4-2		AC-53a
Three-phase supply voltage	Starters ATS 48000Q	V	230-15\% to 415+10\%
	Starters ATS 48ee@ Y	V	208-15\% to 690 + 10%
Frequency		Hz	$50 / 60 \pm 5 \%$ (automatic) 50 or $60 \pm 20 \%$ (must be set)
Nominal starter current	Starters ATS 48000Q	A	17... 1200
	Starters ATS 48000 Y	A	17 to 1200
Motor power	Starters ATS 48000Q	kW	4 to 630
	Starters ATS 48000 Y	kW/HP	5.5 to 900/5 to 1200
Voltage indicated on the motor rating plate	Starters ATS 48•0॰Q	V	230 to 415
	Starters ATS 48000 Y	V	208 to 690
Starter control circuit supply voltage	Starters ATS 48000Q	V	$220-15 \%$ to $415+10 \%, 50 / 60 \mathrm{~Hz}$
	Starters ATS 48000 Y	V	$110-15 \%$ to $230+10 \%, 50 / 60 \mathrm{~Hz}$
Maximum control circuit consumption (with fans operating)	Starters ATS 48D17• to C17•	W	30
	Starters ATS 48C21• to C32•	W	50
	Starters ATS 48C41• to M12•	W	80
Relay output (2 configurable outputs)	3 relay outputs (R1, R2, R3), normally open contacts 1 "N/O" Minimum switching capacity: 10 mA for $=-6 \mathrm{~V}$ Maximum switching capacity on inductive load: 1.8 A for $\sim 230 \mathrm{~V}$ and --30 V ($\cos \varphi=0.5$ and $\mathrm{L} / \mathrm{R}=20 \mathrm{~ms}$). Maximum nominal operating voltage $\sim 400 \mathrm{~V}$ Factory setting: R1 assigned as the "fault relay" (configurable) R2 assigned as the "end of starting relay" to control the starter bypass relay R3 assigned as "motor powered" (configurable)		

[^4]	Presentation:	References:	
pages $1 / 30$ and $1 / 31$ pages $1 / 40$ to $1 / 43$	Dimensions:	Schemes:	

Electrical characteristics (continued)			
Logic inputs LI (2 configurable inputs)	4 logic inputs, impedance $4.3 \mathrm{k} \Omega$, isolated: Stop, Run, LI3, LI4 +24 V power supply (maximum 30 V) I max. 8 mA State 0 if $\mathrm{U}<5 \mathrm{~V}$ and $\mathrm{I}<2 \mathrm{~mA}$ State 1 if $\mathrm{U}>11 \mathrm{~V}$ and $\mathrm{I}>5 \mathrm{~mA}$		
Internal source available	$1 \mathrm{x}+24 \mathrm{~V}$ output, isolated and protected against short-circuits and overloads Accuracy $\pm 25 \%$. Max. current 200 mA		
Logic outputs LO (configurable)	2 logic outputs LO1 and LO2 with 0 V common, compatible with level 1 PLC, according to standard IEC 65A-68 + 24 V power supply (minimum: + 12 V , maximum: + 30 V) Maximum output current: 200 mA if supplied externally		
Analogue output AO (configurable)	Current output 0-20 mA or $4-20 \mathrm{~mA}$ Maximum load impedance: 500Ω Accuracy $\pm 5 \%$ of the maximum value		
Input for PTC probe	Total resistance of probe circuit 750Ω at $25^{\circ} \mathrm{C}$, according to IEC $60738-\mathrm{A}$		
Maximum I/O connection capacity	$2.5 \mathrm{~mm}^{2}$ (AWG 12)		
Communication	RS 485 multidrop serial link integrated in the starter, for Modbus, with RJ45 type connector Transmission speed 4800, 9600 or 19200 bps Maximum number of Altistart 48 connected: 18 Other uses: - connection to a remote terminal, or - connection to a PC, or - connection to other buses and networks via communication options.		
Protection Thermal	Built-in, starter and motor (calculated and/or thermal protection with PTC probes)		
Line protection	Phase failure, indicated by output relay		
Current settings	The nominal motor current In can be adjusted from 0.4 to 1.3 times the starter nominal current. Adjustment of the maximum starting current from 1.5 to 7 times the motor In, limited to 5 times the starter nominal current.		
Starting mode	By torque control with starter current limited to 5 In maximum Factory setting: 4 In for standard operation on 15 s torque ramp		
Stopping mode Freewheel stop Controlled stop on torque ramp Braked stop	"Freewheel" stop (factory setting)		
	Programmed between 0.5 and 60 s (for pump applications)		
	Controlled dynamically by the flux		
Electromagnetic compatibility EMC (1)			
	Standards	Test levels	Examples (sources of interference)
Summary of immunity tests carried out with the Altistart 48	IEC 61000-4-2 level 3 Electrostatic discharge: - by contact, - in the air.	$\begin{aligned} & 6 \mathrm{kV} \\ & 8 \mathrm{kV} \end{aligned}$	Contact off an electrically charged individual
	IEC 61000-4-3 level 3 Radiated electromagnetic fields	$10 \mathrm{~V} / \mathrm{m}$	Equipment transmitting radio frequencies
	IEC 61000-4-4 level 4 Rapid electrical transients: - power supply cables, - control cables.	$\begin{aligned} & 4 \mathrm{kV} \\ & 2 \mathrm{kV} \\ & \hline \end{aligned}$	Opening/closing of a contactor
	IEC 61000-4-5 level 3 Shock wave: - phase/phase, - phase/earth.	$\begin{aligned} & 1 \mathrm{kV} \\ & 2 \mathrm{kV} \\ & \hline \end{aligned}$	-
	IEC 61000-4-12 level 3 Damped oscillating waves	$1 \mathrm{kV}-1 \mathrm{M} \mathrm{Hz}$	Oscillating circuit on the line supply
Radiated and conducted emissions	According to IEC 60947-4-2, class A, on all starters		
	According to IEC 60947-4-2, class B, on starters up to 170 A: ATS 48D17• to 48C17•. Must be bypassed at the end of starting		
(1) The starters conform to product standard IEC 60947-4-2, in particular with regard to EMC. This standard ensures a level of immunity for products and a level of emitted interference. In steady state, the interference emitted is below that required by the standard. During acceleration and deceleration phases, low level loads may be affected by low frequency interference (harmonics). To reduce this interference, connect chokes between the line supply and the Altistart 48 (see page 1/45).			
Note: - Power factor correction capacitors can only be used upstream of the Altistart and only powered up at the end of starting. ■ The starter must be earthed to conform to the regulations concerning leakage currents ($\leqslant 30 \mathrm{~mA}$). When the use of an upstream "residual current device" for protection is required by the installation standards, an AS-Interface type device must be used. Check its compatibility with the other protective devices. If the installation involves several starters on the same line supply, each starter must be earthed separately.			

| Presentation:
 pages $1 / 30$ and $1 / 31$ | References:
 pages $1 / 40$ to $1 / 43$ | Dimensions:
 pages $1 / 48$ to $1 / 51$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $1 / 52$ to $1 / 57$ |

Torque characteristics

Curves indicating changes in the torque depending on the starting current of a threephase asynchronous motor.
Curves 1 : direct line starting.
Curves 2: starting in current limiting mode.
Torque curve Ts1 indicates the total torque range available depending on the limiting current Is1.
Limiting the starting current Is to a preset value Is1 will reduce the starting torque Ts1 to a value which is almost equal to the square of currents Is1/ls.
Example:
for motor characteristics: Ts = 3 Tn for Is = 6 In ,
limit the current to $\mathrm{Is} 1=3 \ln (0.5 \mathrm{Is})$
resulting in a starting torque $\mathrm{Ts} 1=\mathrm{Ts} \times(0.5)^{2}=3 \mathrm{Tn} \times 0.25=0.75 \mathrm{Tn}$

Starting current

Direct line starting current
2 Starting current limited to Is1

Starting torque

1 Direct line starting torque
2 Starting torque with current limited to Is1

Presentation:	References:	Dimensions:
pages $1 / 30$ and $1 / 31$	pages $1 / 40$ to $1 / 43$	pages $1 / 48$ to $1 / 51$

Conventional starting using current limitation or voltage ramp

With current limitation Is1, the accelerating torque applied to the motor is equal to the motor torque Ts1 minus the resistive torque Tr .
The accelerating torque increases in the starting range as the speed changes and is at its highest at the end of acceleration (curve 2).
This characteristic means that the load is taken up very abruptly, which is not recommended for pump type applications.
Example of speed curve for starting with current limitation
1 Current applied to the motor ($1 / \mathrm{ln}$)
2 Motor speed N/Ns

Starting with the Altistart 48

Example of speed curve for starting with torque control
1 Current applied to the motor (I / In)
2 Motor speed N/Ns
Torque control on the Altistart 48 applies the torque to the motor during the entire starting phase if the current required (curve 1) does not exceed the limiting current. The accelerating torque can be virtually constant over the entire speed range (curve 2).
It is possible to set the Altistart in order to obtain a high torque on starting for a rapid motor speed rise whilst limiting its temperature rise, and a lower accelerating torque at the end of starting for gradual loading.
This control function is ideal for centrifugal pumps or for machines with high resistive torque on starting.

Stopping with the Altistart 48
■ Freewheel stop: the motor comes to a freewheel stop.

- Decelerated stop: this type of stop is ideal for pumps and can be used to
effectively reduce pressure surges. Torque control on the Altistart 48 reduces the effect of hydraulic transients even if the load increases. This type of control makes adjustment easy.
- Braked stop: this type of stop is suitable for high inertia applications as it reduces the stopping time of the machine.

Presentation:	References:	Dimensions:	Schemes:
pages $1 / 30$ and $1 / 31$	pages $1 / 40$ to $1 / 43$	pages $1 / 48$ to $1 / 51$	pages $1 / 52$ to $1 / 57$

Selection criteria for an Altistart 48 soft start - soft stop unit

The Altistart 48 must be selected on the basis of 3 main criteria:
■ Two line power supply voltage ranges are available for selection:

- three-phase a.c. voltage: 230-415 V,
- three-phase a.c. voltage: 208-690 V.

■ The power and the nominal current indicated on the motor name plate.

- The type of application and the operating cycle.

To simplify selection, the applications are categorised into 2 types:

- standard applications,
- severe applications.

Standard or severe applications define the limiting values of the current and the cycle for motor duties S1 and S4.

Standard application

In standard applications, the Altistart 48 is designed to provide:
■ Starting at 4 In for 23 seconds or at 3 In for 46 seconds from a cold state (corresponding to motor duty S 1).

■ Starting at 3 In for 23 seconds or at 4 In for 12 seconds with a load factor of 50% and 10 starts per hour or a an equivalent thermal cycle (corresponding to motor duty S4).
The motor thermal protection must conform to protection class 10 (see page 1/70).
Example: centrifugal pump.

Severe application

In severe applications, the Altistart 48 is designed to provide:
■ Starting at 4 In for 48 seconds or at 3 In for 90 seconds from a cold state (corresponding to S1 motor duty).

■ Starting at 4 In for 25 seconds with a load factor of 50% and 5 starts per hour or a an equivalent thermal cycle (corresponding to S 4 motor duty).
The motor thermal protection must conform to protection class 20 (see page 1/70).
Example: grinder.

Motor duties

S1 motor duty corresponds to starting followed by operation at constant load enabling the thermal equilibrium to be reached.
S4 motor duty corresponds to a cycle comprising starting, operation at constant load and an idle period.
This cycle is characterised by a load factor of 50%.

Selecting the starter

Once the appropriate application has been selected from the following page, select the starter from pages $1 / 40$ to $1 / 43$ according to the supply voltage and the motor power.

Caution:

if the Altistart 48 is installed inside an enclosure, observe the mounting and derating recommendations (see page $1 / 51$).

Application areas				
Depending on the type of machine, the applications are categorized as standard or severe based on the starting characteristics, which are given as examples only, in the table below.				
Type of machine	Application	Functions performed by the Altistart 48	Starting current (\% In)	Starting time (s)
Centrifugal pump	Standard	Deceleration (reduction in pressure surges) Protection against underloads or inversion of the phase rotation direction	300	5 to 15
Piston pump	Standard	Control of running dry and direction of rotation of the pump	350	5 to 10
Fan	Standard Severe if $>30 \mathrm{~s}$	Detection of overloads caused by clogging or underloads (motor fan transmission broken) Braking torque on stopping	300	10 to 40
Cold compressor	Standard	Protection, even for special motors	300	5 to 10
Screw compressor	Standard	Protection against inversion of direction of phase rotation Contact for automatic draining on stopping	300	3 to 20
Centrifugal compressor	Standard Severe if $>30 \mathrm{~s}$	Protection against inversion of direction of phase rotation Contact for automatic emptying on stopping	350	10 to 40
Piston compressor	Standard	Protection against inversion of direction of phase rotation Contact for automatic emptying on stopping	350	5 to 10
Conveyor, transporter	Standard	Overload control for detecting faults or underload control for detecting breaks	300	3 to 10
Lifting screw	Standard	Overload control for detecting hard spots or underload control for detecting breaks	300	3 to 10
Drag lift	Standard	Overload control for detecting jamming or underload control for detecting breaks	400	2 to 10
Lift	Standard	Overload control for detecting jamming or underload control for detecting breaks Constant starting with variable load	350	5 to 10
Circular saw, band saw	Standard Severe if $>30 \mathrm{~s}$	Braking for fast stop	300	10 to 60
Pulper, butchery knife	Severe	Torque control on starting	400	3 to 10
Agitator	Standard	The current display indicates the density of the product	350	5 to 20
Mixer	Standard	The current display indicates the density of the product	350	5 to 10
Grinder	Severe	Braking to limit vibrations during stopping, overload control to detect jamming	450	5 to 60
Crusher	Severe	Braking to limit vibrations during stopping, overload control to detect jamming	400	10 to 40
Refiner	Standard	Torque control on starting and stopping	300	5 to 30
Press	Severe	Braking to increase the number of cycles	400	20 to 60

Special uses

Other criteria can influence the selection of the Altistart 48:

Starter wired to the motor delta terminal

(see the recommended application diagram on page 1/54)
In addition to the most frequently encountered wiring layouts, where the starter is installed in the line supply of the motor and the motor is connected in star or delta configuration, the Altistart 48 ATS $48 \bullet e \bullet$ Q can be wired to the motor delta terminal in series with each winding (see the application diagram below). The starter current is lower than the line current absorbed by the motor by a ratio of $\sqrt{3}$. This type of installation enables a starter with a lower rating to be used.

Example: for a $400 \mathrm{~V} / 110 \mathrm{~kW}$ motor with a line current of 195 A (nominal current for the delta connection), the current in each winding is equal to $195 / \sqrt{3}$, i.e. 114 A . Select the starter rating with a maximum permanent nominal current just above this current, i.e. 140A (ATS 48C14Q for a standard application).
To avoid making this calculation, simply use the table on page $1 / 41$.
This type of installation only permits freewheel stopping and is not compatible with the cascade and preheating functions.

Starter wired in series with the motor windings

Note: the nominal current and limiting current settings as well as the current displayed during operation are on-line values (so do not have to be calculated by the user).

Caution: for this type of installation, observe the wiring scheme and the associated recommendations on page $1 / 54$.

Starter bypassed by a contactor

(see the recommended application diagram on page 1/53)
The starter can be bypassed by a contactor at the end of starting (to limit the heat dissipated by the starter). The bypass contactor is controlled by the starter and the current measurements and protective mechanisms remain active when the starter is bypassed.
The starter is selected on the basis of the 3 main criteria and one of the following criteria:

- If the starter is bypassed at the end of starting, the motor is always started from cold state and the starter can be oversized by one rating.
Example: select an ATS 48D17Q for an 11 kW motor in a standard 400 V application.
■ If the starter must be able to operate without the bypass contactor at the end of starting, it does not have to be derated.
Example: select an ATS 48D17Q for a 7.5 kW motor in a standard 400 V application.

Special uses (continued)

Motors in parallel

Motors may be connected in parallel provided that the power limit of the starter is not exceeded (the sum of the motor currents must not exceed the nominal current of the starter selected depending on the type of application). Provide thermal protection for each motor.

Brush motor

The Altistart 48 can operate with a bypassed rotor resistance motor or with a resistance lug. The starting torque is modified in accordance with the rotor resistance. If necessary, maintain a low resistance in order to obtain the required torque to overcome the resistive torque on starting.
A bypassed brush motor has a very low starting torque. A high stator current is required to obtain the sufficient starting torque.
Oversize the starter in order that the value of the limiting current is 7 times that of the nominal current.
Note: ensure that the starting torque of the motor, equal to 7 times the nominal current, is greater than the resistive torque.
Note: the Altistart 48 torque control enables excellent soft starting despite the limiting current being 7 times the nominal current required to start the motor.

Dahlander motor and 2-speed motor

The Altistart 48 can operate with a 2 -speed motor. A motor demagnetisation period must elapse before changing from low speed to high speed in order to avoid antiphases between the line supply and the motor, which would generate very high currents.
Select the starter using the 3 main criteria.

Very long cable

Very long motor cables cause voltage drops due to the resistance of the cable. If the voltage drop is significant, it could affect the current consumption and the torque available. This must therefore be taken into account when selecting the motor and the starter.

Starters in parallel on the same line supply

If several starters are installed on the same line supply, line chokes should be installed between the transformer and the starter (see page 1/45).

Recommendations for use

Caution: do not use the Altistart 48 upstream of loads other than motors (for examples transformers and resistors are forbidden).
Do not connect power factor correction capacitors to the terminals of a motor controlled by an Altistart 48.

Soft starters
Altistart 48 soft start - soft stop units
Line voltage 230/415 V
Connection in the motor supply line

ATS 48C14Q

ATS 48M12Q

For standard applications

Motor		Starter 230/415 V - 50/60 Hz				
Moto (1) 230 V	wer	Nominal current (IcL) (2)	Factory setting current (4)	Power dissipated at nominal load	Reference	Weight
kW	kW	A	A	W		kg
4	7.5	17	14.8	59	ATS 48D17Q	4.900
5.5	11	22	21	74	ATS 48D22Q	4.900
7.5	15	32	28.5	104	ATS 48D32Q	4.900
9	18.5	38	35	116	ATS 48D38Q	4.900
11	22	47	42	142	ATS 48D47Q	4.900
15	30	62	57	201	ATS 48D62Q	8.300
18.5	37	75	69	245	ATS 48D75Q	8.300
22	45	88	81	290	ATS 48D88Q	8.300
30	55	110	100	322	ATS 48C11Q	8.300
37	75	140	131	391	ATS 48C14Q	12.400
45	90	170	162	479	ATS 48C17Q	12.400
55	110	210	195	580	ATS 48C21Q	18.200
75	132	250	233	695	ATS 48C25Q	18.200
90	160	320	285	902	ATS 48C32Q	18.200
110	220	410	388	1339	ATS 48C41Q	51.400
132	250	480	437	1386	ATS 48C48Q	51.400
160	315	590	560	1731	ATS 48C59Q	51.400
-	355	660	605	1958	ATS 48C66Q	51.400
220	400	790	675	2537	ATS 48C79Q	115.000
250	500	1000	855	2865	ATS 48M10Q	115.000
355	630	1200	1045	3497	ATS 48M12Q	115.000

For severe applications

Motor		Starter 230/415 V - 50/60 Hz				
Motor (1) $230 \text { V }$	wer	Nominal current (3)	Factory setting current (4)	Power dissipated at nominal load	Reference	Weight
kW	kW	A	A	W		kg
3	5.5	12	14.8	46	ATS 48D17Q	4.900
4	7.5	17	21	59	ATS 48D22Q	4.900
5.5	11	22	28.5	74	ATS 48D32Q	4.900
7.5	15	32	35	99	ATS 48D38Q	4.900
9	18.5	38	42	116	ATS 48D47Q	4.900
11	22	47	57	153	ATS 48D62Q	8.300
15	30	62	69	201	ATS 48D75Q	8.300
18.5	37	75	81	245	ATS 48D88Q	8.300
22	45	88	100	252	ATS 48C11Q	8.300
30	55	110	131	306	ATS 48C14Q	12.400
37	75	140	162	391	ATS 48C17Q	12.400
45	90	170	195	468	ATS 48C21Q	18.200
55	110	210	233	580	ATS 48C25Q	18.200
75	132	250	285	695	ATS 48C32Q	18.200
90	160	320	388	1017	ATS 48C41Q	51.400
110	220	410	437	1172	ATS 48C48Q	51.400
132	250	480	560	1386	ATS 48C59Q	51.400
160	315	590	605	1731	ATS 48C66Q	51.400
-	355	660	675	2073	ATS 48C79Q	115.000
220	400	790	855	2225	ATS 48M10Q	115.000
250	500	1000	1045	2865	ATS 48M12Q	115.000

(1) Value indicated on the motor rating plate.
(2) Corresponds to the maximum permanent current in class 10. IcL corresponds to the starter rating.
(3) Corresponds to the maximum permanent current in class 20.
(4) The factory setting current corresponds to the value of the nominal current of a standard 4-pole, 400 V , class 10 motor (standard application). Adjust the settings in accordance with the motor nominal current.

Presentation:	Characteristics:	Dimensions:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 48$ and $1 / 49$

Soft starters
Altistart 48 soft start - soft stop units Line voltage 230/415 V
Connection to the motor delta terminals

Figure 1
Special use:
starter connected to the motor delta terminal in series with each winding

For standard applications according to figure 1

Motor	
Motor power (1)	
230 V	400 V
kW	kW
7.5	15
9	18.5
15	22
18.5	30
22	45
30	55
37	55
45	75
55	90
75	110
90	132
110	160
132	220
160	250
220	315
250	355
-	400
315	500
355	630
-	710
500	-

Starter 230/415 V $-\mathbf{5 0 / 6 0 ~ H z ~}$				
Nominal current (2)	Factory setting current (4)	Power dissipated at nominal load	Reference	Weight
A	A	W		
29	14.8	59	ATS 48D17Q	4.900
38	21	74	ATS 48D22Q	4.900
55	28.5	104	ATS 48D32Q	4.900
66	35	116	ATS 48D38Q	4.900
81	42	142	ATS 48D47Q	4.900
107	57	201	ATS 48D62Q	8.300
130	69	245	ATS 48D75Q	8.300
152	81	290	ATS 48D88Q	8.300
191	100	322	ATS 48C11Q	8.300
242	131	391	ATS 48C14Q	12.400
294	162	479	ATS 48C17Q	12.400
364	195	580	ATS 48C21Q	18.200
433	233	695	ATS 48C25Q	18.200
554	285	902	ATS 48C32Q	18.200
710	388	1339	ATS 48C41Q	51.400
831	437	1386	ATS 48C48Q	51.400
1022	560	1731	ATS 48C59Q	51.400
1143	605	1958	ATS 48C66Q	51.400
1368	675	2537	ATS 48C79Q	115.000
1732	855	2865	ATS 48M10Q	115.000
2078	1045	3497	ATS 48M12Q	115.000

For severe applications according to figure 1

Motor		Starter 230/415 V - 50/60 Hz				
Motor (1) 230 V	400 V	Nominal current (3)	Factory setting current (4)	Power dissipated at nominal load	Reference	Weight
kW	kW	A	A	W		kg
5.5	11	22	14.8	46	ATS 48D17Q	4.900
7.5	15	29	21	59	ATS 48D22Q	4.900
9	18.5	38	28.5	74	ATS 48D32Q	4.900
15	22	55	35	99	ATS 48D38Q	4.900
18.5	30	66	42	116	ATS 48D47Q	4.900
22	45	81	57	153	ATS 48D62Q	8.300
30	55	107	69	201	ATS 48D75Q	8.300
37	55	130	81	245	ATS 48D88Q	8.300
45	75	152	100	252	ATS 48C11Q	8.300
55	90	191	131	306	ATS 48C14Q	12.400
75	110	242	162	391	ATS 48C17Q	12.400
90	132	294	195	468	ATS 48C21Q	18.200
110	160	364	233	580	ATS 48C25Q	18.200
132	220	433	285	695	ATS 48C32Q	18.200
160	250	554	388	1017	ATS 48C41Q	51.400
220	315	710	437	1172	ATS 48C48Q	51.400
250	355	831	560	1386	ATS 48C59Q	51.400
-	400	1022	605	1731	ATS 48C66Q	51.400
315	500	1143	675	2073	ATS 48C79Q	115.000
355	630	1368	855	2225	ATS 48M10Q	115.000
-	710	1732	1045	2865	ATS 48M12Q	115.000

(1) Value indicated on the motor rating plate.
(2) Corresponds to the maximum permanent current in class 10.
(3) Corresponds to the maximum permanent current in class 20.
(4) For this type of connection, the factory setting current must be adjusted in accordance with the nominal motor current.

Presentation:	Characteristics:	Dimensions:	Schemes:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 48$ and $1 / 49$	pages $1 / 52$ to $1 / 57$

Soft starters
Altistart 48 soft start - soft stop units
Line voltage 208/690 V
Motor power in HP

ATS 48C14Y

ATS 48M12Y

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{For standard applications}

\hline \multicolumn{4}{|l|}{Motor} \& \multicolumn{5}{|l|}{Starter 208/690 V - 50/60 Hz}

\hline Moto \& power
230 V \& (1)

460 V \& 575 V \& Nominal current (IcL) (2) \& Factory setting current (4) \& Power dissipated at nominal load \& Reference \& Weight

\hline HP \& HP \& HP \& HP \& A \& A \& W \& \& kg

\hline 3 \& 5 \& 10 \& 15 \& 17 \& 14 \& 59 \& ATS 48D17Y \& 4.900

\hline 5 \& 7.5 \& 15 \& 20 \& 22 \& 21 \& 74 \& ATS 48D22Y \& 4.900

\hline 7.5 \& 10 \& 20 \& 25 \& 32 \& 27 \& 104 \& ATS 48D32Y \& 4.900

\hline 10 \& - \& 25 \& 30 \& 38 \& 34 \& 116 \& ATS 48D38Y \& 4.900

\hline - \& 15 \& 30 \& 40 \& 47 \& 40 \& 142 \& ATS 48D47Y \& 4.900

\hline 15 \& 20 \& 40 \& 50 \& 62 \& 52 \& 201 \& ATS 48D62Y \& 8.300

\hline 20 \& 25 \& 50 \& 60 \& 75 \& 65 \& 245 \& ATS 48D75Y \& 8.300

\hline 25 \& 30 \& 60 \& 75 \& 88 \& 77 \& 290 \& ATS 48D88Y \& 8.300

\hline 30 \& 40 \& 75 \& 100 \& 110 \& 96 \& 322 \& ATS 48C11Y \& 8.300

\hline 40 \& 50 \& 100 \& 125 \& 140 \& 124 \& 391 \& ATS 48C14Y \& 12.400

\hline 50 \& 60 \& 125 \& 150 \& 170 \& 156 \& 479 \& ATS 48C17Y \& 12.400

\hline 60 \& 75 \& 150 \& 200 \& 210 \& 180 \& 580 \& ATS 48C21Y \& 18.200

\hline 75 \& 100 \& 200 \& 250 \& 250 \& 240 \& 695 \& ATS 48C25Y \& 18.200

\hline 100 \& 125 \& 250 \& 300 \& 320 \& 302 \& 902 \& ATS 48C32Y \& 18.200

\hline 125 \& 150 \& 300 \& 350 \& 410 \& 361 \& 1339 \& ATS 48C41Y \& 51.400

\hline 150 \& - \& 350 \& 400 \& 480 \& 414 \& 1386 \& ATS 48C48Y \& 51.400

\hline - \& 200 \& 400 \& 500 \& 590 \& 477 \& 1731 \& ATS 48C59Y \& 51.400

\hline 200 \& 250 \& 500 \& 600 \& 660 \& 590 \& 1958 \& ATS 48C66Y \& 51.400

\hline 250 \& 300 \& 600 \& 800 \& 790 \& 720 \& 2537 \& ATS 48C79Y \& 115.000

\hline 350 \& 350 \& 800 \& 1000 \& 1000 \& 954 \& 2865 \& ATS 48M10Y \& 115.000

\hline 400 \& 450 \& 1000 \& 1200 \& 1200 \& 1170 \& 3497 \& ATS 48M12Y \& 115.000

\hline
\end{tabular}

For severe applications

Motor				Starter 208/690 V - 50/60 Hz				
Moto	powe	(1) 460 V	575 V	Nominal current (3)	Factory setting current (4)	Power dissipated at nominal load	Reference	Weight
HP	HP	HP	HP	A	A	W		kg
2	3	7.5	10	12	14	46	ATS 48D17Y	4.900
3	5	10	15	17	21	59	ATS 48D22Y	4.900
5	7.5	15	20	22	27	74	ATS 48D32Y	4.900
7.5	10	20	25	32	34	99	ATS 48D38Y	4.900
10	-	25	30	38	40	116	ATS 48D47Y	4.900
-	15	30	40	47	52	153	ATS 48D62Y	8.300
15	20	40	50	62	65	201	ATS 48D75Y	8.300
20	25	50	60	75	77	245	ATS 48D88Y	8.300
25	30	60	75	88	96	252	ATS 48C11Y	8.300
30	40	75	100	110	124	306	ATS 48C14Y	12.400
40	50	100	125	140	156	391	ATS 48C17Y	12.400
50	60	125	150	170	180	468	ATS 48C21Y	18.200
60	75	150	200	210	240	580	ATS 48C25Y	18.200
75	100	200	250	250	302	695	ATS 48C32Y	18.200
100	125	250	300	320	361	1017	ATS 48C41Y	51.400
125	150	300	350	410	414	1172	ATS 48C48Y	51.400
150	-	350	400	480	477	1386	ATS 48C59Y	51.400
-	200	400	500	590	590	1731	ATS 48C66Y	51.400
200	250	500	600	660	720	2073	ATS 48C79Y	115.000
250	300	600	800	790	954	2225	ATS 48M10Y	115.000
350	350	800	1000	1000	1170	2865	ATS 48M12Y	115.000

(1) Value indicated on the motor rating plate.
(2) Corresponds to the maximum permanent current in class 10. ICL corresponds to the starter rating.
(3) Corresponds to the maximum permanent current in class 20.
(4) The factory setting current corresponds to the value of the nominal current of a standard motor according to NEC, 460 V , class 10 (standard application). Adjust the settings in accordance with the motor nominal current.

Presentation:	Characteristics:	Dimensions:	Schemes:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 48$ and $1 / 49$	pages $1 / 52$ to $1 / 57$

Soft starters
Altistart 48 soft start - soft stop units
Line voltage $208 / 690 \mathrm{~V}$
Motor power in kW

For standard applications

Motor						
Motor power (1)						
230 V	$\mathbf{4 0 0} \mathbf{V}$	$\mathbf{4 4 0} \mathbf{V}$	$\mathbf{5 0 0} \mathbf{V}$	$\mathbf{5 2 5} \mathbf{V}$	$\mathbf{6 6 0} \mathbf{V}$	$\mathbf{6 9 0} \mathbf{V}$
$\mathbf{k W}$						
$\mathbf{4}$	7.5	7.5	9	9	11	15
5.5	11	11	11	11	15	18.5
7.5	15	15	18.5	18.5	22	22
9	18.5	18.5	22	22	30	30
11	22	22	30	30	37	37
15	30	30	37	37	45	45
18.5	37	37	45	45	55	55
22	45	45	55	55	75	75
30	55	55	75	75	90	90
37	75	75	90	90	110	110
45	90	90	110	110	132	160
55	110	110	132	132	160	200
75	132	132	160	160	220	250
90	160	160	220	220	250	315
110	220	220	250	250	355	400
132	250	250	315	315	400	500
160	315	355	400	400	560	560
-	355	400	-	-	630	630
220	400	500	500	500	710	710
250	500	630	630	630	900	900
355	630	710	800	800	-	-

Starter 208/690 V - 50/60 Hz

Starter 208/690 $\mathbf{V - 5 0 / 6 0 ~ H z ~}$				
Nominal current (IcL) (2)	Factory setting current (4)	Power dissipated at nominal load	Reference	Weight
A	A	W		
17	14	59	ATS 48D17Y	4.900
22	21	74	ATS 48D22Y	4.900
32	27	104	ATS 48D32Y	4.900
38	34	116	ATS 48D38Y	4.900
47	40	142	ATS 48D47Y	4.900
62	52	201	ATS 48D62Y	8.300
75	65	245	ATS 48D75Y	8.300
88	77	290	ATS 48D88Y	8.300
110	96	322	ATS 48C11Y	8.300
140	124	391	ATS 48C14Y	12.400
170	156	479	ATS 48C17Y	12.400
210	180	580	ATS 48C21Y	18.200
250	240	695	ATS 48C25Y	18.200
320	302	902	ATS 48C32Y	18.200
410	361	1339	ATS 48C41Y	51.400
480	414	1386	ATS 48C48Y	51.400
590	477	1731	ATS 48C59Y	51.400
660	590	1958	ATS 48C66Y	51.400
790	720	2537	ATS 48C79Y	115.000
1000	954	2865	ATS 48M10Y	115.000
1200	1170	3497	ATS 48M12Y	115.000

For severe applications

Motor						
Motor power (1)						
230 V	400 V	440 V	500 V	525 V	660 V	690 V
kW						
3	5.5	5.5	7.5	7.5	9	11
4	7.5	7.5	9	9	11	15
5.5	11	11	11	11	15	18.5
7.5	15	15	18.5	18.5	22	22
9	18.5	18.5	22	22	30	30
11	22	22	30	30	37	37
15	30	30	37	37	45	45
18.5	37	37	45	45	55	55
22	45	45	55	55	75	75
30	55	55	75	75	90	90
37	75	75	90	90	110	110
45	90	90	110	110	132	160
55	110	110	132	132	160	200
75	132	132	160	160	220	250
90	160	160	220	220	250	315
110	220	220	250	250	355	400
132	250	250	315	315	400	500
160	315	355	400	400	560	560
-	355	400	-	-	630	630
220	400	500	500	500	710	710
250	500	630	630	630	900	900

Starter 208/690 V - 50/60 Hz				
Nominal current (3)	Factory setting current (4)	Power dissipated at nominal load	Reference	Weight
A	A	W		
12	14	46	ATS 48D17Y	4.900
17	21	59	ATS 48D22Y	4.900
22	27	74	ATS 48D32Y	4.900
32	34	99	ATS 48D38Y	4.900
38	40	116	ATS 48D47Y	4.900
47	52	153	ATS 48D62Y	8.300
62	65	201	ATS 48D75Y	8.300
75	77	245	ATS 48D88Y	8.300
88	96	252	ATS 48C11Y	8.300
110	124	306	ATS 48C14Y	12.400
140	156	391	ATS 48C17Y	12.400
170	180	468	ATS 48C21Y	18.200
210	240	580	ATS 48C25Y	18.200
250	302	695	ATS 48C32Y	18.200
320	361	1017	ATS 48C41Y	51.400
410	414	1172	ATS 48C48Y	51.400
480	477	1386	ATS 48C59Y	51.400
590	590	1731	ATS 48C66Y	51.400
660	720	2073	ATS 48C79Y	115.000
790	954	2225	ATS 48M10Y	115.000
1000	1170	2865	ATS 48M12Y	115.000

(1) Value indicated on the motor rating plate.
(2) Corresponds to the maximum permanent current in class 10. IcL corresponds to the starter rating.
(3) Corresponds to the maximum permanent current in class 20.
(4) The factory setting current corresponds to the value of the nominal current of a standard motor according to NEC, 460 V , class 10 (standard application). Adjust the settings in accordance with the motor nominal current.

Remote terminal

The terminal can be mounted on the door of a wall-fixing or floor-standing enclosure. It has the same signalling display and configuration buttons as the terminal integrated in the starter. A switch to lock access to the menu is located at the rear of the terminal.

The option comprises:

- the remote terminal
- a mounting kit containing a cover, screws and an IP 54 seal on the front panel - a 3 m connecting cable with a 9-way SUB-D connector for connecting to the terminal and an RJ45 connector for connecting to the Altistart 48

1 Information is displayed in the form of codes or values in three "7-segment" displays
2 Buttons for scrolling through the menus or modifying values
3 "ESC": Button for exiting the menus (cannot be used for validation purposes)
4 "ENT": Validation button for entering a menu or confirming the new value selected

Line chokes

The use of line chokes is recommended in particular when installing several electronic starters on the same line supply. The values of the chokes are defined for a voltage drop between 3% and 5% of the nominal line voltage. Install the line choke between the line contactor and the starter.

Soft starters

Altistart 48 soft start - soft stop units Options: remote terminal, line chokes, protective covers, documentation

VW3 G48101

LA9 F702

Remote terminal		
Description	Reference	Weight
Remote terminal	VW3 G48101	0.200

Line chokes For starters	Value of the choke mH	Nominal current	A Degree of protection	Reference	Weight
ATS 48D17•	1.7	15	IP 20	VZ1 L015UM17T	2.100
ATS 48D22•	0.8	30	IP 20	VZ1 L030U800T	4.100
ATS 48D32• and 48D38•	0.6	40	IP 20	VZ1 L040U600T	5.100
ATS 48D47• and 48D62•	0.35	70	IP 20	VZ1 L070U350T	8.000
ATS 48D75• to 48C14•	0.17	150	IP 00	VZ1 L150U170T	14.900
ATS 48C17• to 48C25•	0.1	250	IP 00	VZ1 L250U100T	24.300
ATS 48C32•	0.075	325	IP 00	VZ1 L325U075T	28.900
ATS 48C41• and 48C48•	0.045	530	IP 00	VZ1 L530U045T	37.000
ATS 48C59• to 48M10	0.024	1025	IP 00	VZ1 LM10U024T	66.000
ATS 48M12•	0.016	1435	IP 00	VZ1 LM14U016T	80.000

Nota : line chokes with IP 00 degree of protection must be fitted with a protective bar to protect personnel against electrical contact.

Protective covers for power terminals

| To be used with tags closed |
| :--- | :--- | :--- | ---: |
| For starters |\quad| Number of covers |
| :--- |
per set	\quad Reference	Weight
kg		

(1) The starters have 9 unprotected power terminals.

Documentation Description	Format	Reference	Weight $\mathbf{k g}$
Altistart 48 user's manual	A5	VVD ED 301066	0.150
Modbus user's manual	A5	VVD ED 302023	0.150
International technical manual (ITM) (2)	CD-ROM	DCI CD 398111	0.150

(ITM) (2)
(2) Library containing:

- manuals and quick reference guides for starters and speed drives,
- user's manuals for communication gateways.

Altistart 48 soft start - soft stop units
Communication options

Modbus communication bus

The Altistart 48 is connected directly to the Modbus bus via its RJ45 type connector port.
This port supports the RS 458 (2-wire) standard and the Modbus RTU protocol.
The communication function provides access to the configuration, adjustment, control and signalling functions of the starter.

Other communication buses

The Altistart 48 can also be connected to Ethernet, Fipio, Profibus DP and DeviceNet networks via a module (bridge or gateway).
Communication on the network is used for:

- controlling
- monitoring and
- configuring the Modbus products connected to the network

Connections via splitter blocks and RJ45 type connectors

1 PLC (1)
2 Modbus cable depending on the type of controller or PLC
3 Modbus splitter block LU9 GC3
4 Modbus drop cable VW3 A8 306 Ree
5 Line terminators VW3 A8 $\mathbf{3 0 6}$ RC
6 Modbus T-junction box
VW3 A8 306 TFee (with cable)

Connections via junction boxes

PLC (1)
2 Modbus cable depending on the type of controller or PLC
3 Modbus cable TSX CSA •00
4 Junction box TSX SCA 50
5 Subscriber sockets TSX SCA 62
6 Modbus drop cable VW3 A8 306
7 Modbus drop cable VW3 A8 306 D30

Connections via screw terminals

In this case, use a Modbus drop cable VW3 A8 306 D30 and line terminators VW3 A8 306 DRC.

Connection via modules

1 To network
Communication modules
Cables VW3 A8 306 Ree,
VW3 P07 306 R10 or
VW3 A8 306 D30
Modbus splitter block LU9 GC3
Modbus drop cable VW3 A8 306 Ree
Line terminator VW3 A8 306 RC

[^5]

[^6]ATS 48D17• to ATS 48D47•

Maximum connection capacity: Earth connections: $10 \mathrm{~mm}^{2}$ (AWG 8) Power terminals: $16 \mathrm{~mm}^{2}$ (AWG 8)

ATS 48D62• to ATS 48C11•

Maximum connection capacity:
Earth connections: $16 \mathrm{~mm}^{2}$ (AWG 4)
Power terminals: $50 \mathrm{~mm}^{2}$ (AWG 2/0)

ATS $48 \mathrm{C} 14 \bullet$ to ATS 48C17•

ATS 48C21• to ATS 48C32•

Maximum connection capacity:
Earth connections: $120 \mathrm{~mm}^{2}$ (busbar)
Power terminals: $240 \mathrm{~mm}^{2}$ (busbar)

Presentation:	Characteristics:	References:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ and $1 / 33$	pages $1 / 40$ to $1 / 43$

Maximum connection capacity:
Earth connections:
$240 \mathrm{~mm}^{2}$ (busbar)
Power terminals:
$2 \times 240 \mathrm{~mm}^{2}$ (busbar)

ATS 48C79• to M12•

Maximum connection capacity:

Earth connections:
$2 \times 240 \mathrm{~mm}^{2}$ (busbar)
Power terminals:
$4 \times 240 \mathrm{~mm}^{2}$ (busbar)

| Presentation:
 pages $1 / 30$ and $1 / 31$ | Characteristics:
 pages $1 / 32$ and $1 / 33$ | References:
 pages $1 / 40$ to $1 / 43$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |

Chokes

VZ1-L015UM17T to L070U350T

VZ1-L150U170T to LM14U016T

| VZ1- | a | b | c | c1 | G | H | \emptyset |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L015UM17T | 120 | 150 | 80 | 75 | $60 / 80.5$ | 52 | 6 |
| L030U800T | 150 | 180 | 120 | 100 | $75 / 106.5$ | 76 | 7 |
| L040U600T | 180 | 215 | 130 | 100 | $85 / 122$ | 76 | 7 |
| LO70U350T | 180 | 215 | 150 | 130 | $85 / 122$ | 97 | 7 |

VZ1-	a	b	c	$\mathbf{c 1}$	G	H	
L150U170T	270	240	170	140	$105 / 181$	96	11.5
L250U100T	270	240	220	160	$105 / 181$	125	11.5
L325U075T	270	240	240	175	$105 / 181$	138	11.5
L530U045T	380	410	225	140	310	95	9
LM10U024T	400	410	310	170	310	125	9
LM14U016T	420	490	340	170	310	125	9

Mounting the remote terminal VW3 G48101

| Presentation:
 pages $1 / 30$ and $1 / 31$ | Characteristics:
 pages $1 / 32$ and $1 / 33$ | References:
 pages $1 / 40$ to $1 / 43$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $1 / 52$ to $1 / 57$ |

Mounting recommendations

- Install the Altistart vertically, at $\pm 10^{\circ}$.
- Do not place the Altistart close to or above heating elements.
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Caution: the IP 00 version of the Altistart 48 must be fitted with a protective bar to protect personnel against electrical contact.
Protective covers are available for the ATS 48C14• to ATS 48C32•. They should be ordered separately.

Mounting in a metal wall-fixing or floor-standing enclosure with degree of protection IP 23 or IP 54
■ Observe the mounting recommendations above.

- To ensure proper air circulation in the starter:
- fit ventilation grilles,
- ensure that there is sufficient ventilation. If there is not, install forced ventilation with a filter; the openings and/or fans must provide a flow rate at least equal to that of the starter fans (see the table below).
■ Use special filters with IP 54 protection.
Fan flow rate depending on the starter rating

ATS 48 starter	Flow rate $\mathbf{m}^{\mathbf{3} / \text { hour }}$
ATS48 D32 \bullet and D38	14
ATS48 D47•	28
ATS48 D62 to C11•	86
ATS48 C14 and C17	138
ATS48 C21• to C32	280
ATS48 C41• to C66	600
ATS48 C29 to M12•	1200

Metal wall-fixing or floor-standing enclosure with IP 54 degree of protection For non-ventilated Altistart units (ATS 48D17• and 48D22•), install a fan $\leqslant 50 \mathrm{~mm}$ below the starter to circulate the air inside the enclosure in order to avoid hot spots.

Calculating the size of the enclosure

Maximum thermal resistance Rth (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\theta=$ maximum temperature inside enclosure in ${ }^{\circ} \mathrm{C}$
$R \mathrm{th}=\frac{\theta-\theta \mathrm{e}}{\mathrm{P}} \quad \begin{array}{ll}\theta \mathrm{e}=\text { maximum external temperature in }{ }^{\circ} \mathrm{C}\end{array}$
$P=$ total power dissipated in the enclosure in W
The starter/motor combinations on pages $1 / 40$ and 1/41 can only be used in ambient temperatures $\leqslant 40^{\circ} \mathrm{C}$.
For temperatures between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, derate the maximum permanent current of the starter by 2% for every degree above $40^{\circ} \mathrm{C}$.
Power dissipated by the starter: see pages $1 / 40$ and $1 / 41$.
If the starts are infrequent, it is advisable to bypass the Altistart at the end of starting in order to reduce heat dissipation.
The power dissipated will then be between 15 and 30 W .
Add the power dissipated by the other equipment components.
Effective exchange surface area of enclosure $S\left(\mathbf{m}^{2}\right)$
(sides + top + front panel if wall-mounted)
$\mathrm{SS}=\frac{\mathrm{K}}{\mathrm{Rth}}$
K is the thermal resistance per m^{2} of casing.
For ACM type metal enclosures: $\mathrm{K}=0.12$ with internal fan, $\mathrm{K}=0.15$ without fan.
Caution: do not use insulated enclosures as they have a poor level of conductivity.

Presentation:	Characteristics:	References:	Schemes:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ and $1 / 33$	pages $1 / 40$ to $1 / 43$	pages $1 / 52$ to $1 / 57$

Recommended application diagram for non-reversing unit with line contactor, type 1 and type 2 coordinations

Select the components to connect, according to the descriptions on page $1 / 53$, from the association tables on pages $1 / 58$ to $1 / 67$.
(1) For type 2 coordination (according to IEC 60947-4-2), install fast-acting fuses to ensure that the starter will be protected in the event of a short-circuit.
(2) Assign relay R1 as the "isolating relay". Beware of the operating limits of the contacts (see Characteristics page 1/32), for example when connecting to high rating contactors.
(3) Insert a transformer if the line voltage is different to that defined for the control circuit (see page 1/32).

Types of coordination

The standard defines tests for different current levels which are designed to expose the device to extreme conditions.
Based on the state of the components after a short-circuit test, the standard defines 2 types of coordination.

- Type 1 coordination: damage to the contactor and the starter is acceptable under 2 conditions:
- no risk is posed to the operator,
- elements other than the contactor and the starter are not damaged.

Maintenance must be carried out after a short-circuit.

- Type 2 coordination: minor soldering of the contactor contacts is permissible if they can be separated easily. The starter must not be damaged beyond repair. The protection and control devices remain operational after type 2 coordination tests.
Once the fuses have been replaced, check the contactor.
Nota : the starter will protect the motor and the cables against overloads. If this protection function is disabled, external thermal protection must be provided.

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 40$ to $1 / 43$	pages $1 / 48$ to $1 / 51$

Recommended application diagram for non-reversing unit with starter line and bypass contactors, type 1 and type 2 coordinations

Select the components to connect, according to the descriptions below, from the association tables on pages $1 / 58$ to $1 / 67$.
(1) For type 2 coordination (according to IEC 60947-4-2), install fast-acting fuses to ensure that the starter will be protected in the event of a short-circuit.
(2) Assign relay R1 as the "isolating relay". Beware of the operating limits of the contacts (see Characteristics page 1/32), for example when connecting to high rating contactors.
(3) Insert a transformer if the line voltage is different to that defined for the control circuit (see page 1/32).
(4) 2-wire and 3 -wire control (see page 1/74).

Components to connect depending on the types of coordination and voltages

Designation	Description
M1	Motor
A1	Starter (standard applications and severe applications)
Q1	Circuit-breaker or switch/fuses
Q3	3 FA fuses
KM1, KM3	Contactor
$\mathbf{S 1 , S 2}$	Control (separate parts XB2 or XB2 M)

Presentation:	Characteristics:	References:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	Dimensions: pages $1 / 40$ to $1 / 43$

Recommended application diagram for connection to the motor delta terminals, non-reversing, freewheel stop, with starter line and bypass contactors, type 1 and type 2 coordinations
This type of wiring enables the starter rating to be reduced.
ATS 48•0०Q

Select the components to connect according to the descriptions on page $1 / 55$ and the association tables on pages $1 / 58$ to $1 / 67$.
(1) A line contactor must be used in the sequence.
(2) For type 2 coordination (according to IEC 60947-4-2), install fast-acting fuses to ensure that the starter will be protected in the event of a short-circuit.
(3) R1 must be assigned as the "isolating relay" to control contactor KM1. Beware of the operating limits of the contacts (see Characteristics page 1/32), for example when connecting to high rating contactors.
(4) Insert a transformer if the line voltage is different to that defined for the control circuit (see page 1/32).
(5) 2-wire and 3-wire controls (see page 1/74).

Types of coordination

The standard defines tests for different current levels which are designed to expose the device to extreme conditions.
Based on the state of the components after a short-circuit test, the standard defines 2 types of coordinations.

- Type 1 coordination: damage to the contactor and the starter is acceptable under 2 conditions:
- no risk is posed to the operator,
- elements other than the contactor and the starter are not damaged.

Maintenance must be carried out after a short-circuit.

- Type 2 coordination: minor soldering of the contactor contacts is permissible if they can be separated easily. The starter must not be damaged beyond repair. The protection and control devices remain operational after type 2 coordination tests.
Once the fuses have been replaced, check the contactor.
Nota : the starter will protect the motor and the cables against overloads. If this protection function is disabled, external thermal protection must be provided.

Presentation:	Characteristics:	References: pages $1 / 30$ and $1 / 31$
pages $1 / 32$ to $1 / 35$	Dimensions:	
pages $1 / 40$ to $1 / 43$	pages $1 / 48$ to $1 / 51$	

Recommended application diagram for LSP/HSP motor, non-reversing with starter line and bypass

 contactors

Select the components to connect, according to the descriptions below, from the association tables on pages $1 / 58$ to $1 / 67$.
(1) For type 2 coordination (according to IEC 60947-4-2), install fast-acting fuses to ensure that the starter will be protected in the event of a short-circuit.
(2) Insert a transformer if the line voltage is different to that defined for the control circuit (see page 1/32).
(3) Assign logic input LI3 to "activate the adjustment functions of the $2^{\text {nd }}$ motor".
(4) Assign relay R1 as the "isolating relay". Beware of the operating limits of the contacts (see Characteristics page 1/32), for example when connecting to high rating contactors.

Components to connect depending on the types of coordination and voltages

Designation		Description	
M1		Motor	
A1		Starter (standard applications and severe applications)	
Q1		Circuit-breaker or switch/fuses	
Q3		3 FA fuses	
KM1, KM2, KM3, KM5, KA1		Contactors and relays	
S1, S2, S3		Control (separate	XB2 M)
Presentation: pages $1 / 30$ and $1 / 31$	Characteristics: pages $1 / 32$ to $1 / 35$	References pages $1 / 40$ to $1 / 43$	Dimensions: pages $1 / 48$ to $1 / 51$

Recommended application diagram for starting and decelerating several motors cascaded with a single Altistart 48, non-reversing and line contactor
The diagram is given as an example only. For more details, refer to the Altistart 48 user's manual.

Select the components to connect, according to the designations below, from the association tables on pages $1 / 58$ to $1 / 67$.
(1) For type 2 coordination (according to IEC 60947-4-2), install fast-acting fuses to ensure that the starter will be protected in the event of a short-circuit.
(2) Insert a transformer if the line voltage is different to that defined for the control circuit (see page 1/32).

Important:

■ One Altistart 48 logic input must be configured as a "cascading" input.

- In the event of a fault, it will not be possible to decelerate or brake any motors that may be running at that time.
- Adjust the thermal protection of each circuit-breaker $Q_{n 1}$ for the corresponding nominal motor current.

Components to connect depending on the types of coordination and voltages

Designation	Description
$\mathbf{M 1 , ~ M 2 , ~ M i , ~ M n ~}$	Motor
$\mathbf{A 1}$	Starter (standard applications and severe applications)
KM1, KM2, ..., KMi, KMn	Contactor
$\mathbf{Q 1}$	Circuit-breaker or switch/fuses
$\mathbf{Q 3}$	3 FA fuses
$\mathbf{Q 1 1 , ~ Q 2 1 , ~ . . , ~ Q n 1 ~}$	Thermal magnetic circuit-breakers
KA, KAT, KALI, KALIT	Control (separate parts XB2 or XB2 M)

Presenalion ${ }_{\text {a }}$	Characersistes	${ }_{\text {Refer }}^{\text {Reases: }}$	Dimensionsi
$1 / 56$		[demeangue	

Recommended application diagram for starting and decelerating several motors cascaded with a single Altistart 48, non-reversing and line contactor (continued)

Motor n control

Cascade control

(1) Assign relay R1 as the "isolating relay". Beware of the operating limits of the contacts (see Characteristics page $1 / 32$), for example when connecting to high rating contactors.
BPMn: "Run" button motor n
BPAn: "Stop" button motor n
MST: General "Run" button
MHT: General "Stop" button

Presentation:		
pages $1 / 30$ and $1 / 31$	Characteristics:	References:
pages $1 / 32$ to $1 / 35$	pages $1 / 40$ to $1 / 43$	Dimensions:

Altistart 48 soft start - soft stop units
230 V power supply
Type 1 coordination

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$)												
Combine either circuit-breaker (light blue columns), contactor, starter, or switches/fuses (dark blue columns), contactor, starter												
Motor		Starter (1) Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker		Type of contactor	Type of switch or switch disconnector (bare unit)	Am fuses Unit reference (3)		Size	RatingA	
		Telemecanique		Rating								
kW	A			Merlin Gerin	A			Without striker	With striker			
M1			A1		Q1		KM1, KM2, KM3					
3	11.5	-	ATS 48D170	GV2 L20	18	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
				NS80H MA	12.5	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
4	14.5	ATS 48D17•	ATS 48D22@	GV2 L20	18	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
				NS80H MA	25	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
5.5	20	ATS 48D22•	ATS 48D32@	GV2 L22	25	LC1 D25	LS1 D32	DF2 CA25	-	10×38	25	
				NS80H MA	25	LC1 D25	LS1 D32	DF2 CA25	-	10×38	25	
7.5	27	ATS 48D32•	ATS 48D380	GV2 L32	32	LC1 D32	GK1 EK	DF2 EA32	DF3 EA32	14×51	32	
				NS80H MA	50	LC1 D32	GK1 EK	DF2 EA32	DF3 EA32	14×51	32	
9	32	ATS 48D38•	ATS 48D47•	GK3 EF40	40	LC1 D38	GK1 EK	DF2 EA40	DF3 EA40	14×51	40	
				NS80H MA	50	LC1 D38	GK1 EK	DF2 EA40	DF3 EA40	14×51	40	
11	39	ATS 48D47•	ATS 48D62@	GK3 EF65	65	LC1 D50	GK1 FK	DF2 FA50	DF3 FA50	22×58	50	
				NS80H MA	50	LC1 D50	GK1 FK	DF2 FA50	DF3 FA50	22×58	50	
15	52	ATS 48D62•	ATS 48D75	GK3 EF65	65	LC1 D65	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
				NS80H MA	80	LC1 D65	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
18.5	64	ATS 48D75	ATS 48D88॰	GK3 EF80	80	LC1 D80	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
				NS80H MA	80	LC1 D80	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
22	75	ATS 48D880	ATS 48C11•	NS100॰ MA (2)	100	LC1 D115	GK1 FK	DF2 FA100	DF3 FA100	22×58	100	
30	103	ATS 48C11•	ATS 48C140	NS1600 MA (2)	150	LC1 D115	GK1 FK	DF2 FA125	DF4 FA125	22×58	125	
37	126	ATS 48C140	ATS 48C170	NS160• MA (2)	150	LC1 D150	GS1 L	DF2 GA1161	DF4 GA1161	0	160	
45	150	ATS 48C17•	ATS 48C21•	NS250• MA (2)	220	LC1 F185	GS1 N	DF2 HA1201	DF4 HA1201	1	200	
55	182	ATS 48C21•	ATS 48C250	NS250• MA (2)	220	LC1 F225	GS1 N	DF2 HA1201	DF4 HA1201	1	200	
75	240	ATS 48C25	ATS 48C32•	NS4000 MA (2)	320	LC1 F265	GS1 QQ	DF2 JA1251	DF4 JA1251	2	250	
90	295	ATS 48C32•	ATS 48C41•	NS4000 MA (2)	320	LC1 F330	GS1 QQ	DF2 JA1311	DF4 JA1311	2	315	
110	356	ATS 48C41•	ATS 48C480	NS630॰ MA (2)	500	LC1 F400	GS1 S	DF2 KA1401	DF4 KA1401	3	400	
132	425	ATS 48C48॰	ATS 48C59@	NS630॰ MA (2)	500	LC1 F500	GS1 S	DF2 KA1501	DF4 KA1501	3	500	
160	520	ATS 48C59•	ATS 48C66•	NS630b• (2) Micrologic 5.0	630	LC1 F630	GS1 S	DF2 KA1631	DF4 KA1631	3	630	
				$\begin{aligned} & \text { C8010 (2) } \\ & \text { STR35 ME } \end{aligned}$	800	LC1 F630	GS1 S	DF2 KA1631	DF4 KA1631	3	630	
-	-	ATS 48C660	ATS 48C79•	$\begin{aligned} & \text { NS800@ (2) } \\ & \text { Micrologic } 5.0 \end{aligned}$	800	LC1 F800	GS1 S	DF2 KA1631	DF4 KA1631	3	630	
				$\begin{aligned} & \text { C8010 (2) } \\ & \text { STR35 ME } \end{aligned}$	800	LC1 F800	GS1 S	DF2 KA1631	DF4 KA1631	3	630	
220	700	ATS 48C79•	ATS 48M10@	$\begin{aligned} & \text { NS8000 (2) } \\ & \text { Micrologic } 5.0 \\ & \hline \end{aligned}$	800	LC1 F800	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
				$\begin{aligned} & \text { C801• (2) } \\ & \text { STR35 ME } \end{aligned}$	800	LC1 F800	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
250	800	ATS 48M10•	ATS 48M120	NS1000•(2) $\text { Micrologic } 5.0$	1000	LC1 BM33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000	
				$\begin{aligned} & \text { C10010 (2) } \\ & \text { STR35 ME } \end{aligned}$	1000	LC1 BM33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000	
355	1115	ATS 48M12•	-	NS1250• (2) Micrologic 5.0	1250	LC1BP33	-	DF2 LA1251	DF4 LA1251	4	1250	
				$\begin{aligned} & \text { C12510(2) } \\ & \text { STR35 ME } \end{aligned}$	1250	LC1BP33	-	DF2 LA1251	DF4 LA1251	4	1250	

(1) Replace - with Q or Y according to the starter voltage range.
(2) Replace \bullet with N, H or L, according to the breaking capacity (see table below).
(3) DF2 CA, DF EA, DF•FA: sold in lots of 20.
$D F \bullet G A, D F \bullet K A$: sold in lots of 3.
$D F \bullet L A$: sold in lots of 1.

Maximum prospective short-circuit current of the starter according to standard IEC 60947-4-2

Starter	Iq (kA)
ATS 48D17• to ATS 48C32•	50
ATS 48C41• to ATS 48M12•	70

Breaking capacity of circuit-breakers according to standard IEC 60947-2

230 V	Icu (kA)		
GV2 L20, GK3 EF40, NS80	100		
GV2 L22, GV2 L32, GK3 EF65, GK3 EF80	50		
$\mathbf{2 3 0}$ V	Icu (kA)		
	N	H	L
NS100, NS160, NS250, NS400, NS630	85	100	150
NS800, NS1000	50	70	150
NS1250	50	70	-
C801, C1001	85	100	150
$\mathbf{C 1 2 5 1}$	85	100	-

Presentation: pages $1 / 30$ and $1 / 31$	Characteristics: pages $1 / 32$ to $1 / 35$	References: pages $1 / 40$ to $1 / 43$	Dimensions: pages $1 / 48$ to $1 / 51$	Schemes: pages $1 / 52$ to $1 / 57$

Combination: circuit-breaker, contactor, starter						
Motor	A	Starter (1) Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker Telemecanique Merlin Gerin	Rating A	Type of contactor
M1		A1		Q1		KM1, KM2, KM3
3	11.5	-	ATS 48D17•	GV2 L20	18	LC1 D40
				NS80H MA	12.5	LC1 D40
4	14.5	ATS 48D17•	ATS 48D22•	GV2 L20	18	LC1 D40
				NS80H MA	25	LC1 D40
5.5	20	ATS 48-D22•	ATS 48D32•	GV2 L22	25	LC1 D40
				NS80H MA	25	LC1 D40
7.5	27	ATS 48D32•	ATS 48D38•	GV2 L32	32	LC1 D80
				NS80H MA	50	LC1 D80
9	32	ATS 48D38•	ATS 48D47•	GK3 EF40	40	LC1 D80
				NS80H MA	50	LC1 D80
11	39	ATS 48D47•	ATS 48D62•	GK3 EF65	65	LC1 D80
				NS80H MA	50	LC1 D80
15	52	ATS 48D62•	ATS 48D75	GK3 EF65	65	LC1 D80
				NS80H MA	80	LC1 D80
18.5	64	ATS 48D75	ATS 48D88•	GK3 EF80	80	LC1 D80
				NS80H MA	80	LC1 D80
22	75	ATS 48D88•	ATS 48C11•	NS1000 MA (2)	100	LC1 D115
30	103	ATS 48C11•	ATS 48C14•	NS1600 MA (2)	150	LC1 D115
37	126	ATS 48C14•	ATS 48C17•	NS160@ MA (2)	150	LC1 D150
45	150	ATS 48C17•	ATS 48C21•	NS250• MA (2)	220	LC1 F185
55	182	ATS 48C21•	ATS 48C25•	NS250• MA (2)	220	LC1 F225
75	240	ATS 48C25•	ATS 48C32•	NS400• MA (2)	320	LC1 F265
90	295	ATS 48C32•	ATS 48C41•	NS400• MA (2)	320	LC1 F330
110	356	ATS 48C41•	ATS 48C48•	NS630• MA (2)	500	LC1 F400
132	425	ATS 48C48•	ATS 48C59•	NS630• MA (2)	500	LC1 F500
160	520	ATS 48C59•	ATS 48C66•	NS630bL Micrologic 5.0	630	LC1 F630
200	626	ATS 48C66•	ATS 48C79•	NS800L Micrologic 5.0	800	LC1 F800
220	700	ATS 48C79•	ATS 48M10•	NS800L Micrologic 5.0	800	LC1 F800
250	800	ATS 48M10•	ATS 48M12•	NS1000L Micrologic 5.0	1000	LC1 BM33
355	1115	ATS 48M12•	-	NS1250• (2) Micrologic 5.0 (3)	1250	LC1 BP33

(1) Replace \bullet with Q or Y according to the starter voltage range.
(2) Replace \bullet with N, H or L, according to the breaking capacity (see the breaking capacity table on the previous page).
(3) Type 2 coordination is only possible if the fast-acting fuses remain in the motor supply circuit and are not bypassed at the end of starting.
Maximum prospective short-circuit current of
the starter according to standard IEC 60947-4-2

Starter	Iq (kA)
ATS 48D17 \bullet to ATS 48C79	50
ATS 48M10 and ATS 48M12•	85

Fast-acting fuse (essential for type 2 coordination), starter combinations

Starter Reference	Fast-acting fuses with micro-contact			
	Unit reference (4)	Size	Rating A	$\begin{aligned} & 1^{2} t \\ & k A^{2} . s \end{aligned}$
A1	Q3			
ATS 48D17•	DF3 ER50	14×51	50	2.3
ATS 48D22• and ATS 48D32•	DF3 FR80	22×58	80	5.6
ATS 48D38• and ATS 48D47•	DF3 FR100	22×58	100	12
ATS 48D62• and ATS 48D75•	DF4 00125	00	125	45
ATS 48D88• and ATS 48C11•	DF4 00160	00	160	82
ATS 48C14• and ATS 48C17•	DF4 30400	30	400	120
ATS 48C21• to ATS 48C32•	DF4 31700	31	700	490
ATS 48D75	DF4 33800	33	800	490
ATS 48C48• and ATS 48C59॰	DF4 331000	33	1000	900
ATS 48C66•	DF4 2331400	2×33	1400	1200
ATS 48C79•	DF4 441600	44	1600	1600
ATS 48M10• and ATS 48M12•	DF4 442200	44	2200	4100

(4) DF3 ER, DF3 FR: sold in lots of 10

$$
\text { DF4: sold in lots of } 1 \text {. }
$$

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 40$ to $1 / 43$	pages $1 / 48$ to $1 / 51$

Soft starters

Altistart 48 soft start - soft stop units
$380 \mathrm{~V}, 400 \mathrm{~V}, 415 \mathrm{~V}$ power supply
Type 1 coordination

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$)												
Combine either circuit-breaker (light blue columns), contactor, starter, or switches/fuses (dark blue columns), contactor, starter												
Motor		Starter (1) Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker		Type of contactor	Type of switch or switch disconnector (bare unit)	Am fuses Unit reference (3)		Size	Rating	
		Telemecanique		Rating								
		Merlin Gerin		A	Without striker			With striker	A			
M1			A1		Q1		KM1, KM2, KM3					
5.5	11		-	ATS 48D17•	GV2 L20	18	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16
		NS80H MA			12.5	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
7.5	14.8	ATS 48D17•	ATS 48D22•	GV2 L20	18	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
				NS80H MA	25	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
11	21	ATS 48D22•	ATS 48D32•	GV2 L22	25	LC1 D25	LS1 D32	DF2 CA25	-	10×38	25	
				NS80H MA	25	LC1 D25	LS1 D32	DF2 CA25	-	10×38	25	
15	28.5	ATS 48D32•	ATS 48D38•	GV2 L32	32	LC1 D32	GK1 EK	DF2 EA32	DF3 EA32	14×51	32	
				NS80H MA	50	LC1 D32	GK1 EK	DF2 EA32	DF3 EA32	14×51	32	
18.5	35	ATS 48D38•	ATS 48D47•	GK3 EF40	40	LC1 D38	GK1 EK	DF2 EA40	DF3 EA40	14×51	40	
				NS80H MA	50	LC1 D38	GK1 EK	DF2 EA40	DF3 EA40	14×51	40	
22	42	ATS 48D47•	ATS 48D62•	GK3 EF65	65	LC1 D50	GK1 FK	DF2 FA50	DF3 FA50	22×58	50	
				NS80H MA	50	LC1 D50	GK1 FK	DF2 FA50	DF3 FA50	22×58	50	
30	57	ATS 48D62•	ATS 48D75	GK3 EF65	65	LC1 D65	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
				NS80H MA	80	LC1 D65	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
37	69	ATS 48D75	ATS 48D88•	GK3 EF80	80	LC1 D80	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
				NS80H MA	80	LC1 D80	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
45	81	ATS 48D88•	ATS48C11•	NS100• MA (2)	100	LC1 D115	GK1 FK	DF2 FA100	DF3 FA100	22×58	100	
55	100	ATS 48C11•	ATS 48C14•	NS160• MA (2)	150	LC1 D115	GK1 FK	DF2 FA125	DF4 FA125	22×58	125	
75	131	ATS 48C14•	ATS 48C17•	NS160• MA (2)	150	LC1 D150	GS1 L	DF2 GA1161	DF4 GA1161	0	160	
90	162	ATS 48C170	ATS 48C21•	NS2500 MA (2)	220	LC1 F185	GS1 N	DF2 HA1201	DF4 HA1201	1	200	
110	195	ATS 48C21•	ATS 48C25	NS2500 MA (2)	220	LC1 F225	GS1 N	DF2 HA1201	DF4 HA1201	1	200	
132	233	ATS 48C25•	ATS 48C32•	NS4000 MA (2)	320	LC1 F265	GS1 QQ	DF2 JA1251	DF4 JA1251	2	250	
160	285	ATS 48C32•	ATS 48C41•	NS4000 MA (2)	320	LC1 F330	GS1 QQ	DF2 JA1311	DF4 JA1311	2	315	
220	388	ATS 48C41•	ATS 48C48•	NS630॰ MA (2)	500	LC1 F400	GS1 S	DF2 KA1401	DF4 KA1401	3	400	
250	437	ATS 48C48•	ATS 48C59•	NS630॰ MA (2)	500	LC1 F500	GS1 S	DF2 KA1501	DF4 KA1501	3	500	
315	560	ATS 48C59•	ATS 48C66•	$\begin{aligned} & \text { NS630bo(2) } \\ & \text { Micrologic } 5.0 \end{aligned}$	630	LC1 F630	GS1 S	DF2 KA1631	DF4 KA1631	3	630	
				$\begin{aligned} & \text { C8010(2) } \\ & \text { STR35ME } \end{aligned}$	800	LC1 F630	GS1 S	DF2 KA1631	DF4 KA1631	3	630	
355	605	ATS 48C66•	ATS 48C79•	$\begin{aligned} & \text { NS800• (2) } \\ & \text { Micrologic } 5.0 \end{aligned}$	800	LC1 F800	GS1 V	DF2 LA1631	DF4 LA1631	4	630	
				$\begin{aligned} & \text { C8010(2) } \\ & \text { STR35ME } \end{aligned}$	800	LC1 F800	GS1 V	DF2 LA1631	DF4 LA1631	4	630	
400	675	ATS 48C79•	ATS 48M10•	$\begin{aligned} & \hline \text { NS800• (2) } \\ & \text { Micrologic } 5.0 \end{aligned}$	800	LC1 F800	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
				$\begin{aligned} & \text { C8010(2) } \\ & \text { STR35ME } \end{aligned}$	800	LC1 F800	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
500	855	ATS 48M10•	ATS 48M12•	$\begin{aligned} & \text { NS1000@(2) } \\ & \text { Micrologic } 5.0 \end{aligned}$	1000	LC1 BM33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000	
				$\begin{aligned} & \text { C1001•(2) } \\ & \text { STR35ME } \end{aligned}$	1000	LC1 BM33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000	
630	1045	ATS48M12•	-	$\begin{aligned} & \hline \text { NS1250• (2) } \\ & \text { Micrologic } 5.0 \end{aligned}$	1250	LC1 BP33	-	DF2 LA1251	DF4 LA1251	4	1250	
				$\begin{aligned} & \text { C12510(2) } \\ & \text { STR35ME } \end{aligned}$	1250	LC1 BP33	-	DF2 LA1251	DF4 LA1251	4	1250	

| | | |
| :--- | :--- | :--- | :--- |

Presentation: pages $1 / 30$ and $1 / 31$	Characteristics: pages $1 / 32$ to $1 / 35$	References: pages $1 / 40$ to $1 / 43$	Dimensions: pages $1 / 48$ to $1 / 51$	Schemes: pages $1 / 52$ to $1 / 57$

Altistart 48 soft start - soft stop units
$380 \mathrm{~V}, 400 \mathrm{~V}$ or 415 V power supply
Type 2 coordination

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$) circuit-breakers, contactors, fast-acting fuses, starters						
Combination: circuit-breaker, contactor, starter						
Motor kW	A	Starter (1) Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker Telemecanique Merlin Gerin	Rating A	Type of contactor
M1		A1		Q1		KM1, KM2, KM3
5.5	11	-	ATS 48D17•	GV2 L20	18	LC1 D40
				NS80H MA	12.5	LC1 D40
7.5	14.8	ATS 48D17•	ATS 48D22•	GV2 L20	18	LC1 D40
				NS80H MA	25	LC1 D40
11	21	ATS 48D22•	ATS 48D32@	GV2 L22	25	LC1 D40
				NS80H MA	25	LC1 D40
15	28.5	ATS 48D32•	ATS 48D38•	GV2 L32	32	LC1 D80
				NS80H MA	50	LC1 D80
18.5	35	ATS 48D38•	ATS 48D47•	NS80H MA	50	LC1 D80
22	42	ATS 48D470	ATS 48D62•	NS80H MA	50	LC1 D80
30	57	ATS 48D62•	ATS 48D75•	NS80H MA	80	LC1 D80
37	69	ATS 48D75	ATS 48D88•	NS80H MA	80	LC1 D80
45	81	ATS 48D88•	ATS 48C11•	NS100॰ MA (2)	100	LC1 D115
55	100	ATS 48C11•	ATS 48C14•	NS160•MA (2)	150	LC1 D115
75	131	ATS 48C14•	ATS 48C17•	NS160•MA (2)	150	LC1 D150
90	162	ATS 48C17•	ATS 48C21•	NS 250•MA (2)	220	LC1 F185
110	195	ATS 48C21•	ATS 48C250	NS 250• MA (2)	220	LC1 F225
132	233	ATS 48C25•	ATS 48C32•	NS400• MA (2)	320	LC1 F265
160	285	ATS 48C32•	ATS 48C41•	NS400•MA (2)	320	LC1 F330
220	388	ATS 48C41•	ATS 48C48•	NS630•MA (2)	500	LC1 F500
250	437	ATS 48C48•	ATS 48C59•	NS630• MA (2)	500	LC1 F500
315	560	ATS 48C59•	ATS 48C66•	NS630bL Micrologic 5.0	630	LC1 F630
355	605	ATS48C66•	ATS48C79	NS800L Micrologic 5.0	800	LC1 F800
400	675	ATS48C79•	ATS48M10•	NS800L Micrologic 5.0	800	LC1 F800
500	855	ATS48M10•	ATS48M12•	NS1000L Micrologic 5.0	1000	LC1 BM33
630	1045	ATS48M12•	-	NS1250• (2) Micrologic 5.0 (3)	1250	LC1 BP33

(1) Replace \bullet with Q or Y according to the starter voltage range.
(2) Replace \bullet with N, H or L, according to the breaking capacity (see the breaking capacity table on the previous page).
(3) Type 2 coordination is only possible if the fast-acting fuses remain in the motor supply circuit and are not bypassed at the end of starting.

Maximum prospective short-circuit current of the starter according to standard IEC 60947-4-2

Starter

ATS 48D17•

ATS 48D22 to ATS 48D47• 50
ATS 48D620 ATS 48C79
ATS 48D62• to ATS 48C79•
ATS 48M10• and ATS 48M12•

Fast-acting fuse (essential for type 2 coordination), starter combinations

Starter Reference	Fast-acting fuses with micro-contact			
	Unit reference (4)	Size	Rating A	$\begin{aligned} & \mathbf{I}^{2} \mathrm{t} \\ & \mathrm{KA}^{2} . \mathrm{s} \end{aligned}$
A1	Q3			
ATS 48D17•	DF3 ER50	14×51	50	2.3
ATS 48D22• and ATS 48D32•	DF3 FR80	22×58	80	5.6
ATS 48D380 and ATS 48D47e	DF3 FR100	22×58	100	12
ATS 48D62• and ATS 48D75•	DF4 00125	00	125	45
ATS 48D880 and ATS 48C11•	DF4 00160	00	160	82
ATS 48C14• and ATS 48C17•	DF4 30400	30	400	120
ATS 48C21• to ATS 48C32•	DF4 31700	31	700	490
ATS 48D75•	DF4 33800	33	800	490
ATS 48C48• and ATS 48C59•	DF4 331000	33	1000	900
ATS 48C66•	DF4 2331400	2×33	1400	1200
ATS 48C79•	DF4 441600	44	1600	1600
ATS 48M10• and ATS 48M12•	DF4 442200	44	2200	4100

(4) DF3 ER, DF3 FR: sold in lots of 10.

DF4: sold in lots of 1 .

Altistart 48 soft start - soft stop units
440 V power supply
Type 1 coordination

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$)											
Combine either circuit-breaker (light blue columns), contactor, starter, or switches/fuses (dark blue columns), contactor, starter											
Motor		Starter Class 10 Standard applications	Class 20 Severe applications	Type of circuit-b Telemecanique Merlin Gerin	eaker Rating A	Type of contactor	Type of switch or switch disconnector (bare unit)	Am fuses Unit referenc Without striker	ce (2) With striker	Size	Rating A
M1		A1		Q1		KM1, KM2, KM3					
5.5	10.4	-	ATS 48D17Y	NS8OH MA		LC1 D12	LS1 D32	DF2 CA16	-	10×38	16
7.5	13.7	ATS 48D17Y	ATS 48D22Y	NS8OH MA		LC1 D18	LS1 D32	DF2 CA16	-	10×38	16
11	20.1	ATS 48D22Y	ATS 48D32Y	NS8OH MA	25	LC1 D25	GK1 EK	DF2 EA25	DF3 EA25	14×51	25
15	26.5	ATS 48D32Y	ATS 48D38Y	$\begin{aligned} & \text { NS100• MA (1) } 50 \\ & \text { NS80H MA } \end{aligned}$		LC1 D32	GK1 EK	DF2 EA32	DF3 EA32	14×51	32
18.5	32.8	ATS 48D38Y	ATS 48D47Y	$\begin{aligned} & \text { NS100॰ MA (1) } \\ & \text { NS80H MA } \end{aligned}$	50	LC1 D40	GK1 EK	DF2 EA40	DF3 EA40	14×51	40
22	39	ATS 48D47Y	ATS 48D62Y	$\begin{aligned} & \text { NS100• MA (1) } \\ & \text { NS80H MA } \end{aligned}$	50	LC1 D40	GK1 FK	DF2 FA50	DF3 FA50	22×58	50
30	52	ATS 48D62Y	ATS 48D75Y	NS80H MA	80	LC1 D65	GK1 FK	DF2 FA80	DF3 FA80	22×58	80
37	64	ATS 48D75Y	ATS 48D88Y	NS80H MA	80	LC1 D65	GK1 FK	DF2 FA80	DF3 FA80	22×58	80
45	76	ATS 48D88Y	ATS 48C11Y	NS1000 MA (1)	100	LC1 D115	GK1 FK	DF2 FA100	DF3 FA100	22×58	100
55	90	ATS 48C11Y	ATS 48C14Y	NS100• MA (1)	100	LC1 D115	GS1 L	DF2 GA1121	DF4 GA1121	0	125
75	125	ATS 48C14Y	ATS 48C17Y	NS160•MA (1)	150	LC1 D150	GS1 L	DF2 GA1161	DF4 GA1161	1	160
90	150	ATS 48C17Y	ATS 48C21Y	NS2500 MA (1)	220	LC1 F185	GS1 N	DF2 HA1201	DF4 HA1201	1	200
110	178	ATS 48C21Y	ATS 48C25Y	NS250@ MA (1)	220	LC1 F225	GS1 N	DF2 HA1251	DF4 HA1251	1	250
132	215	ATS 48C25Y	ATS 48C32Y	NS2500 MA (1)	220	LC1 F265	GS1 QQ	DF2 JA1311	DF4 JA1311	2	315
160	256	ATS 48C32Y	ATS 48C41Y	NS4000 MA (1)	320	LC1 F265	GS1 QQ	DF2 JA1401	DF4 JA1401	2	315
220	353	ATS 48C41Y	ATS 48C48Y	NS630॰ MA (1)	500	LC1 F400	GS1 S	DF2 KA1501	DF4 KA1501	3	500
250	401	ATS 48C48Y	ATS 48C59Y	$\begin{aligned} & \hline \text { NS630॰ MA (1) } \\ & \hline \text { NS630b• (1) } \\ & \text { Micrologic } 5.0 \end{aligned}$	500	LC1 F400	GS1 S	DF2 KA1501	DF4 KA1501	3	500
355	549	ATS 48C59Y	ATS 48C66Y		630	LC1 F630	GS1 V	DF2 LA1801	DF4 LA1801	4	800
400	611	ATS 48C66Y	ATS 48C79Y	NS630b (1) Micrologic 5.0	630	LC1 F630	GS1 V	DF2 LA1801	DF4 LA1801	4	800
500	780	ATS 48C79Y	ATS 48M10Y	NS800 (1) Micrologic 5.0 800		LC1 BM33	GS1 V	DF2 LA1801	DF4 LA1801	4	800
				$\begin{aligned} & \text { C8010(1) } \\ & \text { STR35MME } \end{aligned}$	800	LC1 BM33	GS1 V	DF2 LA1801	DF4 LA1801	4	800
630	965	ATS 48M10Y	ATS 48M12Y	$\begin{aligned} & \hline \text { NS1000• (1) } \\ & \text { Micrologic } 5.0 \end{aligned}$	1000	LC1 BP33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000
				$\begin{aligned} & \text { C1001L } \\ & \text { STR35ME } \end{aligned}$	1000	LC1 BP33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000
710	1075	ATS 48M12Y	-	$\begin{aligned} & \hline \text { NS1250• (1) } \\ & \text { Micrologic } 5.0 \end{aligned}$	1250	LC1 BP33	-	DF2 LA1251	-	4	1250
				$\begin{aligned} & \text { C12510(1) } \\ & \text { STR35ME } \end{aligned}$	1250	LC1 BP33	-	DF2 LA1251	-	4	1250

	(1) Replace • with N, H or L, according to the breaking capacity (see table below). (2) DF2 CA, DF•EA, DF•FA: sold in lots of 20. $D F \bullet G A, D F \bullet K A$: sold in lots of 3 . $D F \bullet L A$: sold in lots of 1.		
Maximum prospective short-circuit current of the starter according to standard IEC 60947-4-2	Breaking capacity of circuit-breakers according to standard IEC 60947-2		
	440 V	Icu (kA)	
Starter Iq (kA)	GV2 L20, GV2 L22, GV2 L32	20	
ATS 48D17Y to ATS 48C32Y 50	GK3 EF40	30	
ATS 48C41Y to ATS 48M12Y 70	GK3 EF65, GK3 EF80	25	
	NS80	65	
	440 V	Icu (kA)	
		\mathbf{N} H	L
	NS100	2565	130
	NS160, NS250	3565	130
	NS400, NS630	4265	130
	NS800, NS1000	5065	130
	NS1250	5065	-
	C801, C1001	4265	150
	C1251	4265	-

Presentation: pages $1 / 30$ and $1 / 31$	Characteristics: pages $1 / 32$ to $1 / 35$	References: pages $1 / 40$ to $1 / 43$	Dimensions: pages $1 / 48$ to $1 / 51$	Schemes: pages $1 / 52$ to $1 / 57$
$1 / 62$		(连 Telemecanique		

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$) circuit-breakers, contactors, fast-acting fuses, starters

Combination: circuit-breaker, contactor, starter						
Motor kW	A	Starter Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker Telemecanique Merlin Gerin	Rating A	Type of contactor
M1		A1		Q1		KM1, KM2, KM3
5.5	10.4	-	ATS 48D17Y	NS80H-MA	12.5	LC1 D40
				NS100•MA (1)	12.5	LC1 D80
7.5	13.7	ATS 48D17Y	ATS 48D22Y	NS80H-MA	25	LC1 D40
				NS100•MA (1)	25	LC1 D80
11	20.1	ATS 48D22Y	ATS 48D32Y	NS80H-MA	25	LC1 D40
				NS100•MA (1)	25	LC1 D80
15	26.5	ATS 48D32Y	ATS 48D38Y	NS100॰ MA (1) NS80H-MA	50	LC1 D80
18.5	32.8	ATS 48D38Y	ATS 48D47Y	NS100॰ MA (1) NS80H MA	50	LC1 D80
$\underline{22}$	39	ATS 48D47Y	ATS 48D62Y	NS100॰ MA (1) NS80H MA	50	LC1 D80
30	52	ATS 48D62Y	ATS 48D75Y	NS100•MA (1)	100	LC1 D80
				NS80H MA	80	LC1 D80
37	64	ATS 48D75Y	ATS 48D88Y	NS100•MA (1)	100	LC1 D80
				NS80H MA	80	LC1 D80
45	76	ATS 48D88Y	ATS 48C11Y	NS100॰ MA (1)	100	LC1 D115
55	90	ATS 48C11Y	ATS 48C14Y	NS100॰ MA (1)	100	LC1 D115
75	125	ATS 48C14Y	ATS 48C17Y	NS160@MA (1)	150	LC1 D150
90	150	ATS 48C17Y	ATS 48C21Y	NS1600 MA (1)	150	LC1 D150
110	178	ATS 48C21Y	ATS 48C25Y	NS250•MA (1)	220	LC1 F185
132	215	ATS 48C25Y	ATS 48C32Y	NS400• MA (1)	320	LC1 F265
160	256	ATS 48C32Y	ATS 48C41Y	NS400•MA (1)	320	LC1 F265
220	353	ATS 48C41Y	ATS 48C48Y	NS630@ MA (1)	500	LC1 F400
250	401	ATS 48C48Y	ATS 48C59Y	NS630॰ MA (1)	500	LC1 F500
355	549	ATS 48C59Y	ATS 48C66Y	NS630bL Micrologic 5.0	630	LC1 F630
400	611	ATS 48C66Y	ATS 48C79Y	NS800L Micrologic 5.0	800	LC1 F800
500	780	ATS 48C79Y	ATS 48M10Y	NS800L Micrologic 5.0	800	LC1 F800
630	965	ATS 48M10Y	ATS 48M12Y	NS1000L Micrologic 5.0	1000	LC1 BP33
710	1075	ATS 48M12Y	-	NS1250 (1) Micrologic 5.0 (2)	1250	LC1 BP33

(1) Replace • with N, H or L, according to the breaking capacity (see the breaking capacity table on the previous page).
(2) Type 2 coordination is only possible if the fast-acting fuses remain in the motor supply circuit and are not bypassed at the end of starting.

Maximum prospective short-circuit current of the starter	
according to standard IEC 60947-4-2	
Starter	Iq (kA)
ATS 48D17Y	50
ATS 48D22Y to ATS 48D47Y	20
ATS 48D62Y and ATS 48D75Y	50
ATS 48D88Y ATS 48C41Y	40
ATS 48C11Y to ATS 48C32Y	50
ATS 48C48Y to ATS 48C79Y	50
ATS 48M10Y and ATS 48M12Y	85

Fast-acting fuse (essential for type 2 coordination), starter combinations

Starter Reference	Fast-acting fuses with micro-contact			
	Unit reference (3)	Size	Rating A	$\begin{aligned} & I^{2} t \\ & k A^{2} . s \end{aligned}$
A1	Q3			
ATS 48D17Y	DF3 ER50	14×51	50	2.3
ATS 48D22Y and ATS 48D32Y	DF3 FR80	22×58	80	5.6
ATS 48D38Y and ATS 48D47Y	DF3 FR100	22×58	100	12
ATS 48D62Y and ATS 48D75Y	DF4 00125	00	125	45
ATS 48D88Y and ATS 48C11Y	DF4 00160	00	160	82
ATS 48C14Y and ATS 48C17Y	DF4 30400	30	400	120
ATS 48C21Y to ATS 48C32Y	DF4 31700	31	700	490
ATS 48C41Y	DF4 33800	33	800	490
ATS 48C48Y and ATS 48C59Y	DF4 331000	33	1000	900
ATS 48C66Y	DF4 2331400	2×33	1400	1200
ATS 48C79Y	DF4 441600	44	1600	1600
ATS 48M10Y and ATS 48M12Y	DF4 442200	44	2200	4100

(3) DF3 ER, DF3 FR: sold in lots of 10 DF4: sold in lots of 1 .

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 40$ to $1 / 43$	pages 1/48 to 1/51

Altistart 48 soft start - soft stop units
500 V power supply
Type 1 coordination

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$)												
Combine either circuit-breaker (light blue columns), contactor, starter, or switches/fuses (dark blue columns), contactor, starter												
Motor		Starter Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker		Type of contactor	Type of switch or switch disconnector (bare unit)	Am fuses Unit reference (2)		Size	Rating A	
		Telemecanique Merlin Gerin		Rating A								
		Without striker			With striker							
M1			A1		Q1		KM1, KM2, KM3		DF2 CA16			16
7.5	12	-	ATS 48D17Y	$\begin{aligned} & \text { NS100॰ MA (1) } \\ & \text { NS80H MA } \end{aligned}$	12.5	LC1 D12	LS1 D32	-				
9	14	ATS 48D17Y	ATS 48D22Y	$\begin{aligned} & \text { NS100॰ MA (1) } \\ & \text { NS80H MA } \end{aligned}$	25	LC1 D18	LS1 D32	DF2 CA16	-	10×38	16	
11	18.4	ATS 48D22Y	ATS 48D32Y	$\begin{aligned} & \text { NS100॰ MA (1) } \\ & \text { NS80H MA } \end{aligned}$	25	LC1 D25	GK1 EK	DF2 EA25	DF3 EA25	14×51	25	
18.5	28.5	ATS 48D32Y	ATS 48D38Y	$\begin{aligned} & \text { NS100•MA (1) } \\ & \text { NS80H MA } \end{aligned}$	50	LC1 D32	GK1 EK	DF2 EA32	DF3 EA32	14×51	32	
22	33	ATS 48D38Y	ATS 48D47Y	$\begin{aligned} & \text { NS100•MA (1) } \\ & \text { NS80H MA } \end{aligned}$	50	LC1 D40	GK1 EK	DF2 EA40	DF3 EA40	14×51	40	
30	45	ATS 48D47Y	ATS 48D62Y	$\begin{aligned} & \text { NS100॰MA (1) } \\ & \text { NS80H MA } \end{aligned}$	50	LC1 D50	GK1 FK	DF2 FA50	DF3 FA50	22×58	50	
37	55	ATS 48D62Y	ATS 48D75Y	NS100॰ MA (1)	100	LC1 D65	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
45	65	ATS 48D75Y	ATS 48D88Y	NS100॰ MA (1)	100	LC1 D80	GK1 FK	DF2 FA80	DF3 FA80	22×58	80	
55	80	ATS 48D88Y	ATS 48C11Y	NS100॰ MA (1)	100	LC1 D80	GK1 FK	DF2 FA100	DF3 FA100	22×58	100	
75	105	ATS 48C11Y	ATS 48C14Y	NS160॰ MA (1)	150	LC1 D115	GS1 L	DF2 GA1121	DF4 GA1121	0	125	
90	130	ATS 48C14Y	ATS 48C17Y	NS1600 MA (1)	150	LC1 D150	GS1 L	DF2 GA1161	DF4 GA1161	0	160	
110	156	ATS 48C17Y	ATS 48C21Y	NS250• MA (1)	220	LC1 F185	GS1 N	DF2 HA1201	DF4 HA1201	1	200	
132	207	ATS 48C21Y	ATS 48C25Y	NS250• MA (1)	220	LC1 F265	GS1 N	DF2 HA1251	DF4 HA1251	1	250	
160	257	ATS 48C25Y	ATS 48C32Y	NS4000 MA (1)	320	LC1 F265	GS1 QQ	DF2 JA1311	DF4 JA1311	2	315	
220	310	ATS 48C32Y	ATS 48C41Y	NS630॰ MA (1)	500	LC1 F400	GS1 QQ	DF2 JA1401	DF4 JA1401	2	400	
250	360	ATS 48C41Y	ATS 48C48Y	NS630॰ MA (1)	500	LC1 F400	GS1 S	DF2 KA1501	DF4 KA1501	3	500	
315	460	ATS 48C48Y	ATS 48C59Y	NS630॰ MA (1)	500	LC1 F500	GS1 S	DF2 KA1631	DF4 KA1631	3	630	
400	540	ATS 48C59Y	ATS 48C66Y	NS630b• (1) Micrologic 5.0	630	LC1 F630	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
450	630	ATS 48C66Y	ATS 48C79Y	NS630b• (1) Micrologic 5.0	630	LC1 F800	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
500	680	ATS 48C79Y	ATS 48M10Y	NS800•MA (1) Micrologic 5.0	800	LC1 BL33	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
				$\begin{aligned} & \text { C10010 (1) } \\ & \text { STR35 ME } \end{aligned}$	1000	LC1 BL33	GS1 V	DF2 LA1801	DF4 LA1801	4	800	
630	850	ATS 48M10Y	ATS 48M12Y	$\begin{aligned} & \hline \text { NS1000• (1) } \\ & \text { Micrologic } 5.0 \end{aligned}$	1000	LC1 BP33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000	
				$\begin{aligned} & \text { C1001•(1) } \\ & \text { STR35 ME } \end{aligned}$	1000	LC1 BP33	GS1 V	DF2 LA1101	DF4 LA1101	4	1000	
800	1100	ATS 48M12Y	-	NS1250• (1) Micrologic 5.0	1250	LC1 BP33	-	DF2 LA1251	-	4	1250	
				$\begin{aligned} & \text { C12510 (1) } \\ & \text { STR35 ME } \end{aligned}$	1250	LC1 BP33	-	DF2 LA1251	-	4	1250	

(1) Replace \bullet with N, H or L, according to the breaking capacity (see table below).
(2) DF2 CA, DF•EA, DF• FA: sold in lots of 20.
$D F \bullet G A, D F \bullet K A$: sold in lots of 3.
DF•LA: sold in lots of 1
$\left.\begin{array}{llll}\hline \text { Breaking capacity of circuit-breakers according to standard IEC 60947-2 } \\ \text { Icu (kA) }\end{array}\right]$

Maximum prospective short-circuit current of the starter according to standard
IEC 60947-4-2
Starter Iq (kA)

ATS 48D17Y to ATS 48C32Y 50
ATS 48C41Y to ATS 48M12Y 70

Presentation: pages $1 / 30$ and $1 / 31$	Characteristics: pages $1 / 32$ to $1 / 35$	References: pages $1 / 40$ to $1 / 43$	Dimensions: pages $1 / 48$ to $1 / 51$	Schemes: pages $1 / 52$ to $1 / 57$
$\mathbf{1 / 6 4}$		©	Telemecanique	

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$) circuit-breakers, contactors, fast-acting fuses, starters

Combination: circuit-breaker, contactor, starter						
Motor kW	A	Starter Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker Telemecanique Merlin Gerin	Rating A	Type of contactor
M1		A1		Q1		KM1, KM2, KM3
7.5	12	-	ATS 48D17Y	NS80H MA	12.5	LC1 D40
				NS100• MA (1)	12.5	LC1 D80
9	14	ATS 48D17Y	ATS 48D22Y	NS80H MA	25	LC1 D40
				NS100•MA (1)	25	LC1 D80
11	18.4	ATS 48D22Y	ATS 48D32Y	NS80H MA	25	LC1 D40
				NS100•MA (1)	25	LC1 D80
18.5	28.5	ATS 48D32Y		NS100॰ MA (1) NS80H MA	50	LC1 D80
22	33	ATS 48D38Y	ATS 48D47Y	NS100॰ MA (1) NS80H MA	50	LC1 D80
30	45	ATS 48D47Y	ATS 48D62Y	NS100॰ MA (1) NS80H MA	50	LC1 D80
37	55	ATS 48D62Y	ATS 48D75Y	NS100॰ MA (1)	100	LC1 D80
45	65	ATS 48D75Y	ATS 48D88Y	NS100॰ MA (1)	100	LC1 D80
55	80	ATS 48D88Y	ATS 48C11Y	NS100॰ MA (1)	100	LC1 D115
75	105	ATS 48C11Y	ATS 48C14Y	NS160॰ MA (1)	150	LC1 D115
90	130	ATS 48C14Y	ATS 48C17Y	NS160@ MA (1)	150	LC1 D150
110	156	ATS 48C17Y	ATS 48C21Y	NS250•MA (1)	220	LC1 F185
132	207	ATS 48C21 Y	ATS 48C25Y	NS250•MA (1)	220	LC1 F265
160	257	ATS 48C25Y	ATS 48C32Y	NS400@ MA (1)	320	LC1 F400
220	310	ATS 48C32Y	ATS 48C41Y	NS400• MA (1)	320	LC1 F400
250	360	ATS 48C41Y	ATS 48C48Y	NS630•MA (1)	500	LC1 F500
315	460	ATS 48C48Y	ATS 48C59Y	NS630• MA (1)	500	LC1 F500
400	540	ATS 48C59Y	ATS 48C66Y	NS630bL Micrologic 5.0	630	LC1 F630
450	630	ATS 48C66Y	ATS 48C79Y	NS630bL Micrologic 5.0	630	LC1 F800
500	680	ATS 48C79Y	ATS 48M10Y	NS800L Micrologic 5.0	800	LC1 BL33
630	850	ATS 48M10Y	ATS 48M12Y	NS1000L Micrologic 5.0	1000	LC1 BP33
800	1100	ATS 48M12Y	-	NS1250 (1) Micrologic 5.0 (2)	1250	LC1 BP33

(1) Replace • with N, H or L, according to the breaking capacity (see the breaking capacity table on the previous page).
(2) Type 2 coordination is only possible if the fast-acting fuses remain in the motor supply circuit and are not bypassed at the end of starting.
Fast-acting fuse (essential for type 2 coordination), starter combinations

Starter Reference	Fast-acting fuses with micro-contact			
	Unit reference (3)	Size	Rating A	$\begin{aligned} & I^{2} t \\ & k A^{2} . s \end{aligned}$
A1	Q3			
ATS 48D17Y	DF3 ER50	14×51	50	2.3
ATS 48D22Y and ATS 48D32Y	DF3 FR80	22×58	80	5.6
ATS 48D38Y and ATS 48D47Y	DF3 FR100	22×58	100	12
ATS 48D62Y and ATS 48D75Y	DF4 00125	00	125	45
ATS 48D88Y and ATS 48C11Y	DF4 00160	00	160	82
ATS 48C14Y and ATS 48C17Y	DF4 30400	30	400	120
ATS 48C21Y to ATS 48C32Y	DF4 31700	31	700	490
ATS 48C41Y	DF4 33800	33	800	490
ATS 48C48Y and ATS 48C59Y	DF4 331000	33	1000	900
ATS 48C66Y	DF4 2331400	2×33	1400	1200
ATS 48C79Y	DF4 441600	44	1600	1600
ATS 48M10Y and ATS 48M12Y	DF4 442200	44	2200	4100

Maximum prospective short-circuit current of the starter according to standard
IEC 60947-4-2

Starter	Iq (kA)
ATS 48D17Y	50
ATS 48D22Y to ATS 48D47Y	20
ATS 48D62Y and ATS 48D75Y	50
ATS 48D88Y	40
ATS 48C11Y to ATS 48C32Y	50
ATS 48C41Y	40
ATS 48C48Y to ATS 48C79Y	50
ATS 48M10Y and ATS 48M12Y	85

(3) DF3 ER, DF3 FR: sold in lots of 10 DF4: sold in lots of 1 .

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 40$ to $1 / 43$	pages $1 / 48$ to 1/51

Altistart 48 soft start - soft stop units
690 V power supply
Type 1 coordination

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$)											
Combine either circuit-breaker (light blue columns), contactor, starter, or switches/fuses (dark blue columns), contactor, starter											
Motor		Starter		Type of circuit-breaker		Type of contactor	Type of switch or switch disconnector (bare unit)	Am fuses Unit reference (2)		Size	Rating
		Class 10	Class 20	Telemecanique	Rating						
		Standard applications	Severe applications	Merlin Gerin				Without striker	With striker		
M1		A1		Q1		KM1, KM2, KM3					16
11	12.1	-	ATS 48D17Y	$\begin{aligned} & \hline \text { NS100॰ MA (1) } \\ & \text { NS80H MA } \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	LC1 D18	GK1 FK	DF2 FA16	DF3 FA16		
15	16.5	ATS 48D17Y	ATS 48D22Y	$\text { NS } 100 \bullet \text { MA (1) }$ NS8OH MA	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	LC1 D25	GK1 FK	DF2 FA20	DF3 FA20	22×58	20
	20.2	ATS 48D22Y	ATS 48D32Y	NS100• MA (1) NS80H MA	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	LC1 D32	GK1 FK	DF2 FA25	DF3 FA25	22×58	25
22	24.2	ATS 48D32Y	ATS 48D38Y	NS100• MA (1) NS80H MA	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	LC1 D40	GK1 FK	DF2 FA32	DF3 FA32	22×58	32
30	33	ATS 48D38Y	ATS 48D47Y	$\text { NS } 1000 \text { MA (1) }$ NS8OH MA	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	LC1 D40	GK1 FK	DF2 FA40	DF3 FA40	22×58	40
37	40	ATS 48D47Y	ATS 48D62Y	$\begin{aligned} & \text { NS100॰ MA (1) } \\ & \text { NS80H MA } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	LC1 D65	GK1 FK	DF2 FA50	DF3 FA50	22×58	50
	49	ATS 48D62Y	ATS 48D75Y	NS1000 MA (1)	100	LC1 D80	-	-	-	-	-
	58	ATS 48D75Y	ATS 48D88Y	NS1000 MA (1)	100	LC1D-115	-	-	-	-	-
	75.5	ATS 48D88Y	ATS 48C11Y	NS100॰ MA (1)	100	LC1D-115	-	-	-	-	-
90	94	ATS 48C11Y	ATS 48C14Y	NS1600 MA (1)	150	LC1D-150	-	-	-	-	-
	113	ATS 48C14Y	ATS 48C17Y	NS1600 MA (1)	150	LC1D-150	-	-	-	-	-
	165	ATS 48C17Y	ATS 48C21Y	NS250॰ MA (1)	220	LC1F-265	-	-	-	-	-
	203	ATS 48C21Y	ATS 48C25Y	NS400॰ MA (1)	320	LC1F-330	-	-	-	-	-
	253	ATS 48C25Y	ATS 48C32Y	NS400॰ MA (1)	320	LC1F-400	-	-	-	-	-
315	321	ATS 48C32Y	ATS 48C41Y	NS630^MA (1)	500	LC1F-500	-	-	-	-	-
	390	ATS 48C41Y	ATS 48C48Y	NS630® MA (1)	500	LC1 F630	-	-	-	-	-
500	490	ATS 48C48Y	ATS 48C59Y	NS630b• (1) Micrologic 5.0	630	LC1 BL33	-	-	-	-	-
				C801• (1) STR35 ME	800	LC1 BL33	-	-	-	-	-
560	549	ATS 48C59Y	ATS 48C66Y	NS630b• (1) Micrologic 5.0	630	LC1 BL33	-	-	-	-	-
				$\begin{aligned} & \text { C8010(1) (1) } \\ & \text { STR35 ME } \end{aligned}$	800	LC1 BL33	-	-	-	-	-
630	605	ATS 48C66Y	ATS 48C79Y	NS800• (1) Micrologic 5.0	800	LC1 BP33	-	-	-	-	-
				$\begin{aligned} & \text { C8010(1) (1) } \\ & \text { STR35 ME } \end{aligned}$	800	LC1 BP33	-	-	-	-	-
	694	ATS 48C79Y	ATS 48M10Y	NS800• (1) Micrologic 5.0	800	LC1 BP33	-	-	-	-	-
				$\begin{aligned} & \text { C8010(1) (1) } \\ & \text { STR355 } \end{aligned}$	800	LC1 BP33	-	-	-	-	-
900	880	ATS 48M10Y	ATS 48M12Y	NS1000• (1) Micrologic 5.0	1000	LC1 BR33	-	-	-	-	-
				$\begin{aligned} & \text { C1001L } \\ & \text { STR35 ME } \end{aligned}$	1000	LC1 BR33	-	-	-	-	-
	1000	ATS 48M12Y	-	NS1250• (1) Micrologic 5.0	1250	LC1 BR33	-	-	-	-	-
				$\begin{aligned} & \begin{array}{l} \text { C12510 (1) } \\ \text { STR35 ME } \end{array} \end{aligned}$	1250	LC1 BR33	-	-	-	-	-
					(1) Replace • with N, H or L, according to the breaking capacity (see table below). (2) DF•FA: sold in lots of 10 .						
Maximum prospective short-circuit current of the starter according to standard IEC 60947-4-2					Breaking capacity of circuit-breakers according to standard IEC 60947-2						
Starter				Iq (kA)	690 V				cu (kA)		
$\frac{\text { ATS 48D17Y and ATS 48C32Y }}{\text { ATS 48C41Y to ATS 48M12Y }}$				50	$\frac{\text { GV2 L20, GV2 L22, GV2 L32 }}{\text { GK3 EF40, GK3 EF65, GK3 EF80, NS80 }}$				4		
				70							
					690 V				(kA)		
								N	H		
					NS100			8	10	5	
					NS160,	S250		8	10	20	
					NS400			10	20	75	
					NS630			10	20	35	
					NS800,	S1000		30	42	5	
					NS1250			30	42		
					C801, C			25	40	0	
					C1251			25	40		
$\begin{aligned} & \text { Preser } \\ & \text { pages } \end{aligned}$	$\begin{aligned} & \text { intation } \\ & 1 / 30= \end{aligned}$	and $1 / 31$	$\begin{aligned} & \text { Characteris } \\ & \text { pages } 1 / 32 \end{aligned}$	$01 / 35$	$\begin{aligned} & \hline \text { Referenc } \\ & \text { pages 1/ } \end{aligned}$	$0 \text { to } 1 / 43$	$\begin{aligned} & \text { Dimensions } \\ & \text { pages } 1 / 48 \end{aligned}$	$\text { to } 1 / 51$	$\begin{aligned} & \text { Schen } \\ & \text { pages } \end{aligned}$	$\begin{aligned} & \text { S: } 152 \text { to } 1 / 57 \\ & \hline \end{aligned}$	
1/66					Telemec	nique					

Components for use together in accordance with standards IEC 60947-4-1 and IEC 60947-4-2 (see schemes on pages $1 / 52$ to $1 / 57$) circuit-breakers, contactors, fast-acting fuses, starters
Combination: circuit-breaker, contactor, starter

Motor kW	A	Starter Class 10 Standard applications	Class 20 Severe applications	Type of circuit-breaker Telemecanique Merlin Gerin	Rating A	Type of contactor
M1		A1		Q1		KM1, KM2, KM3
11	12.1	-	ATS 48D17Y	NS1000 MA (1)	12.5	LC1 D80
15	16.5	ATS 48D17Y	ATS 48D22Y	NS1000 MA (1)	25	LC1 D80
18.5	20.2	ATS 48D22Y	ATS 48D32Y	NS100@ MA (1)	50	LC1 D80
$\underline{22}$	24.2	ATS 48D32Y	ATS 48D38Y	NS1000 MA (1)	50	LC1 D80
30	33	ATS 48D38Y	ATS 48D47Y	NS1000 MA (1)	50	LC1 D80
37	40	ATS 48D47Y	ATS 48D62Y	NS100•MA (1)	50	LC1 D80
45	49	ATS 48D62Y	ATS 48D75Y	NS1000 MA (1)	100	LC1 D115
55	58	ATS 48D75Y	ATS 48D88Y	NS1000 MA (1)	100	LC1 D115
75	75.5	ATS 48D88Y	ATS 48C11Y	NS1000 MA (1)	100	LC1 D115
90	94	ATS 48C11Y	ATS 48C14Y	NS4000 MA (1)	320	LC1 F265
110	113	ATS 48C14Y	ATS 48C17Y	NS4000 MA (1)	320	LC1 F265
160	165	ATS 48C17Y	ATS 48C21Y	NS 400• MA (1)	320	LC1 F265
200	203	ATS 48C21Y	ATS 48C25Y	NS4000 MA (1)	320	LC1 F400
250	253	ATS 48C25Y	ATS 48C32Y	NS4000 MA (1)	320	LC1 F500
315	321	ATS 48C32Y	ATS 48C41Y	NS630@ MA (1)	500	LC1 F500
400	390	ATS 48C41Y	ATS 48C48Y	NS630॰ MA (1)	500	LC1 F630
500	490	ATS 48C48Y	ATS 48C59Y	NS630bL Micrologic 5.0	630	LC1 BL33
560	549	ATS 48C59Y	ATS 48C66Y	NS630bL Micrologic 5.0	630	LC1 BL33
630	605	ATS 48C66Y	ATS 48C79Y	NS800L Micrologic 5.0	800	LC1 BP33
710	694	ATS 48C79Y	ATS 48M10Y	NS800L Micrologic 5.0	800	LC1 BP33
900	880	ATS 48M10Y	ATS 48M12Y	NS1000L Micrologic 5.0	1000	LC1 BR33
950	1000	ATS 48M12Y	-	NS1250 © (1) Micrologic 5.0 (2)	1250	LC1 BR33

(1) Replace \bullet with N, H or L, according to the breaking capacity (see the breaking capacity table on the previous page).
(2) Type 2 coordination is only possible if the fast-acting fuses remain in the motor supply circuit and are not bypassed at the end of starting.
Fast-acting fuse (essential for type 2 coordination), starter combinations

Starter reference	Fast-acting fuses with micro-contact			
	Unit reference (3)	Size	Calibre A	$\begin{aligned} & l^{12} t \\ & k A^{2} . s \end{aligned}$
A1	Q3			
ATS 48D17Y	DF3 ER50	14×51	50	2.3
ATS 48D22Yand ATS 48D32Y	DF3 FR80	22×58	80	5.6
ATS 48D38Y and ATS 48D47Y	DF3 FR100	22×58	100	12
DF3 ER50	DF4 00125	00	125	45
ATS 48D88Y and ATS 48C11Y	DF4 00160	00	160	82
ATS 48C14Y and ATS 48C17Y	DF4 30400	30	400	120
ATS 48C21Y to ATS 48C32Y	DF4 31700	31	700	490
ATS 48C41Y	DF4 33800	33	800	490
ATS 48C48Y and ATS 48C59Y	DF4 331000	33	1000	900
ATS 48D17Y	DF4 2331400	2×33	1400	1200
ATS 48C79Y	DF4 441600	44	1600	1600
ATS 48M10Y and ATS 48M12Y	DF4 442200	44	2200	4100

Maximum prospective short-circuit current of the starter according to standard
IEC 60947-4-2

Starter	Iq (kA)
ATS 48D17Y	50
ATS 48M10Y and ATS 48M12Y	15
ATS 48M10Y and ATS 48M12Y	20
ATS 48D62Y and ATS 48D75Y	50
ATS 48D88Y	20
ATS 48C11Y to ATS 48C32Y	50
ATS 48C41Y	25
ATS 48C48Y to ATS 48C79Y	50
ATS 48M10Y and ATS 48M12Y	85

(3) DF3 ER, DF3 FR: sold in lots of 10

DF4: sold in lots of 1 .

Presentation:	Characteristics:	References:	Dimensions:
pages $1 / 30$ and $1 / 31$	pages $1 / 32$ to $1 / 35$	pages $1 / 40$ to $1 / 43$	pages $1 / 48$ to 1/51

Summary of functions	See pages
Starter factory setting	$1 / 68$
Adjustment functions	See pages
Nominal motor current (maximum permanent current)	$1 / 69$
Limiting current	$1 / 69$
Acceleration ramp time	$1 / 69$
nitial starting torque	$1 / 69$
Selection of the type of stop	$1 / 69$
Protection functions	See pages
Calculated motor thermal protection	$1 / 70$
Reset motor thermal state	$1 / 70$
Motor thermal protection with PTC probes	$1 / 70$
Starter thermal protection	$1 / 70$
Motor underload protection	$1 / 71$
Excessive acceleration time protection	$1 / 71$
Current overload protection	$1 / 71$
Protection against line phase inversion	$1 / 71$
Time before restarting	$1 / 71$
Motor phase loss detection	$1 / 71$
Automatic restart	$1 / 71$
Advanced adjustment functions	See pages
Torque limit	$1 / 72$
Voltage boost level	$1 / 72$
Connecting the starter to the motor delta terminals	$1 / 7 / 75$
Test on low power motor	$1 / 72$
Activation of the cascade function	$1 / 72$
Line frequency	$1 / 74$
Reset kWh or the operating time	$1 / 72$
Return to factory settings	$1 / 72$
2 nd motor adjustment functions	$1 / 72$
Communication functions	$1 / 72$
PowerSuite advanced dialogue solutions	$1 / 73$
Application monitoring functions	$1 / 73$
Logic input application functions	$1 / 73$
2 -wire/3-wire control	$1 / 73$
Freewheel stop	See pages
External fault	$1 / 74$
Motor prehatogue output application functions of the cascade function	$1 / 74$
Force to local control mode	$1 / 74$
nehibit all protection	$1 / 74$
	$1 / 74$

Starter factory setting

The starter is supplied ready for use in most applications. The main functions enabled and the default function values are as follows:

- nominal motor current (depends on the starter rating),
- limiting current: 400%,
- acceleration ramp time: 15 s ,
- initial starting torque: 20\%,
- selection of the type of stop: freewheel stop,
- motor thermal protection: class 10,
- time before restarting: 2 s ,
- motor phase loss threshold: 10\%,
- line frequency: automatic,
- RUN and STOP logic inputs: 2-wire or 3-wire control via wiring,
- logic input LI3: forced freewheel stop,
- logic input LI4: local mode control (serial link disabled),
- logic output LO1: thermal motor alarm,
- logic output LO2: motor powered,
- relay output $R 1$: fault relay,
- relay output R3: motor powered,
- analogue output: motor current.

Acceleration ramp during time ACC with initial starting torque tq0 $=40 \%$ of the nominal motor torque

Decelerated stop by torque control during time dEC with threshold Edc for changing to freewheel stop mode $E d c=40 \%$ of nominal motor torque

Dynamic braking stops for different braking torque levels brc

Adjustment functions

- Nominal motor current (maximum permanent current)

The nominal current of the starter can be adapted to the nominal motor current indicated on the rating plate.
Adjustment range: 0.4 to 1.3 times the starter nominal current.

■ Limiting current

The maximum starting current can be adjusted.
Adjustment range: 150% to 700% of the nominal motor current set and limited to 500% of the maximum permanent current defined for the starter rating.

- Acceleration ramp time

During the starting phase, the Altistart 48 applies a torque ramp to the motor. The time (ACC) set corresponds to the time taken by the ramp to reach the nominal torque (starting at 0). Adjustment range: 1 to 60 s .

- Initial starting torque

The initial torque tq0 applied to the motor can be used to instantly overcome any resistive starting torque. Adjustment range: 0 to 100% of the nominal motor torque.

- Selection of the type of stop

Three types of stops are available for selection:

\square Freewheel motor stop

\square Motor stop by deceleration via torque control (pump application) This type of stop enables a centrifugal pump to be decelerated gradually on a ramp in order to avoid a sudden stop. It can be used to dampen the hydraulic transient in order to significantly reduce pressure surges.
The deceleration ramp time (dEC) can be adjusted.
During deceleration, the pump flow rate decreases and becomes negligible at a certain speed. To continue to decelerate would serve no purpose. A torque threshold (EdC) can be set at which the motor will change to freewheel stop mode, avoiding the unnecessary heating of the motor and the pump.
\square Dynamic braking motor stop (application: stopping high inertia machines) This type of stop will decelerate the motor if there is considerable inertia. The braking torque level (brc) can be adjusted. The dynamic braking time (T1) corresponds to the time taken to decelerate from 100% to 20% of the nominal motor speed. To improve braking at the end of deceleration, the starter injects a d.c. current for an adjustable period of time (T2).

Soft starters
 Altistart 48 soft start - soft stop units

Motor thermal protection curves (warm)

Protection functions

The Altistart 48 offers functions for protecting the motor and the machine.

- Calculated motor thermal protection

The starter continuously calculates the temperature rise of the motor based on the nominal current which has been set and the actual current absorbed. In order to adapt the Altistart to individual motors and applications, several protection classes are offered in accordance with standard IEC 60947-4-2:
class 30, class 25, class 20 (severe application), class 15, class 10 (standard application), class 10 A , sub-class 2.
Different protection classes are defined for the starting capacities of the motor:

- cold start without thermal fault (corresponding to a stabilised motor thermal state, motor switched off),
- warm start without thermal fault (corresponding to a stabilised motor thermal state, at nominal power).
The motor thermal protection function can be disabled.
After the motor has stopped or the starter has been switched off, the thermal state is calculated even if the control circuit is not energised. The Altistart thermal control prevents the motor from restarting if the temperature rise is too high. If special motors are used which do not have thermal protection via curves, provide external thermal protection via probes or thermal overload relays.
The starter is factory-set to protection class 10.
The tripping curves are based on the relationship between the starting current Is and the (adjustable) nominal motor current In.

Trip time (cold)

Trip time for a standard application (class 10)				Trip time for a severe application (class 20)			
Is $=3 \mathrm{In}$	Is $=4 \mathrm{In}$	Is $=5 \ln$	Is $=3.5 \ln$	Is $=4 \mathrm{In}$	Is $=5 \mathrm{In}$		
46 s	23 s	15 s	63 s	48 s	29 s		

Trip time (warm)

Trip time for a standard application (class 10)			Trip time for a severe application (class 20)			
Is $=3 \mathrm{In}$	Is $=4 \mathrm{In}$	Is $=5 \ln$	Is $=3.5 \ln$	Is $=4 \ln$	Is $=5 \ln$	
23 s	12 s	7.5 s	32 s	25 s	15 s	

■ Reset motor thermal state

Activating the function resets the motor thermal state calculated by the starter to zero.

■ Motor thermal protection with PTC probes

The starter integrates the processing of PTC probes, thus avoiding the use of an external device. The "PTC probe thermal overshoot" fault or alarm can be indicated using a configurable logic output or displayed via the serial link. The function can be disabled.
Note: the "PTC probe protection" and "calculated motor thermal protection" functions are independent and can be active simultaneously.

■ Starter ventilation

The cooling fan on the starter is switched on as soon as the heatsink temperature reaches $50^{\circ} \mathrm{C}$. It is switched off when the temperature returns to $40^{\circ} \mathrm{C}$.

■ Starter thermal protection

The starter is protected against thermal overloads by an analogue thermal probe.

Motor underload detection (ULL)

Motor overcurrent detection (OIL)

Configuring the starter overload and underload with PowerSuite on a PC

Protection functions (continued)

- Motor underload protection

The starter detects a motor underload if the motor torque falls below a preset torque threshold (LUL) for a specific (adjustable) period of time (tUL).
The motor underload threshold can be set between 20% and 100% of the nominal motor torque. The permissible underload duration can be set between 1 and 60 s .
The detection function can trigger an alarm or a fault. The detection function can be disabled. The "motor underload detected" alarm can be indicated by a configurable logic output and/or displayed via the serial link in the state of the starter.
The "motor underload detected" fault (ULF) locks the starter and can be displayed via the serial link.

- Excessive acceleration time protection

This protection function can be used to detect a start which takes place in adverse conditions. Examples of such conditions include a locked rotor or a motor unable to reach its nominal rotation speed.
If the start duration is greater than the value set (between 10 and 999 s), the drive changes to fault mode. The function can be disabled.

■ Current overload protection

The starter detects a current overload if the motor current exceeds a preset overcurrent threshold (LOC) for a specific (adjustable) period of time (tOL).
The overcurrent threshold can be set between 50% and 300% of the nominal motor current.
The permissible overcurrent duration can be set between 0.1 and 60 s . This function is only active in steady state.
The detection function can trigger an alarm or a fault. It can also be disabled.
The "current overload detected" alarm can be indicated by a configurable logic output and/or displayed via the serial link.
The "current overload detected" fault (OLC) locks the starter and can be displayed via the serial link in the state of the starter.

- Protection against line phase inversion

This function can be used to detect the direction of rotation of the motor phases and, if it is enabled, to indicate a fault when the direction of rotation is reversed.

- Time before restarting

This function can be used to avoid several consecutive starts which may cause:

- the thermal overheating of the application, which is not permitted,
- a thermal fault which will require maintenance work to be carried out,
- overcurrents (if the direction of rotation is reversed) or repeats (run/stop commands).
Following a stop command, the motor can only restart once the preset time delay has elapsed.
The motor is restarted once the time delay has elapsed if a run command is still valid or if a new run command is sent.
Adjustment range: 0 to 999 s .

■ Motor phase loss detection

The function is used to adjust the sensitivity of the protection function in order to detect a loss of current or a low current in one of the three motor phases for at least 0.5 s or in all three motor phases for at least 0.2 s . The value of the minimum current level can be set between 5% and 10% of the starter nominal current.

- Automatic restart

After locking on a fault, the function permits up to six restart attempts at intervals of 60 s if the fault has disappeared and the run commands are still present. After the sixth attempt, the starter will remain locked and the fault will have to be reset before a restart is permitted.
If the function is active, the fault relay remains activated if line phase loss, motor phase loss or line frequency out of tolerance faults are detected. This function can only be used in 2-wire control.

Application of a voltage boost equal to 100% of the nominal motor voltage

Advanced adjustment functions

- Torque limit

Designed primarily for high inertia and constant torque conveyor applications, the function restricts the torque ramp reference to the preset value.
For example, the function can be used to limit the torque to a constant value throughout the starting period.
Adjustment range: 10% to 200% of the nominal motor torque.

■ Voltage boost level

The function can be used to avoid any "starting" torque (phenomenon caused by friction on stopping or by mechanical play). When a run command is sent, the starter applies a fixed voltage to the motor for a limited period of time before starting. The function can be disabled.
The voltage setting value varies between 50% and 100% of the nominal motor voltage.

■ Connecting the starter to the motor delta terminal

ATS48eeoQ starters connected to motors with delta terminals can be wired in series in the motor windings. This type of connection reduces the current in the starter by a ratio of $\sqrt{3}$, which enables a lower rating starter to be used. The nominal current and limiting current settings as well as the current displayed during operation are on-line values and are indicated on the motor. For this application, the braking or decelerating stop functions are inactive. Only freewheel stopping is possible. The adjustment range of the nominal motor current and the limiting current are multiplied by $\sqrt{3}$ if the function is selected.
This function is not compatible with the following functions: motor phase loss detection, motor preheating, cascade, decelerated stop and dynamic braking. Use the scheme recommended on page $1 / 54$ for this type of configuration.

Test on low power motor
This function can be used to test a starter on a motor whose power is very much lower that of the starter. It can be used, for example, to check the electrical wiring of a device.
The function is automatically cancelled when the starter is switched off.
The next time the starter is switched on, the starter returns to its initial configuration.

■ Activation of the cascade function

This function can be used to start and decelerate several cascaded motors with a single starter.
In order to gain maximum benefit from torque control, it is advisable to use motors with powers between 0.5 and 1 times the power of the motor.
The wiring diagram for the cascaded motor function is shown on page 60524/6.
This function is not compatible with the following functions: motor preheating and connection to the motor delta terminal.

■ Line frequency

The following frequencies can be selected for the function:
-50 Hz . The frequency fault monitoring tolerance is $\pm 20 \%$,
-60 Hz . The frequency fault monitoring tolerance is $\pm 20 \%$,

- automatic detection of the line frequency by the starter. The frequency fault monitoring tolerance is $\pm 6 \%$.
■ 50 Hz and 60 Hz are recommended if the power supply is provided by a generating set, given their high tolerance.

■ Reset kWh or the operating time

Sets the value of the power in kW / h or the operating time value to 0 . The calculation of the values is updated once the reset command has been sent.

■ Return to factory settings
The function can be used to reset each setting to its initial value (starter factory setting, see page $1 / 68$).

$2^{\text {nd }}$ motor adjustment functions

In order to access the 2nd motor adjustment functions, one logic input must be assigned to the second set of motor parameters function. The adjustment functions and ranges are identical for both sets of motor parameters.
The settings are as follows (see page $1 / 69$):

- nominal motor current,
- limiting current,
- acceleration ramp time,
- initial starting torque,
- deceleration ramp time,
- threshold for changing to freewheel stop mode at the end of deceleration,
- maximum torque limit.

Communication functions

The Altistart 48 is supplied with an RS 485 multidrop serial link with Modbus protocol as standard. The serial link is configured in the Communication menu using: - the address of the starter, which can be set between 0 and 31,

- the communication speed, which can be set at: 4800, 9600 or 19200 bps,
\square the format of the communication data. The following formats can be selected:
- 8 data bits, odd parity, 1 stop bit,
-8 data bits, even parity, 1 stop bit,
-8 data bits, no parity, 1 stop bit,
- 8 data bits, no parity, 2 stop bits.
\square the time-out, which can be set between 1 and 60 s .

Displaying the commands and settings with PowerSuite on PC

[^7]
PowerSuite advanced dialogue solutions

The PowerSuite advanced dialogue solutions (see pages $3 / 2$ and $3 / 3$) offer the following advantages:
\square connection to the Altistart 48 and access to the adjustment, monitoring and control functions,

- display of messages in plain text in 5 languages (English, French, German, Spanish and Italian),
- preparation and saving of settings to hard disk,
\square comparison and editing of settings using office automation tools,
\square downloading of starter settings to the PC and uploading from the PC to the starter.

Application monitoring functions

The monitoring functions provide the following information:

- Cosine φ, displayed between 0.00 and 1.00.

■ Motor thermal state: 100% corresponds to the thermal state of the motor consuming the permanently set nominal current.
■ Motor current: displayed in amperes between 0 and 999 A and in kilo amperes between 1000 and 9999 A.
■ The operating time corresponding to the total number of starter operating hours during heating, acceleration, steady state, deceleration, braking and continuous bypass operation. It is displayed in hours between 0 and 999 hours and in kilo-hours between 1000 and 65536 hours.

- The active power is displayed between 0 and 255%, where 100% corresponds to the power at the set nominal current and at full voltage.
■ The motor torque is displayed between 0 and 255%, where 100% corresponds to the nominal torque.
■ The active power consumed is displayed in kW . The line voltage value must be configured. The accuracy of this setting will depend on the error between the voltage configured and the actual voltage.
- Power in kWh displayed with PowerSuite.
- The following starter states are shown in the display of the current state:
\square starter without run command and power not supplied,
- starter without run command and power supplied,
\square acceleration/deceleration in progress,
- steady state operation,
\square braking in progress,
- starter in current limiting mode,
\square starting time delay not elapsed.
■ Last fault. Displays the last fault which occurred.
- Phase rotation direction. Displays the direction of rotation (direct or indirect).
- Terminal locking code
\square An access code can be used to protect access to the adjustment and configuration parameters of the starter. Only the monitoring parameters will then be visible.

Assigning the logic inputs with
PowerSuite on PPC

Logic input application functions
 The starter has 4 logic inputs:

2 logic inputs (RUN and STOP) are reserved for run/stop commands which can be sent in the form of stay-put contacts or as pulsed contacts.

- 2-wire control: starting and stopping are controlled by a single logic input. State 1 of the logic input controls starting and state 0 controls stopping.
- 3-wire control: starting and stopping are controlled by 2 separate logic inputs.

A stop is obtained on opening (state 0) the STOP input.
The pulse on the RUN input is stored until the stop input opens.

- 2 logic inputs (LI3 and LI4) can be configured with the following functions:
- Freewheel stop: when combined with a braked stop or decelerated stop command, activating the logic input will stop the motor in freewheel mode. - External fault: enables the starter to detect an external user fault (level, pressure, etc). When the contact is open, the starter changes to fault mode. - Motor preheating: used to prevent the motor from freezing or to prevent temperature variations which may cause condensation. When the logic input is activated, an adjustable current flows through the motor after a time delay which can be set between 0 and 999 s . This current heats the motor without causing it to rotate. This function is not compatible with the following functions: connection to the motor delta terminal and cascading.
\square Force to local control mode: if a serial link is used, this function can be used to change from line mode (control via serial link) to local mode (control via the terminal). - Inhibit all protection: enables the forced operation of the starter in an emergency by overriding the main faults (smoke extraction system for example).
Warning: this type of use invalidates the starter warranty.
\square Reset motor thermal fault: enables the fault to be reset remotely.
\square Activation of the cascade function: in this case, the motor thermal protection is disabled and relay R1 is configured as the fault isolation relay. Can be used to start and decelerate several motors one after the other with a single starter (see application diagram on pages $1 / 56$ and $1 / 57$).
- Reset all faults: enables all faults to be reset remotely.
\square Second set of motor parameters: enables a second set of parameters to be selected to start and decelerate two different motors with a single starter.

Assigning the analogue output with PowerSuite on PC

Logic output application functions

The starter has 2 logic outputs (LO1 and LO2) which, depending on their configuration, can be used for remote indication of the following states or events:

- Motor thermal alarm: indicates that the motor thermal state has exceeded the alarm threshold and can be used for example to avoid starting a motor if the thermal reserve is insufficient.
- Motor powered: indicates that there may be current in the motor.
- Motor overcurrent alarm: the motor current is higher than the threshold set.
- Motor underload alarm: the motor torque is lower than the threshold set.
- Motor PTC probe alarm: indicates that the thermal state monitored by the PTC motor probe has been exceeded.
- Second set of motor parameters activated

Relay and analogue output application functions

The starter has 3 relays, 2 of which are configurable.

- End of starting relay R2: cannot be configured.

The end of starting relay controls the bypass contactor on the starter. It is activated when the motor has completed the starting phase. It is deactivated when a stop command is sent and in the event of a fault. The starter regains control when a braking or deceleration command is sent.

- Relay R1 application functions

Relay R1 can be configured as follows:

- fault relay: relay R1 is activated when the starter is powered and there are no faults. It is deactivated when a fault occurs and the motor switches to freewheel mode,
\square isolating relay: the contact of relay R1 closes when a run command is sent and reopens when a stop command is sent, at the end of deceleration on a decelerated stop or in the event of a fault. The line contactor is deactivated and the motor is isolated from the line supply (see application diagram page $1 / 53$).

- Relay R3 application functions

Relay R3 is configured to indicate the same states or events as logic outputs LO1 or LO2 (see above).

- Analogue current output AO application functions

- the analogue output AO provides an image of the following values: motor current, motor torque, motor thermal state, cosine φ, active power. - the following settings are associated with the analogue output:
- the type of signal supplied: 0-20 mA or 4-20 mA,
- the scale setting of the signal. The function associates the maximum amplitude of the analogue output (20 mA) with a percentage of the nominal value of the parameter, which can be set between 50% and 500%.

Function compatibility table									
Functions	Decelerating stop	Dynamic braking stop	Forced freewheel stop	Thermal protection	Motor phase loss detection	Connection to the motor delta terminal	Tests on low power motor	Cascaded motors	Motor preheating
Decelerating stop									
$\begin{aligned} & \text { Dynamic braking } \\ & \text { stop } \end{aligned}$									
Forced freewheel stop									
Thermal protection									(1)
Motor phase loss detection						(1)			(1)
Connection to the motor delta termina					(1)				
Tests on low power motor									
Cascaded motors									
Motor preheating				(2)	(1)				

\[\)| Compatible functions |
| :--- |
| Incompatible functions |
| Not applicable |

\]

(1) Motor phase loss not detected.
(2) Thermal protection is not provided during motor preheating.

Direct starting

Starting current

■ Starting current: 4 to 8 times the nominal current.
■ Starting torque: 0.5 to 1.5 times the nominal torque.
■ Characteristics:

- motor with 3 terminals, low and medium power,
- on-load starting,
- high current peak and voltage drop,
- simple device,
\square sudden starting for the mechanism.
■ No parameter adjustment.

■ Starting current: 1.8 to 2.6 times the nominal current.
■ Starting torque: 0.5 times the nominal torque.

- Characteristics:
- motor with 6 terminals,
- no-load or low resistive torque starting,
- high current peaks and torque when changing to "star-delta" mode,
\square a device requiring maintenance,
ㅁ subject to mechanical stress when starting.
■ No parameter adjustment.

Starting current: 4.5 times the nominal current.
■ Starting torque: 0.5 to 0.75 times the nominal torque.
■ Characteristics:

- motor with 3 terminals, high power,
\square starting with increasing resistive torque,
- high current peak,

ㅁ a large, bulky device requiring maintenance,

- subject to mechanical stress when starting.

■ No parameter adjustment.

Starting torque

Starting current

Auto transformer starting

Starting current
Starting torque

■ Starting current: 1.7 to 4 times the nominal current.
■ Starting torque: 0.4 to 0.85 times the nominal torque.
■ Characteristics:

- motor with 3 terminals, high power,
\square large voltage drop and current peak when connected at full voltage,
ㅁ a complex, bulky device requiring maintenance,
\square subject to mechanical stress when starting.
■ No parameter adjustment.

Conventional electronic starting with variable voltage and current limiting

Schematic diagram

Figure 1

Figure 2

- A controller with 6 thyristors connected head to tail in each line phase is used to power the three-phase asynchronous motor by gradually increasing the voltage on start-up.
\square Depending on the firing time and angle of the thyristors, it can be used to supply a voltage which will gradually increase at a fixed frequency.
\square The gradual increase in the output voltage can either be controlled by the acceleration ramp, or by the value of the limiting current, or linked to both parameters.

■ Figure 1 shows the behaviour of the torque in relation to the starting current.

- Limiting the starting current Is to a preset value Is1 will reduce the starting torque Ts1 to a value which is almost equal to the ratio of the square of currents Is and Is1. Example
On a motor with the following characteristics: Ts $=2$ Tn for Is = 6In, current limiting at Is $1=3 \operatorname{In}$ or 0.5 Is results in a starting torque: $\mathrm{Ts} 1=\mathrm{Ts} \times(0.5)^{2}=2 \mathrm{Tn} \times 0.25=0.5 \mathrm{Tn}$.

Figure 2 shows the torque/speed characteristic of a squirrel cage motor in relation to the supply voltage.
The torque varies like the square of the voltage at a fixed frequency. The gradual increase in the voltage prevents the instantaneous current peak on power-up.

Advantages of starting with the Altistart 48

- Conventional electronic starting
- To rectify problems caused by:
- mechanical stress when starting,
- hydraulic transients during acceleration and deceleration in pump applications. Conventional electronic starting requires the use of several current limits or the switching of several voltage ramps.
The settings become complicated and must be modified every time the load changes.
- Starting with the Altistart 48
- The Altistart 48 torque control enables starting without mechanical stress and the smooth control of hydraulic transients with a single acceleration ramp.
■ The settings are simple and effective, whatever the load.

2 - Variable speed drives for asynchronous motors

Selection guide: variable speed drives page 2/2
Selection guide: motor starters with variable speed drives.
page 2/4
2.1 Altivar 11

- Combinations page 2/11
■ Europe range, from 0.18 to 0.75 kW page 2/12
- America range, from 0.18 to 2.2 kW or 0.25 to 3 HP page 2/13
■ Asia range, from 0.18 to 2.2 kW page 2/14
- Options page 2/15
■ Electromagnetic compatibility page 2/19
- Functions page 2/20
2.2 Altivar 31
■ For asynchronous motors from 0.18 to 15 kW or 0.25 to 20 HP page 2/38
- Customisable enclosed drives page 2/39
■ Drive kits page2/40
- Options
- Braking resistors page 2/43
- Line chokes. page 2/45
\square Additional EMC input filters. page 2/47
- Output filters and motor chokes page 2/49
- Communication options page 2/51
■ Electromagnetic compatibility page 2/59
■ Combinations for motor starters page 2/62
- Functions page 2/66
2.3 Altivar 38
■ For asynchronous motors from 0.75 to 315 kW page 2/88
- Options
\square Dialogue page 2/89
- Accessories page 2/90
\square Line chokes. page 2/91
- Radio interference input filters page 2/92
- Output filters and motor chokes page 2/94
- Electromagnetic compatibility page 2/103
- Combinations for motor starters . page 2/104
- Functions page 2/106
- Ready-assembled
for asynchronous motors from 3 to 75 kW page 2/118
- Combinations page 2/120
2.4 Altivar 58
■ For asynchronous motors from 0.37 to 75 kW or 0.5 to 100 HP
- With heatsink and integrated EMC filterspage 2/132
\square With heatsink and no EMC filters page 2/133
- For asynchronous motors from 0.37 to 15 kW or 0.5 to 20 HP
- On base plate with integrated EMC filters page 2/134
- Options
- Accessories page 2/135
- Dialogue. page 2/138
- I/O extension cards, customer-specific cards page 2/141
- Communication options page 2/143
- Braking module and resistors page 2/146
\square Line chokes page 2/149
- Additional radio interference suppression input filters page 2/151
- Output filters and motor line chokes page 2/153
- Compatibility page 2/154
- Electromagnetic compatibility page 2/171
- Combinations for motor starters page 2/172
- Ready-assembled
for asynchronous motors from 0.37 to 75 kW or 0.5 to 100 HP page 2/182
- Options page 2/183
- Combinations page 2/184
- Functions page 2/190
- Altivar 58 F Flux Vector Control with sensor
for asynchronous motors from 0.75 to 55 kW or 1 to 75 HP page 2/214
- Options page 2/215
- Combinations page 2/216
- Electromagnetic compatibility page 2/221
- Functions page 2/224
2.5 Controller inside programmable card- For Altivar 38, 58 and 58 Fpage 2/235
2.6 Altivar 68
- For asynchronous motors from 75 to 630 kW or 100 to 1015 HP
- Standard Altivar 68 page 2/246
- Altivar 68F Flux Vector Control with sensor page 2/247
- Options
- Reduction of harmonic currents page 2/248
- Line chokes page 2/249
- Additional radio interference input filters page 2/250
- Additional motor chokes page 2/251
\square Braking units and resistors page 2/252
- I/O extension card page 2/258
- Communication cards page 2/259
- Programming terminal support, PC-based setup software, DC bus connection page 2/260
- External load circuit, earth protection and IT connection, air ducting kit, fan. page 2/261
- Combinations pages 2/262, 2/271, 2/273 and 2/275
- Combinations for motor starters page 2/278
- Dialogue: programming terminal page 2/280
- Functions page 2/283
- Altivar 68 ready-assembled in enclosure page 2/289

Variable speed drives for asynchronous motors

Variable speed drive of asynchronous motors
Industry Building

Pumps and fans

EN 50178, EN 61800-3
EN 55011, EN 55022
class B and class A gr. 1
NOM 117, C-TICK, CSA, UL, N998, CE

EN 50178, EN 61800-3 EN 55011, EN 55022: class A, class B with option C-TICK, UL, N998, CE

ATV 31

$2 / 38$ and $2 / 39$

Industry

Variable speed drives for asynchronous motors
 Motor starters with variable speed drives

Power range for $50 \ldots 60 \mathrm{~Hz}$ supply (kW)

$$
\frac{\text { Single phase } 200 \ldots 240 \mathrm{~V}(\mathrm{~kW})}{\frac{\text { 3-phase } 200 \ldots 230 \mathrm{~V}(\mathrm{~kW})}{3 \text {-phase } 380 \ldots 500 \mathrm{~V}(\mathrm{~kW})}}
$$

Degree of protection

Pages

Sensorless flux vector control

-
Modbus, CANopen
-

IP 55

IP 00

Via integrated or remote display terminal

Compatible

ATV 31C	ATV 31K
$2 / 39$	$2 / 40$

Yes

Modbus RS 485

Ethernet, Fipio, Modbus Plus, InTERBus, Profibus DP, AS-Interface, Uni-Telway, CANopen, DeviceNet, N2, Lonworks

IP 55

Via removable terminal which can be used remotely

ATV 38ED ENERGY

2/118

Variable speed drives
for asynchronous motors
Altivar 11

Variable speed drives for asynchronous motors
 Altivar 11

Abstract

Applications The Altivar 11 is a frequency inverter for 3-phase squirrel cage asynchronous motors rated between 0.18 kW and 2.2 kW . There are three types of power supply: - 100 V to 120 V single phase. - 200 V to 240 V single phase.

■ 200 V to 230 V 3-phase. The Altivar 11 incorporates specific features for local markets (Europe range, America range, Asia range) and has functions suitable for the most common applications, including: - Horizontal materials handling (small conveyors, etc). - Ventilation, pumping, access control, automatic doors.

■ Special machines (mixers, washing machines, centrifuges, etc).

Functions

The main functions incorporated in the Altivar 11 drive are:

- Starting and speed control.
- Reversal of operation direction.
- Acceleration, deceleration, stopping.
- Motor and drive protection.
- 2-wire/3-wire control.
- 4 preset speeds.
- Saving the configuration in the drive.
- d.c. injection on stopping.
- Ramp switching.
- Catching a spinning load.
- Local controls (Asia range only).

Several functions can be assigned to one logic input.

Standard versions

The Altivar 11 offer consists of 3 ranges designed for 3 different markets:
■ Europe range: ATV 11॰UゃeM2E (items 1, 2)

- power supply: 240 V single phase,
\square positive logic operation,
- integrated class B EMC filter.

■ America range: ATV 11॰Ueゃe๐U (items 1, 2, 3, 4)

- power supplies: 120 V single phase, 240 V single phase or 230 V 3 -phase, - positive logic operation,
- meets current requirement in standard NEC 1999208 V.
- Asia range: ATV 11•UeeeeA (items 5, 6)
- power supplies: 120 V single phase, 240 V single phase or 230 V 3 -phase,
\square positive or negative logic operation,
- local controls: Run and Stop keys, and potentiometer.

Altivar 11 drives are supplied either with heatsink (items 1, 3, 5) for normal environments and ventilated enclosures, or on a base plate (items $2,4,6$) for mounting on a machine frame, when the size of the frame enables dissipation of the heat.

Electromagnetic compatibility EMC

The incorporation of EMC filters in ATV 11•UeeM2E drives simplifies installation of machines and provides an economical means of meeting $C \in$ marking requirements. ATV $11 \bullet$ UeeeeU and ATV $11 \bullet$ UeeeeA drives are available without EMC filter. Filters are available as an option for customer assembly, if conformity to EMC standards is required.

Options

The drive only communicates, in point-to-point mode, with the following tools and software:
■ PowerSuite advanced dialogue solutions:

- PowerSuite software workshop for configuring the drive (item 7),
- PowerSuite for Pocket PC (item 8),
- converter for connecting a PC or a Pocket PC.

The following options can be used with the Altivar 11 drive:

- Braking module connected to the drive's DC bus.
- Braking resistors, for dissipating the energy returned to the drive when the motor is operating as a generator.
- EMC radio interference input filters.
- Plates for mounting on \checkmark r rail.
- Adaptor plate for replacing an Altivar 08 drive.
- Plate for EMC mounting, earthing the cable shielding.

Characteristics:	References:
pages $2 / 8$ to $2 / 11$	pages $2 / 12$ to $2 / 15$

Dimensions:
pages $2 / 16$ and $2 / 17$
Schemes:
pages 2/18 and 2/19

Variable speed drives for asynchronous motors

Altivar 11

Environment characteristics

Conforming to standardsEMC immunity				Altivar 11 drives have been developed to conform to the strictest international standards and the recommendations relating to electrical industrial control devices (IEC, EN), in particular: EN 50178, EMC immunity and EMC conducted and radiated emissions.
				IEC/EN 61000-4-2 level 3 IEC/EN 61000-4-3 level 3 IEC/EN 61000-4-4 level 4 IEC/EN 61000-4-5 level 3 (power access) IEC/EN 61800-3, environments 1 and 2
EMC emissions for drives				
Conducted and radiated emissions		All		IEC/EN 61800-3, environments: 2 (industrial supply) and 1 (public supply) restricted distribution
		ATV 11•U05M2E to ATV 11•U18M2E		EN 55011, EN 55022 class B, 2 to 12 kHz for motor cable lengths $\leqslant 5 \mathrm{~m}$ and class A (group 1), 2 to 16 kHz for lengths $\leqslant 10 \mathrm{~m}$
		ATV 11•U29M2E to ATV 11•U41M2E		EN 55011, EN 55022 class B, 4 to 16 kHz for motor cable lengths $\leqslant 5 \mathrm{~m}$ and class A (group 1), 4 to 16 kHz for lengths $\leqslant 10 \mathrm{~m}$
Conducted emissions		ATV 11HU05M2E to ATV 11HU41M2E		With additional EMC filter: EN 55011, class B, 2 to 16 kHz for motor cable lengths $\leqslant 20 \mathrm{~m}$ and class A (group 1), 2 to 16 kHz for lengths $\leqslant 50 \mathrm{~m}$
		ATV 11HU05eoU to ATV 11HU4100U and ATV 11HU05eeA to ATV $11 \mathrm{HU} 41 \bullet 0 \mathrm{~A}$		With additional EMC filter: EN 55011, class B, 2 to 16 kHz for motor cable lengths $\leqslant 5 \mathrm{~m}$ and class A (group 1), 2 to 16 kHz for lengths $\leqslant 50 \mathrm{~m}$
C¢ marking				The drives bear $\subset \in$ marking in accordance with the European low voltage (73/23/EEC and 93/68/EEC) and EMC (89/336/EEC) directives
Product certifications				UL, CSA, NOM 117 and C-TICK
Degree of protection				IP 20
Vibration resistance	Drive without \longleftarrow r rail option			Conforming to IEC/EN 60068-2-6: - 1.5 mm peak from 3 to 13 Hz - 1 gn from 13 to 200 Hz
Shock resistance				15 gn for 11 ms conforming to IEC/EN 60068-2-27
Relative humidity			\%	$5 . .93$ without condensation or dripping water, conforming to IEC 60068-2-3
Ambient temperature around the unit	Storage		${ }^{\circ} \mathrm{C}$	-25... 65
	Operation		${ }^{\circ} \mathrm{C}$	$-10 \ldots+40$ $-10 \ldots+50$: removing the protective cover from the top of the drive Up to +60 with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$
Maximum operating altitude			m	1000 without derating (above this, derate the current by 1% per additional 100 m)
Operating position Maximum permanent angle in relation to the normal vertical mounting position				
Drive characteristics				
Output frequency range			Hz	0... 200
Switching frequency			kHz	2...16 (1)
Speed range				1... 20
Transient overtorque				150...170 \% of the nominal motor torque
Braking torque				-20% of the nominal motor torque without braking resistor at no-load with the "deceleration ramp adaptation" function enabled - 80% of the nominal motor torque with braking resistor (available as an option) at no-load - Up to 150% of the nominal motor torque with braking resistor (available as an option) at high inertia
Maximum transient current				-150% of the nominal drive current for 60 seconds for range E and A drives $-137 . .150 \%$ for range U drives
Voltage/frequency ratio				Sensorless flux vector control with PWM type (2) motor control signal Factory-set for most constant torque applications
Frequency loop gain				Factory-set with the speed loop stability and gain Possible correction for machines with high resistive torque or high inertia, or for machines with fast cycles
Slip compensation				Factory-set, according to the rating of the drive (adjustment possible)
				ration above 4 kHz needs to be continuous, the nominal drive current should be derated $\%$ for $8 \mathrm{kHz}, 20 \%$ for 12 kHz and 30% for 16 kHz . width modulation.

Presentation:	References:	Dimensions:	Schemes:
pages $2 / 6$ and $2 / 7$	pages $2 / 12$ to $2 / 15$	pages $2 / 16$ and $2 / 17$	pages $2 / 18$ and $2 / 19$

Variable speed drives for asynchronous motors
 Altivar 11

Electrical characteristics

Power supply	Voltage	V	200－15 \％to $240+10 \%$ single phase for ATV 11 •UeeM2• 200－15 \％to $230+15 \%$ 3－phase for ATV 11•U・セM3• 100－15\％to $120+10 \%$ single phase for ATV $11 \bullet U$ eoF1•
	Frequency	Hz	$50 \pm 5 \%$ or $60 \pm 5 \%$
	Isc	A	≤ 1000（prospective short－circuit current at the connection point）for single phase power supply ≤ 5000（prospective short－circuit current at the connection point）for 3－phase power supply
Output voltage			Maximum 3－phase voltage equal to： －the line supply voltage for ATV $11 \bullet U \bullet \bullet M \bullet \bullet$ －double the line supply voltage for ATV $11 \bullet$ Ue ${ }^{\circ} 1 \bullet$
Maximum connection capacity of the power supply，the motor and the braking module	Drives ATV $11 \bullet U 05 \bullet \bullet \bullet$ ， U09•eゃ，U12M \bullet ，U18M•e		$1.5 \mathrm{~mm}^{2}$（AWG 14）
	Drives ATV 11•，U18F1•， U29•eゃ，U41•e•		$4 \mathrm{~mm}^{2}$（AWG 10）
Max．length of motor cables		m	50，shielded cable 100，non－shielded cable
Electrical isolation			Electrical isolation between power and control（inputs，outputs，power supplies）
Available internal supplies			Short－circuit and overload protection： －one $+5 \mathrm{~V}(0 /+5 \%)$ supply for the reference potentiometer（ 2.2 to $10 \mathrm{k} \Omega$ ），maximum current 10 mA －one＋ 15 V （ $\pm 15 \%$ ）supply for the control inputs，maximum current 100 mA
Analog input Al1			1 configurable analog input Max．sampling time： 20 ms ，resolution 0.4% ，linearity $\pm 5 \%$ ： －voltage 0－5 V （internal power supply only）or 0－10 V，impedance $40 \mathrm{k} \Omega$ －current 0－20 mA or 4－20 mA（without addition of a resistor），impedance 250Ω
Logic inputs LI			4 assignable logic inputs，impedance $5 \mathrm{k} \Omega$ +15 V internal or 24 V external power supply（min． 11 V ，max． 30 V ）． Factory－set with 2－wire control in＂transition＂mode for machine safety，for Europe and America ranges： －LI1：forward －LI2：reverse －LI3／LI4： 4 preset speeds －local controls for the Asia range Multiple assignment makes it possible to mix several functions on one input（example： LI1 assigned to forward and preset speed 2，LI3 assigned to reverse and preset speed 3）
	Positive logic E／U／A ranges		State 0 if $<5 \mathrm{~V}$ ，state 1 if $>11 \mathrm{~V}$ Max．sampling time： 20 ms
	Negative logic A range		Available by programming on the Asia range only State 0 if $>11 \mathrm{~V}$ or logic input not wired，state 1 if $<5 \mathrm{~V}$ Max．sampling time： 20 ms
DO output			Factory setting： － 2 kHz PWM（1）open collector output．Can be used for electromagnetic galvanometer －max．current 10 mA －output impedance $1 \mathrm{k} \Omega$ ，linearity $\pm 1 \%$ ，max．sampling time 20 ms Assignable as logic output： －open collector logic output，output impedance $100 \Omega, 50 \mathrm{~mA}$ max －internal voltage（see above，available internal supplies） －external voltage 30 V max： 50 mA
Relay outputs（RA－RC）			1 protected relay logic output（contact open on fault） Minimum switching capacity： 10 mA for $-\mathrm{-} 24 \mathrm{~V}$ Maximum switching capacity： －On resistive load（ $\cos \varphi=1$ and $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ ）： 5 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$ －On inductive load（ $\cos \varphi=0.4$ and $L / R=7 \mathrm{~ms}$ ）： 2 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$
Maximum I／O connection capacity			$1.5 \mathrm{~mm}^{2}$（AWG 14）
Acceleration and deceleration ramps			Ramp profiles：linear from 0.1 to 99.9 s Automatic adaptation of deceleration ramp time if braking capacities exceeded， possible inhibition of this adaptation（use of braking module）
Braking to a standstill			By d．c．injection：automatically as soon as the estimated output frequency drops to $<0.2 \mathrm{~Hz}$ ，period adjustable from 0.1 to 30 s or continuous，current adjustable from 0 to 1.2 In
Main protection and safety features of the drive			－Thermal protection against overheating －Protection against short－circuits between output phases －Protection against overcurrent between output phases and earth，at power－up only －Line supply undervoltage and overvoltage safety circuits －Line supply phase loss safety function，for 3－phase supply
Motor protection （see page 2／24）			Thermal protection integrated in the drive by continuous calculation of the I^{2} t．Thermal memory reset on power down．
Insulation resistance to earth		M Ω	＞ 500 （electrical isolation）
Frequency resolution			Display units： 0.1 Hz Analog inputs： 10 －bit A／D converter
Time constant for reference change		ms	5

[^8]
Torque characteristics (typical curves)

The curves below define the available continuous torque and transient overtorque for both force-cooled and self-cooled motors. The only difference is in the ability of the motor to provide a high continuous torque at less than half the nominal speed.

1 Self-cooled motor: continuous useful torque
2 Force-cooled motor: continuous useful torque
3 Transient overtorque in factory settings (UFR = 50), with motor characteristics
4 Transient overtorque at UFR $=100$ and motor characteristics

Special uses

Use with a motor with a different rating to that of the drive
The device can supply any motor which has a power rating lower than that for which it is designed.
For motor ratings slightly higher than that of the drive, check that the current taken does not exceed the continuous output current of the drive.

Connecting motors in parallel

The rating of the drive must be greater than or equal to the sum of the currents of the motors to be connected to the drive. In this case, provide external thermal protection for each motor using probes or thermal overload relays.
If the number of motors in parallel is greater than or equal to 3 , it is advisable to install a 3-phase choke between the drive and the motors.
Nota : please consult your Regional Sales Office for choke product references.

Switching the motor at the drive output

Switching is possible with the drive locked. The "catch-on-the-fly" (automatic catching a spinning load) function must be configured for this type of use.

Presentation: pages $2 / 6$ and $2 / 7$	References: pages 2/12 to 2/15	Dimensions: pages 2/16 and 2/17	Schemes: pages 2/18 and 2/19

Variable speed drives for asynchronous motors

 Altivar 11

 Altivar 11}

Combinations for customer assembly

Function: to protect persons and equipment from any level of overcurrent which may be encountered (overload or short-circuit).
Type 1 coordination.

Standard power ratings of 3-phase 4-pole $50 / 60 \mathrm{~Hz}$ motors	Speed drive Reference (1)	Circuit-breaker			Contactor
		Telemecanique (2)	Adjustment range	Maximum shortcircuit current Icu	Reference
		Merlin Gerin	Rating		
kW			A	kA	
M1	A1	Q1			KM1
Single phase supply voltage: 100... $120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$					
0.18	ATV 11HU05F1•	GV2 ME14	6... 10	>50	LC1 K09
		DT40	10	6	LC1 K09
0.37	ATV 11•U09F1•	GV2 ME14	6... 10	>50	LC1 K09
		DT40	16	6	LC1 K09
0.75	ATV 11HU18F1•	GV2 ME21	17... 23	>15	LC1 D25
		DT40	20	6	LC1 D25
Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$					
0.18	ATV 11HU05M2•	GV2 ME08	2.5... 4	>50	LC1 K09
		DT40	6	6	LC1 K09
0.37	ATV 11•U09M2•	GV2 ME14	6... 10	>50	LC1 K09
		DT40	10	6	LC1 K09
0.55	ATV 110U12M2E	GV2 ME14	6... 10	>50	LC1 K09
		DT40	10	6	LC1 K09
0.75	ATV 11•U18M2•	GV2 ME16	9... 14	>15	LC1 K12
		DT40	16	6	LC1 K12
1.5	ATV 11HU29M2E	GV2 ME20	13... 18	>15	LC1 D18
		DT40	20	6	LC1 D18
1.5	ATV 11HU29M2U	GV2 ME21	17... 23	>15	LC1 D25
	ATV 11HU29M2A	DT40	20	6	LC1 D25
2.2	ATV 11HU41M2•	GV2 ME32	24... 32	>10	LC1 D32
		DT40	32	6	LC1 D32
3-phase supply voltage: $200 . . .230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$					
0.18	ATV 11HU05M3	GV2 ME07	1.6...2.5	>50	LC1 K06
		DT40	6	6	LC1 K06
0.37	ATV 11•U09M3•	GV2 ME08	2.5... 4	>50	LC1 K06
		DT40	6	6	LC1 K06
0.75	ATV 11•U18M3•	GV2 ME14	6... 10	>50	LC1 K09
		DT40	10	6	LC1 K09
1.5	ATV 11HU29M3	GV2 ME16	9... 14	>15	LC1 K12
		DT40	16	6	LC1 K12
2.2	ATV 11HU41M3•	GV2 ME20	13... 18	> 15	LC1 D18
		DT40	20	6	LC1 D18

Combinations of circuit-breakers and add-on modules

DT40	Vigi TG40		
Rating (A)	Rating (A)	Type (3)	Sensitivity
6	25	A "si"	30 mA
10	25	A "si"	30 mA
16	25	A "si"	30 mA
20	25	A "si"	30 mA
32	40	A "si"	30 mA

Recommendations for special uses:

- All RH10/RH21/RH99/RHU residual current protection devices with separate sensors are compatible as long as the type and sensitivity of the add-on modules given in the table above are observed.
- It is advisable to connect one residual current differential safety device per drive. In this case a type B device must not be located downstream of a type A or $A C$ device.
(1) Replace the dots in the reference according to the type of drive required, see pages 2/12 to 2/14.
(2) Replace "ME" with "P" for rotary knob control.

Type 2 coordination is provided by combining a GV2 circuit-breaker with an LC1 Deo contactor.
(3) For additional protection against direct contact, with a 3-phase power supply and access to the DC bus terminals (PA +/PC -), the add-on module must be type B with a sensitivity of 30 mA .

Presentation:	References:	Dimensions:	Schemes:
pages $2 / 6$ and $2 / 7$	pages $2 / 12$ to $2 / 15$	pages $2 / 16$ and $2 / 17$	pages $2 / 18$ and $2 / 19$

Variable speed drives for asynchronous motors

Altivar 11
ATV 110000e0E Europe range

ATV 11 HU18M2E

ATV 11 PU18M2E

ATV 11 HU41M2E

Drives with heatsink (frequency range from 0 to 200 Hz)

Motor	Line supply (1)	Altivar 11				
Power indicated on plate	Max. line current for prospective Isc 1 kA	Continuous output current (2)	Max. transient current (3)	Power dissipated at nominal load	Reference (4)	Weight
kW	A	A	A	W		kg
Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
0.18	2.9	1.1	1.6	12	ATV 11HU05M2E	0.900
0.37	5.3	2.1	3.1	20.5	ATV 11HU09M2E	1.000
0.55	6.3	3	4.5	29	ATV 11HU12M2E	1.100
0.75	8.6	3.6	5.4	37	ATV 11HU18M2E	1.100
1.5	14.8	6.8	10.2	72	ATV 11HU29M2E (5)	1.800
2.2	20.8	9.6	14.4	96	ATV 11HU41M2E (5)	1.800

Drives on base plate (frequency range from 0 to $\mathbf{2 0 0 ~ H z}$)						
Motor	Line supply (1)	Altivar 11				
Power indicated on plate	Max. line current for prospective Isc 1 kA	Continuous output current (2)	Max. transient current (3)	Power dissipated at nominal load	Reference (4)	Weight
kW	A	A	A	W		kg
Single phase supply voltage: $200 . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
0.37	5.3	2.1	3.1	20.5	ATV 11PU09M2E	0.900
0.55	6.3	3	4.5	29	ATV 11PU12M2E	0.900

0.75	8.6	3.6	5.4	37	ATV 11PU18M2E	0.900

[^9]| Presentation: | Characteristics: | Dimensions: | Schemes: |
| :--- | :--- | :--- | :--- |
| pages $2 / 6$ and $2 / 7$ | pages 2/8 to 2/11 | pages 2/16 and 2/17 | pages 2/18 and 2/19 |

Variable speed drives for asynchronous motors

Altivar 11
ATV $11000000 \cup$ America range

ATV 11HU18M2U

ATV 11PU18M2U

ATV 11HU41M2U

ATV 11HU41M3U

Drives with heatsink (frequency range from 0 to $\mathbf{2 0 0 ~ H z) ~}$

| Motor | Line supply |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Single phase supply voltage: 100... $120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
0.18/0.25	6	1.6 (6)	2.4	14.5	ATV 11HU05F1U	0.900

		$1.6(6)$	2.4	14.5	ATV 11HU05F1U	0.900
$0.37 / 0.5$	9	$2.4(6)$	3.6	23	ATV 11HU09F1U	1.000
$0.75 / 1$	18	$4.6(6)$	6.3	43	ATV 11HU18F1U	1.800

Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
0.18/0.25	3.3	1.6	2.4	14.5	ATV 11HU05M2U	0.900

$0.37 / 0.5$	6	2.4	3.6	23	ATV 11HU09M2U	1.000

$0.75 / 1$	9.9	4.6	6.3	43	ATV 11HU18M2U (5)	1.100
$1.5 / 2$	17.1	7.5	11.2	77	ATV 11HU29M2U (5)	1.800
$2.2 / 3$	24.1	10.6	15	101	ATV 11HU41M2U (5)	1.800

3-phase supply voltage: $\mathbf{2 0 0}$... $230 \mathrm{~V} \mathbf{5 0 / 6 0} \mathbf{~ H z}$

$0.18 / 0.25$	1.8	1.6	2.4	13.5	ATV 11HU05M3U	0.900
$0.37 / 0.5$	3.6	2.4	3.6	24	ATV 11HU09M3U	1.000
$0.75 / 1$	6.3	4.6	6.3	38	ATV 11HU18M3U (5)	1.100
$1.5 / 2$	11	7.5	11.2	75	ATV 11HU29M3U (5)	1.800
$2.2 / 3$	15.2	10.6	15	94	ATV 11HU41M3U (5)	1.800

Drives on base plate (frequency range from 0 to 200 Hz)

Motor	Line supply	Altivar 11			
Power indicated on plate	Max. line current (1)	Continuous Max. output transient current (2) current (3)	Power dissipated at nominal load	Reference (4)	Weight
kW/HP	A	A A	W		kg
Single phase supply voltage: 100...120 V 50/60 Hz					
0.37/0.5	9	2.430	23	ATV 11PU09F1U	0.900
Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$					
0.37/0.5	6	2.430	23	ATV 11PU09M2U	0.900
0.75/1	9.9	$\begin{array}{ll}4.6 & 6.3\end{array}$	43	ATV 11PU18M2U	0.900
3-phase supply voltage: 200... $230 \mathrm{~V} \mathbf{5 0 / 6 0 ~ H z}$					
0.37/0.5	3.6	2.43 .6	24	ATV 11PU09M3U	0.900
0.75/1	6.3	$\begin{array}{ll}4.6 & 6.3\end{array}$	38	ATV 11PU18M3U	0.900

(1) The line current value is given for the measurement conditions indicated in the table below.

Drive rating	Prospective Isc	Line voltage
ATV 11•UF1U	1 kA	100 V
ATV 11•UM2U	1 kA	208 V
ATV $11 \bullet$ UM3U	5 kA	208 V

(2) The current value is given for a 4 kHz switching frequency. If operation above 4 kHz needs to be continuous, the nominal drive current should be derated by 10% for $8 \mathrm{kHz}, 20 \%$ for 12 kHz and 30% for 16 kHz .
(3) For 60 seconds.
(4) Drive supplied without EMC filter. To order an EMC filter separately, see page 2/15.
(5) With integrated fan.
(6) Current given for the power supply for a 230 V 3-phase motor.

Variable speed drives for asynchronous motors

Altivar 11
ATV 11000000A Asia range

ATV 11HU18M2A

ATV 11PU18M2A

ATV 11HU41M2A

ATV 11HU41M3A

Drives with heatsink (frequency range from 0 to 200 Hz)

Motor	Line supply	Altivar 11				
Power indicated on plate	Max. line current (1)	Continuous output current (2)	Max. transient current (3)	Power dissipated at nominal load	Reference (4)	Weight
kW	A	A	A	W		kg

Single phase supply voltage: 100... $120 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$

0.18	6	$1.4(6)$	2.1	14	ATV 11HU05F1A	0.900
0.37	9	$2.4(6)$	3.6	25	ATV 11HU09F1A	1.000
0.75	18	$4(6)$	6	40	ATV 11HU18F1A	1.800

Single phase supply voltage: 200... 240 V 50/60 Hz

0.18	3.3	1.4	2.1	14	ATV 11HU05M2A	0.900
0.37	6	2.4	3.6	25	ATV 11HU09M2A	1.000
0.75	9.9	4	6	40	ATV 11HU18M2A	1.100
1.5	17.1	7.5	11.2	78	ATV 11HU29M2A (5)	1.800
2.2	24.1	10	15	97	ATV 11HU41M2A (5)	1.800
$3-p h a s e ~ s u p p l y ~ v o l t a g e: ~ 200 . . .230 ~ V ~ 50 / 60 ~ H z ~$						
0.18	1.8	1.4	2.1	13.5	ATV 11HU05M3A	0.900
0.37	3.6	2.4	3.6	24	ATV 11HU09M3A	1.000
0.75	6.3	4	6	38	ATV 11HU18M3A	1.100
1.5	11	7.5	11.2	75	ATV 11HU29M3A (5)	1.800
2.2	15.2	10	15	94	ATV 11HU41M3A (5)	1.800

Drives on base plate (frequency range from 0 to 200 Hz)

Motor	Line supply	Altivar 11			
Power indicated on plate	Max. line current (1)	Continuous Max. output transient current (2) current (3)	Power dissipated at nominal load	Reference (4)	Weight
kW	A	A A	W		kg
Single phase supply voltage: 100...120 V $50 / 60 \mathrm{~Hz}$					
0.37	9	$2.4 \quad 3.6$	25	ATV 11PU09F1A	0.900
Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$					
0.37	6	2.43	25	ATV 11PU09M2A	0.900
0.75	9.9	46	40	ATV 11PU18M2A	0.900

3-phase supply voltage: 200... $230 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$

0.37	3.6	2.4	3.6	24	ATV 11PU09M3A	0.900
0.75	6.3	4	6	38	ATV 11PU18M3A	0.900

| (1) The line current value is given for the measurement conditions indicated in the table below. |
| :--- | :--- | :--- |
| Drive rating Prospective Isc Line voltage
 ATV 11•UF1A 1 kA 100 V
 ATV 11•UM2A 1 kA 200 V
 ATV 11•UM3A 5 kA 200 V
 (2) Th3 |

(2) The current value is given for a 4 kHz switching frequency. If operation above 4 kHz needs to be continuous, the nominal drive current should be derated by 10% for $8 \mathrm{kHz}, 20 \%$ for 12 kHz and 30% for 16 kHz .
(3) For 60 seconds.
(4) Drive supplied without EMC filter. To order an EMC filter separately, see page 2/15.
(5) With integrated fan.
(6) Current given for the power supply for a 230 V 3-phase motor.

Presentation:	Characteristics:	
pages $2 / 6$ and $2 / 7$	Dimensions: pages $2 / 8$ to $2 / 11$	Schemes: pages $2 / 16$ and $2 / 17$

Variable speed drives for asynchronous motors Altivar 11

VW3 A11852

Options					
Description		For drives		Reference	Weight kg
PowerSuite software workshop All ratings				See page 3／3	－
Converter，supplied without All ratingscable or CD－ROM，forcommunicating with thePowerSuite software workshop（see page 3／3）				VW3 A11301	0.070
EMC input filters		ATV 11HU05M2E，HU09M2E ATV 11HU12M2E，HU18M2E ATV 11HU05F1U／A，HU09F1U／A ATV 11HU05M2U／A，U09M2U／A ATV 11HU18M2U／A		VW3 A11401	0.650
		ATV 11HU29M2E，HU41M2E ATV 11HU18F1U／A，HU29M2U／A ATV 11HU41M2U／A		VW3 A11402	0.850
		ATV 11HU05M3U／A，HU09M3U／A ATV 11HU18M3U／A		VW3 A11403	0.650
		ATV 11HU29M3U／A，HU41M3U／A		VW3 A11404	0.850
Braking module connected to the DC bus		All ratings		VW3 A11701	0.250
Description	Ohmic value	Power W	For drives	Reference	Weight kg
Braking resistors Not protected （IP 00）（3）	100Ω	32	ATV 11HU050e6（1） ATV 110U09ee日（1） ATV 11•U12M2E（1） ATV 11•U18ee0（1） ATV 11HU29ee日（2）	VW3 A58702	0.600
	68Ω	32	ATV 11HU41－00（2）	VW3 A58704	0.600
Braking resistors Protected（IP 30）（3）	100Ω	32	ATV 11HU05een（1） ATV 110U09eee（1） ATV 11•U12M2E（1） ATV 110U18000（1） ATV 11HU29•e日（2）	VW3 A58732	2.000
	68Ω	32	ATV 11HU41－90（2）	VW3 A58733	2.000
Accessories					
Description			For drives	Reference	Weight kg
Plates for mounting on \downarrow r rail （width 35 mm ）			ATV 11HU05000 ATV 11HU09•e• ATV 11HU12M2E ATV 11HU18Mee	VW3 A11851	0.220
			ATV 11HU18F1• ATV 11HU29•0． ATV 11HU4100e	VW3 A11852	0.300
Adaptor plate for replacing Altivar 08			ATV 11HU05M2• ATV 110U09M2• ATV 11•U12M2E ATV 11•U18M2•	VW3 A11811	0.220
Earthing plate for EMC mounting			All ratings	VW3 A11831	0.100
Fan kit（4）			ATV 11HU18F1• ATV 11HU18MoU ATV 11HU29•e• ATV 11HU41•e॰	VW3 A11821	0.070

（1）Minimum value of the resistor to be connected： 75 ohms．
（2）Minimum value of the resistor to be connected： 51 ohms．
（3）If a resistor other than those specified is being used，add a thermal protection device．
（4）Low－noise＂fan．

Presentation：	Characteristics：	Dimensions：	Schemes：
pages $2 / 6$ and $2 / 7$	pages $2 / 8$ to $2 / 11$	pages $2 / 16$ and $2 / 17$	pages $2 / 18$ and $2 / 19$

Variable speed drives for asynchronous motors
 Altivar 11

ATV 11HU05eeE/U/A, ATV 11PUeゃeゃE/U/A

ATV 11	a	b	c	G	H	\varnothing
HU09•0U	72	142	125	60 ± 1	131 ± 1	4
HU09•0A	72	142	132	60 ± 1	131 ± 1	4

ATV 11HU18MoU/A

EMC input filters VW3 A11401 to A11404

ATV 11HU09M2E

ATV 11HU12M2E, ATV 11HU18M2E

ATV 11HU18F1U/A, ATV 11HU29MeE/U/A, ATV 11HU41MeE/U/A

ATV 11
HU18F1U, HU29MoE/U, HU41M•E/U HU18F1A, HU29M॰A, HU41M॰A
Protected braking resistors
VW3 A58732 and A58733

a	b	c
117	142	156
117	142	163

Non protected braking resistors VW3 A58702 and A58704
(2-wire output, length 0.5 m)

Braking module VW3 A11701 (for mounting on AM1-ED rail)

Characteristics:
References
Schemes:
pages 2/18 and 2/19

ATV 08 adaptor plate VW3 A11811

EMC earthing plate VW3 A11831

Plates for mounting on $_$〔 rail VW3 A11851 and A11852

Ventilation kit VW3 A11821

（1） 2 screws supplied for fixing the earthing plate．

Mounting recommendations

－Install the unit vertically，at $\pm 10^{\circ}$ ．
－Do not place it close to heating elements．
－Leave sufficient free space to ensure that the air required for cooling purposes can circulate，by natural convection or by ventilation，from the bottom to the top of the unit．
■ Free space in front of unit： 10 mm minimum．

$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
$\mathrm{d} \geq 50 \mathrm{~mm}$ ：no special precautions．
$\mathrm{d}=0$（mounted side by side）：remove the protective cover from the top of the drive．
$40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$\mathrm{d} \geq 50 \mathrm{~mm}$ ：remove the protective cover from the top of the drive．
$50^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
$\mathrm{d} \geq 50 \mathrm{~mm}$ ：remove the protective cover from the top of the drive，and derate the nominal current of the drive by 2.2% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$ ．

Recommendations for mounting on a machine frame（specific to ATV 11PUゃoゃe日 drives）

ATV 11PUee0ee drives can be mounted on（or in）a steel or aluminium machine frame，observing the following conditions：

■ maximum ambient temperature： $40^{\circ} \mathrm{C}$ ，
－vertical mounting $\pm 10^{\circ}$ ，
－the drive must be fixed at the centre of a support（frame）which is a minimum of 10 mm thick and with a minimum cooling area of $0.12 \mathrm{~m}^{2}$ for steel and $0.09 \mathrm{~m}^{2}$ for aluminium，exposed to the open air，
■ support area for the drive（ $142 \times 72 \mathrm{~min}$ ）machined on the frame with a surface smoothness of $100 \mu \mathrm{~m}$ max and an unevenness of $3.2 \mu \mathrm{~m}$ max，
■ mill the tapped holes lightly in order to remove any burrs，
－coat the whole drive support area with thermal contact grease（or equivalent），
When the operating conditions are close to the maximum limits（power，cycle and temperature），this type of use must be checked beforehand，by monitoring the thermal state of the drive．
（2）Minimum machined area

Presentation：	Characteristics：	References：
pages $2 / 6$ and $2 / 7$	pages $2 / 8$ to $2 / 11$	pages $2 / 12$ to $2 / 15$

Variable speed drives for asynchronous motors
 Altivar 11

Schemes with contactor

3-phase power supply ATV 11e0e0M3•

For combinations of KM1, Q1, etc, components (see the table on page 2/11).
(1) Fault relay contact: for remote signalling of drive status.
(2) Internal +15 V . If an external +24 V supply is used, connect the 0 V on the external supply to the 0 V terminal, do not use the +15 terminal on the drive, and connect the common of the Ll inputs to the +24 V of the external supply.
(3) DO output: can be configured as an analog or a logic output. Internal voltage +15 V or external +24 V .
(4) Galvanometer or low level relay.
(5) Braking module VW3 A11701, if braking resistor VW3 A58700 is used.
(6) N for ATV $110000 F 1$,

S/L2 for ATV $110000 M 2$.
Nota : fit interference suppressors to all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Variable speed drives for asynchronous motors

Altivar 11
Electromagnetic compatibility

Connections to meet the requirements of EMC standards
 \section*{Principle}

■ Earths between the drive, the motor and the cable shielding must have "high frequency" equipotentiality.

- Use shielded cables with shielding connected to earth at 360° at both ends for the motor cables, and if necessary the braking module and resistor and control-signalling cables. Conduit or metal ducting can be used for part of the shielding length provided that there is no break in continuity.
■ Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Installation diagram for ATV 11eUeeeeE/U/A

1 Earthing plate VW3 A11831 to be fitted on the drive.
2 Altivar 11
3 Non-shielded power supply cable.
4 Non-shielded cable for fault relay contacts output.
5 Fix and earth the shielding of cables 6 and 7 as close as possible to the drive: - strip the shielding,

- use cable clamps of an appropriate size on the parts from which the shielding has been stripped, to attach them to the earthing plate,
- the shielding must be clamped tightly enough to the earthing plate to ensure good contact,
- types of clamp: non-oxidizing metal.

6 Shielded cable (1) for connecting the motor.
7 Shielded cable (1) for connecting the control/signalling system. For applications which require a large number of conductors, small cross-sections must be used ($0.5 \mathrm{~mm}^{2}$).
8 PE cable.
(1) The shielding of cables (6, 7 and 8) must be connected to earth at both ends.

The shielding must be continuous and if intermediate terminals are used, they must be in EMC metal boxes.

Nota : if using an additional input filter, it must be mounted under the drive and connected directly to the line supply via a non-shielded cable. Link 3 on the drive is then via the filter output cable.
Although there is an HF equipotential earth connection between the drive, the motor and the cable shielding, it is still necessary to connect the PE protective conductors (green-yellow) to the appropriate terminals on each of the devices.

Variable speed drives for asynchronous motors
 Altivar 11

Summary of functions

Operating speed range	page 2/21
Acceleration and deceleration ramp times	page 2/21
Second ramp	page 2/21
Deceleration ramp adaptation	page 2/21
Preset speeds	page 2/22
Configuration of analog input Al1	page 2/22
Analog or logic output DO	page 2/22
Forward/reverse operation	page 2/22
2-wire control	page 2/23
3-wire control	page 2/23
Automatic d.c. injection	page 2/23
Switching frequency, noise reduction	page 2/23
Fault relay, unlocking	page 2/23
Fault reset	page 2/24
Automatic restart	page 2/24
Automatic catching a spinning load with speed detection	page 2/24
Controlled stop on loss of line supply	page 2/24
Thermal protection of drive	page 2/25
Motor thermal protection	page 2/25
Monitoring	page 2/25
Incompatible functions	page 2/25
Functions specific to the Asia range	page 2/25
Drive factory setting	

To facilitate the setting up of the drive, the functions have been programmed to the meet the requirements of the most common applications.

Drive functions and I/O:

■ 2-wire control on transition:

- logic input LI1: forward,
- logic input LI2: reverse.
- Preset speeds:
- logic input LI3: preset speeds,
- logic input LI4: preset speeds.
- Analog input Al1: 0-5 V speed reference.

■ Logic/analog output DO: motor frequency (analog).

- Deceleration ramp adaptation.
- Automatic d.c. current injection for 0.5 s to standstill.

Functions of the display and the keys

1 Information is displayed in the form of codes or values in three "7-segment" displays
2 Buttons for scrolling through the menus or modifying values
3 "ESC": button for exiting the menus (no confirmation).
4 "ENT": validation button for entering a menu or confirming the new value selected.
■ Only on the Asia range:
5 "RUN": local control of motor operation.
6 "STOP": local control of motor stopping.
7 Speed reference potentiometer.

Variable speed drives for asynchronous motors
 Altivar 11

Operating speed range
Used to determine the 2 frequency limits which define the speed range permitted by the machine under actual operating conditions.

- Acceleration and deceleration ramp times

Used to define acceleration and deceleration ramp times according to the application and the machine dynamics.

Linear acceleration ramp
Adjustment of $\mathrm{t} 1: 0.1$ to 99.9 s , factory setting 3 s .

Linear deceleration ramp
Adjustment of t2: 0.1 to 99.9 s , factory setting 3 s .

- Second ramp

Used to switch 2 acceleration or deceleration ramp times, which can be adjusted separately. Enabled by means of 1 reassignable logic input.
It is suitable for machines with fast continuous speed correction and high speed lathes with acceleration and deceleration limiting above certain speeds.

Example of switching using logic input LI4

- Deceleration ramp adaptation

Used to automatically increase the deceleration ramp time if the initial setting is too low when the load inertia is taken into account. This function prevents the drive locking if there is an overvoltage on deceleration fault.
If this function is disabled, an appropriate braking module and resistor can be used.

Variable speed drives for asynchronous motors
 Altivar 11

Adjusting the preset speeds with the PowerSuite software workshop for PC

■ Preset speeds

Used to switch preset speed references.
Choice between 2 or 4 preset speeds.
Enabled via 1 or 2 logic inputs.
The preset speeds can be adjusted in increments of 0.1 Hz from 0 Hz to 200 Hz .
They take priority over the reference given via the analog input or, for the Asia range, on the drive's potentiometer.

The speed obtained with inputs LIx and Lly at state 0 is LSP or the speed reference, depending on the level of analog input AI1.

Factory settings:
$1^{\text {st }}$ speed: LSP (low speed or reference)
$2^{\text {th }}$ speed: 10 Hz
$3^{\text {th }}$ speed: 25 Hz
$4^{\text {th }}$ speed: 50 Hz

Example of operation with 4 preset speeds.

- Configuration of analog input Al1

This is used to modify the characteristics, for either voltage or current, of analog input Al1.
Factory setting: 0-5 V (internal power supply only).
Other possible values via external power supplies: 0-10 V, 0-20 mA, 4-20 mA

Analog voltage input

Analog current input
Use with external 10 V
0-20 mA or 4-20 mA use

- Analog or logic output DO

Output DO can be programmed to be a logic output or an analog output. It enables remote signalling of the following information as required:
a frequency threshold reached (logic output),

- reference reached (logic output),
- current threshold reached (logic output),
- current in the motor (analog output),
- motor frequency (analog output).

Diagram with internal power supply
Diagram with external power supply

If it is a logic output: Z is a relay or a low level input.
If it is an analog output: Z can be, for example, a galvanometer.
For a galvanometer with resistance R , the maximum voltage supplied will be:

$$
U \times \frac{R(\Omega)}{R(\Omega)+1000(\Omega)}
$$

■ Direction of operation: forward/reverse
In 2-wire control, forward operation cannot be reassigned to any logic input other than LI1.
In 3 -wire control, stopping cannot be reassigned to any logic input other than LII, and forward operation cannot be reassigned to any logic input other than LI2.
Reverse operation can be disabled for applications with a single direction of motor rotation, by not assigning any logic input to reverse operation.

Variable speed drives for asynchronous motors
 Altivar 11

LI summary	?	(0.3)
LI	Code	Label
LII	FRD	Forward
LI2	RRS	Reverse
LI3	PS2	Select 2 preset speeds
L14	PS4	Select 4 preset speeds

Assignment of logic inputs with PowerSuite Pocket PC

- 2-wire contro

Used to control the direction of operation by means of a maintained contact.
Run (forward or reverse) and stop are controlled by the same logic input.
Enabled by means of 1 or 2 logic inputs (one or two directions).
This function is suitable for all non-reversing and reversing applications.
3 operating modes are possible:

- detection of the state of the logic inputs,
- detection of a change in state of the logic inputs,
- detection of the state of the logic inputs with forward operation always having priority over reverse.

- 3-wire control

Used to control the operating direction and stopping by means of pulsed contacts.
Run (forward or reverse) and stop are controlled by 2 different logic inputs
Enabled by means of 2 or 3 logic inputs (non-reversing or reversing).
This function is suitable for all non-reversing and reversing applications.

Example of operation with 3-wire control

Wiring diagram for 3-wire control

- Automatic d.c. injection

Enables d.c. injection to standstill, which is adjustable from 0 to 1.2 times the value of the drive nominal current (preset at 0.7 In), as soon as operation is no longer controlled and the motor speed is zero:

- either for a period of time, which is adjustable from 0.1 to 30 s (preset at 0.5 s)
- or continuously.

Factory setting: function active with d.c. injection for 0.5 s .
In 3-wire control, d.c. injection is only active if logic input LI1 is active (stop).

■ Switching frequency, noise reduction

High frequency switching of the intermediate d.c. voltage can be used to supply the motor with a current wave with low harmonic distortion.
There are 3 ranges of switching frequency:
a random switching frequency around 2 or 4 kHz (avoids resonance),

- fixed low frequency adjustable to 2 or 4 kHz ,
- fixed high frequency adjustable to 8,12 or 16 kHz .

Factory setting: low frequency set at 4 kHz .
This function is suitable for all applications which require low motor noise.

- Fault relay, unlocking

The fault relay is energised when the drive is powered up and is not faulty.
It opens in the event of a fault or when the drive is powered down.
The drive can be unlocked after a fault in one of the following ways:
口 powering down the drive until the display disappears completely, then powering back up,

- activating the logic input associated with the "fault reset" function, if the function is enabled,
- enabling the "automatic restart" function.

Variable speed drives for asynchronous motors
 Altivar 11

- Fault reset

Used to clear the stored fault and restart the drive if the cause of the fault has disappeared. The fault is cleared by a transition of the logic input LI which is assigned to this function. Factory setting: function inactive.
The restart conditions after a reset to zero are the same as those of a normal power-up. The following faults can be reset: drive thermal overload, motor thermal overload, line supply overvoltage, overvoltage on deceleration, overspeed, line phase loss (1), line supply undervoltage (2).

Adjustment of the behaviour at a fault with PowerSuite Pocket PC

- Automatic restart

Enables the drive to be restarted automatically after locking following a fault if this fault has disappeared and if the other operating conditions permit a restart.
This restart is performed by a series of automatic attempts separated by increasingly longer waiting periods: $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, then 1 minute for the following periods.
If the drive has not restarted after 6 minutes, the drive locks and the procedure is abandoned until the drive is powered down and back up again.
Factory setting: function inactive.
Restart authorised with the following faults: drive thermal overload, motor thermal overload, line supply overvoltage, overvoltage on deceleration, line phase loss (1), line supply undervoltage (2). If the function is enabled, the drive's safety relay remains activated until one of these faults appears. This function requires the speed reference and the direction of operation to be maintained, and is only compatible with 2 -wire level control.
This function is suitable for machines or installations in continuous operation or without monitoring, and where a restart will not endanger equipment or personnel in any way.

- Automatic catching a spinning load with speed detection ("catch-on-the-fly")

Used to restart the motor smoothly after one of the following events:

- loss of line supply or power off,
- fault reset or automatic restart,
- "freewheel stop" triggered by a fault.

On restarting, the effective speed of the motor is detected in order to restart on the ramp at this speed and return to the reference speed. The speed detection time can be up to 1 s depending on the initial deviation.
Factory setting: function inactive.
This function requires the activation of 2-wire level control and is not compatible with the continuous d.c. injection function.
This function is suitable for machines for which the loss of motor speed is negligible during the line supply loss time (machines with high inertia).

- Controlled stop on loss of line supply

Used to define the drive stopping modes at a "loss of line supply" fault.
Three stopping modes are available for selection:

- "freewheel" stop: the drive locks and the motor stops in accordance with the inertia and the resistive torque,
- normal stop: stop with valid deceleration ramp time (deceleration 1 or 2),
- fast stop: the stopping time depends on the inertia and the braking ability of the drive.

Factory setting: "freewheel" stop.

(1) The "line supply phase loss" fault is only accessible on drives with 3-phase power supply, if monitoring of the fault has been enabled (factory setting: enabled).
(2) The drive will restart as soon as the undervoltage fault disappears, whether or not the function is active.

Variable speed drives for asynchronous motors
 Altivar 11

Adjusting the thermal protection with the PowerSuite software workshop for PC

Thermal protection of drive

Direct protection by thermistor, integrated in the drive's power module. This protects the components, even in the event of poor ventilation or excessive ambient temperature. When the fault is detected, it locks the drive.

Motor thermal protection
Motor thermal protection is implemented via continuous calculation of its theoretical temperature rise.
The drive is locked on a fault if this temperature rise exceeds 118% of the nominal temperature rise.
This function is suitable for applications with self-cooled motors and thermal derating based on the rotor frequency.
Nota : the thermal state of the motor is not stored when the drive is powered down.
K coefficient to be applied to the preset Ith (actual Ith $=\mathrm{K} \times$ preset Ith)

- Monitoring

The display shows the state of the drive or, if selected, one of the following values:

- frequency reference,
- output frequency applied to the motor,
- motor current,
- line voltage,
- motor thermal state,
- drive thermal state.

Incompatible functions

The choice of the last function configured is enabled, whatever the configuration of the previous functions.
Application functions can be assigned to the same logic input, in which case one logic input enables a number of functions (for example: direction of operation and 2nd ramp).

A check must be carried out to ensure that the functions are compatible.

- Direction of operation and 2-wire control: forward operation can only be assigned to LI1.
- Direction of operation and 3-wire control: forward operation can only be assigned to LI2.
- Automatic restart: requires the configuration of 2-wire level control. Changing the configuration of the type of control disables automatic restart.
- Automatic catching a spinning load with speed detection:
- requires the configuration of 2 -wire level control. Changing the configuration of the type of control disables automatic catching a spinning load.
- not compatible with continuous d.c. injection braking to a standstill. Configuring this function disables automatic catching a spinning load.

Functions specific to the Asia range

- Local control:

The keypad on the Asia range has 2 additional keys (RUN and STOP) and a potentiometer (speed reference).
The keys and the potentiometer are active if local control is enabled.
The logic and analog inputs are inactive if local control is enabled.
\square Reverse: if local control is active, the reverse function is not visible.
Factory setting: function active.

- Logic inputs:

It is possible to choose the active level of the logic input.
Positive logic: the inputs are active if the signal is $\geq 11 \mathrm{~V}$.
Negative logic: the inputs are active if the signal is $\leq 5 \mathrm{~V}$.
Factory setting: positive logic.

Variable speed drives for asynchronous motors
Altivar 31

Variable speed drives for asynchronous motors Altivar 31

Abstract

Applications The Altivar 31 drive is a frequency inverter for 3-phase squirrel cage asynchronous motors. The Altivar 31 is robust, compact, easy to use and conforms to EN 50178, IEC/EN 61800-2, IEC/EN 61800-3 standards, UL/CSA certification and to C \in marking.

It incorporates functions that are suitable for the most common applications, including: - Materials handling (small conveyors, hoists, etc), - Packing and packaging machines,

■ Specialist machines (mixers, kneaders, textile machines, etc.), ■ Pumps, compressors, fans.

Altivar 31 drives communicate on Modbus and CANopen industrial buses. These two protocols are integrated as standard into the drive.

Altivar 31 drives are supplied with a heatsink for normal environments and ventilated enclosures. Multiple units can be mounted side by side 3 to save space.

Drives are available for motor ratings between 0.18 kW and 15 kW , with four types of power supply:
■ 200 V to 240 V single phase, 0.18 kW to 2.2 kW

- 200 V to 240 V 3 -phase, 0.18 kW to 15 kW
- 380 V to 500 V 3-phase, 0.37 kW to 15 kW

■ 525 V to 600 V 3 -phase, 0.75 kW to 15 kW
Altivar 31 drives are available with a choice of two different Human/Machine interfaces:

- 1 ATV 31 Heoee with displays and menu navigation keys
- 2 ATV 31Heeon with displays, menu navigation keys and local control (Run/ Stop and speed reference set by a potentiometer).

Electromagnetic compatibility EMC

The incorporation of level A EMC filters (conducted and radiated) in ATV 31HeeM2 and ATV 31HeeN4 drives simplifies the installation of machines and provides an economical means of meeting $C \in$ marking requirements.
ATV 31HeoM3X and ATV 31HeeS6X drives are available without EMC filter. Filters are available as an option for customer assembly, if conformity to EMC standards is required.

Functions

The Altivar 31 drive has six logic inputs, three analog inputs, one logic/analog output and two relay outputs.
The main functions integrated in the drive are as follows:

- Motor and drive protection
- Linear, S, U and customised acceleration and deceleration ramps
- +/- speed
- 16 preset speeds
- PI references and regulator
- 2-wire/3-wire control
- Brake sequence
- Automatic catching a spinning load with speed detection and automatic restart
- Fault configuration and stop type configuration
- Saving the configuration in the drive

Several functions can be assigned to one logic input.

Options and accessories

The following options and accessories can be used with the Altivar 31 drive:

- Braking resistors
- Line chokes
- EMC radio interference input filters and output filters
- Plates for mounting on $_$rail
- UL Type 1 conformity kit
- Adaptor plate for replacing an Altivar 28 drive

Various dialogue and communication options 4, 5, 6, 7 can be used with the drive, see pages $2 / 31$ and $2 / 32$.

Characteristics:	References:	Dimensions:
pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors
Altivar 31
Enclosed drives

5

Variable speed drives for asynchronous motors

Altivar 31
Enclosed drives

Applications

The enclosed Altivar 31 drive is suitable for applications requiring:

- IP 55 degree of protection in a hostile environment
- a drive that is ready for use in a motor starter

Once it has been customised, the enclosure can be installed next to the motor. Enclosed drives are available in power ratings from 0.18 kW to 4 kW .
There are two types of power supply:
■ 200 V to 240 V single phase, 0.18 kW and 2.2 kW
■ 380 V to 500 V 3 -phase, 0.37 kW and 4 kW

Customisable enclosed drive

This range allows full customisation of the Human/Machine interface of an enclosure. The IP 55 enclosure includes:

- a drive 1 with external heatsink

■ removable covers for installation of the following components:
6 Vario switch disconnector or GV2 circuit-breaker
73 buttons and/or LEDs with plastic flange $\varnothing 22$, and 1 speed reference potentiometer
8 button for the RJ45 connector with IP 55 cable
9 cable glands for cable routing
The combinations (drive, circuit-breaker, contactor) required for the motor starter function can be found on pages 2/62 and 2/63 .
Example references:

- 3-pole Vario switch disconnector (Vee + KC• 1•Z)
- Selector switch with 3 fixed positions XB5 D33
- LED XB5 AV••
- $2.2 \mathrm{k} \Omega$ potentiometer

These references can be found in our specialist catalogues.
All components must be ordered separately and wired by the customer.

Electromagnetic compatibility EMC

The incorporation of level A EMC filters (conducted and radiated) in ATV 31CeeM2 and ATV 31CeeN4 drives simplifies the installation of machines and provides an economical means of meeting $\subset \in$ marking requirements.

Options and accessories

The following options and accessories can be used with the enclosed Altivar 31 drive:
■ Braking resistors

- Line chokes
- RJ45 connector with IP 55 cable

Various dialogue and communication options 2, 3, 4, 5 can be used with the drive, see pages $2 / 31$ and $2 / 32$.

Characteristics:	References:	Dimensions:	Schemes:
pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$	pages $2 / 58$ to $2 / 61$

Variable speed drives
for asynchronous motors
Altivar 31
Drive kits

Variable speed drives for asynchronous motors

Altivar 31
Drive kits

Abstract

Applications The drive kit is a new addition to the Altivar 31 drives range. The drive kit comprises: - Altivar 31 drive elements (heatsink, power and control subassemblies) - EMC filter - Mechanical fittings

■ Seals required for use in difficult environments (IP 55) The kit is mounted on a metal fixing support with no flange or protective cover. The Altivar 31 drive kit can be built into a floor-standing or wall-mounted enclosure or a machine frame.

The drive kit is available for power ratings from 0.18 kW to 15 kW . There are two types of power supply: ■ 200 V to 240 V single phase, 0.18 kW to 2.2 kW ■ 380 V to 500 V 3 -phase, 0.37 kW to 15 kW

\section*{Electromagnetic compatibility EMC}

The incorporation of level A EMC filters (conducted and radiated) in ATV 31KゃeM2 and ATV $31 \mathrm{~K} \bullet \bullet$ N4 drives simplifies the installation of machines and provides an economical means of meeting $\subset \epsilon$ marking requirements. The drives have been sized to conform to the following standard: IEC/EN61800-3, domestic and industrial environments.

Description

■ Drive kit for power ratings $\leqslant 4 \mathrm{~kW} 1$
The Altivar 31 drive components (heatsink, power and control subassemblies) are fixed by mechanical adaptors 2 and protective fittings.
The unit is supported by a metal plate 3 fixed to the heatsink.
The plate is sealed on all sides 4 .
Once the support has been cut out, the drive kit is fixed to the base of the floorstanding or wall-mounted enclosure by means of this plate.
The power terminals 5 are protected (IP 20).
■ Drive kit for power ratings $\geqslant 5.5 \mathrm{~kW} 6$
The Altivar 31 drive components (heatsink, power and control subassemblies) are fixed by mechanical adaptors 2 and protective fittings.
The metal support plate 3 for the components is fitted with brackets 8 for mounting in a floor-standing or wall-mounted enclosure.
The plate is sealed on all sides 4 .
Two fans are fitted behind the plate under the heatsink.
Additional fixing holes 7 are provided for component mounting (GV2 circuit-breaker, Vario switch disconnector, additional plate, etc.).

Drive kits are supplied with:

- A drilling and cutting template to assist with installation

■ A user's manual with installation instructions and safety precautions.

Options and accessories

The following options and accessories can be used with the Altivar 31 drive kit:

- Braking resistors
- Line chokes

Various dialogue and communication options $9,10,11,12$ can be used with the drive, see pages $2 / 31$ and $2 / 32$.

Characteristics:	References:	Dimensions:	Schemes:
pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$	pages $2 / 58$ to $2 / 61$

Variable speed drives for asynchronous motors
 Altivar 31
 Dialogue options

The Altivar 31 drive communicates with the following options:

- Remote terminal
- PowerSuite software workshop
- Ethernet/Modbus bridge
- Communication gateways

The communication function provides access to the drive's configuration, adjustment, control and signalling functions.

Remote terminal

The Altivar 31 can be connected to a remote terminal.
The remote terminal can be mounted on the door of an enclosure with IP 65 protection on the front panel.
The terminal provides access to the same functions as the display and integral keys on the drive (see page 2/67).

It can be used:

- to control, adjust and configure the drive remotely

■ for visible remote signalling
■ to save and download configurations (4 configuration files can be saved)

Description

1 Display
\square Four 7-segment displays visible at 5 m
\square Displays numeric values and codes
\square The display flashes when a value is stored.
\square The display flashes to indicate a fault on the drive.
2 Use of keys:

- Navigation arrows and ENT, ESC for settings and configurations
- FWD/REV key: reverses the direction of rotation of the motor
\square RUN key: motor run command
\square STOP/RESET key: motor stop command or drive fault reset

Variable speed drives for asynchronous motors

Altivar 31
Communication options

PowerSuite software workshop

PowerSuite advanced dialogue solutions offer the following advantages:

- Display messages in plain text and multiple languages
- Prepare work in design office without connecting the Altivar to the PC
- Save configurations and settings to floppy disk or hard disk and download them to the drive
- Print out settings
- Read and import Altivar 28 files into the Altivar 31.

See pages $3 / 2$ and $3 / 3$.

Ethernet/Modbus bridge

The Altivar 31 can be connected to an Ethernet network via an Ethernet/Modbus bridge.
Ethernet communication is primarily intended for the following applications:

- Coordination between PLCs

■ Local or centralised supervision

- Communication with production management software
- Communication with remote I/O
- Communication with industrial control products

See pages $2 / 50$ and $2 / 51$.

Communication gateways

The Altivar 31 can connect to other communication buses by means of the following gateways:
■ Fipio/Modbus,

- DeviceNet/Modbus
- Profibus DP/Modbus

See pages $2 / 50$ and $2 / 51$.

LA9 P307

Variable speed drives for asynchronous motors

Altivar 31

Environment characteristics

Conforming to standards				Altivar 31 drives have been developed to conform to the strictest international standards and the recommendations relating to electrical industrial control devices (IEC, EN), in particular: low-voltage EN 50178, EMC immunity and EMC conducted and radiated emissions.
EMC immunity				- IEC/EN 61000-4-2 level 3 IEC/EN 61000-4-3 level 3 IEC/EN 61000-4-4 level 4 - IEC/EN 61000-4-5 level 3 (power access) - IEC/EN 61800-3, environments 1 and 2
EMC conducted and radiated emissions for drives				
All				IEC/EN 61800-3, environments: 2 (industrial supply) and 1 (public supply) restricted distribution
ATV 31H018M2...HU15M2, ATV 31C018M2...CU15M2, ATV 31H037N4...HU40N4, ATV 31C037N4...CU40N4				EN 55011 class A group 1, EN 61800-3 category C2 With additional EMC filter: - EN 55022 class B group 1, EN 61800-3 category C1
ATV 31HU22M2, ATV 31CU22M2, ATV 31HU55N4...HD15N4.				EN 55011 class A group 2, EN 61800-3 category C3 With additional EMC filter (1): - EN 55022 class A group 1, EN 61800-3 category C2 - EN 55022 class B group 1, EN 61800-3 category C1
ATV 31H018M3X...HD15M3X, ATV 31H075S6X....HD15S6X				With additional EMC filter (1): - EN 55011 class A group 1, EN 61800-3 category C2 - EN 55022 class B group 1, EN 61800-3 category C1
C $¢$ marking				The drives bear C ϵ marking in accordance with the European low voltage (73/23/EEC and 93/68/EEC) and EMC (89/336/EEC) directives
Product certifications				UL, CSA, NOM 117 and C-Tick
Degree of protection	ATV 31 H ATV 31H	2, ATV 31HeeoN4, 3X, ATV 31HeeeS6X		IP 31 and IP 41 on upper part and IP 21 on connection terminals IP 20 without cover plate on upper part of cover
	ATV 31-0.	2, ATV 31CeeoN4		- IP 55
Degree of pollution				2
Climatic treatment				TC
Vibration resistance Drive without 乙 r rail option				Conforming to IEC/EN 60068-2-6: 1.5 mm peak to peak from 3 to $13 \mathrm{~Hz}, 1 \mathrm{gn}$ from 13 to 150 Hz
Shock resistance				15 gn for 11 ms conforming to IEC/EN 60068-2-27
Relative humidity			\%	$5 . .95$ without condensation or dripping water, conforming to IEC 60068-2-3
Ambient temperature around the unit	Storage Operation ${ }^{\circ} \mathrm{C}$ ATV 31Hee॰			-25... 70
				$-10 \ldots+50$ without derating, with protective cover on top of the drive $-10 \ldots+60$ with derating, without protective cover on top of the drive (see derating curves, page 2/58)
		ATV 31C•0e, ATV 31Kee•	${ }^{\circ} \mathrm{C}$	$-10 \ldots+40$ without derating
Maximum operating altitude			m	1000 without derating (above this, derate the current by 1% per additional 100 m)
Operating position Maximum permanent angle in relation to the normal vertical mounting position				
Drive characteristics				
Output frequency range			Hz	0... 500
Switching frequency			kHz	2...16 adjustable during operation
Speed range				1... 50
Transient overtorque				170-200\% of nominal motor torque (typical value)
Braking torque	With braking	esistor		100% of nominal motor torque continuously and up to 150% for 60 s
	Without bra	resistor		```Value of nominal motor torque (typical value) according to ratings: 30% for > ATV 31\bulletU15 50% for\leqslantATV 31\bulletU150\bullet 100% for\leqslant ATV 31`0750\bullet 150% for\leqslant ATV 31\bullet018M2```
Maximum transient current				150% of the nominal drive current for 60 seconds (typical value)
Voltage/frequency ratio				Sensorless flux vector control with PWM (pulse width modulation) type motor control signal. Factory-set for most constant torque applications. Possible options: specific ratios for pumps and fans, energy saving or constant torque U/f for special motors.
Frequency loop gain				Factory-set with the speed loop stability and gain Possible options for machines with high resistive torque or high inertia, or for machines with fast cycles.
Slip compensation				Automatic whatever the load. Can be suppressed or adjusted.

Presentation: pages 2/26 to $2 / 33$	References: pages 2/38 to 2/41	Dimensions: pages 2/52 to 2/57	Schemes: pages 2/58 to 2/61	Functions:

Electrical characteristics

Power supply	Voltage	V	$200-15 \%$ to $240+10 \%$ single phase for ATV 31 eeeセM2• 200－15\％to $240+10 \%$ 3－phase for ATV 31 •eeッM3X 380－15\％to $500+10 \%$ 3－phase for ATV 31 •eeッN4• $525-15 \%$ to $600+10 \%$ 3－phase for ATV 31 $0 \cdot \bullet$ eS6X
	Frequency	Hz	$50-5 \%$ to $60+5 \%$
Prospective short－circuit current ICC	For drives		
	ATV 31eeeoM2	A	≤ 1000（ICC at connection point）for single phase power supply
	ATV 31H018M3X．．．HU40M3X， ATV 31•037N4．．．•U40N4， ATV 31H075S6X．．．HU40S6X	A	≤ 5000（ICC at connection point）for 3－phase power supply
	ATV 31HU55M3X．．．HD15M3X， ATV 31HU55N4．．．HD15N4， ATV 31KU55N4．．．KD15N4， ATV 31HU55S6X．．．HD15S6X	A	≤ 22000（ICC at connection point）for 3－phase power supply
Output voltage			Maximum 3－phase voltage equal to line supply voltage．
Maximum connection capacity For drives			
and tightening torque of the power supply terminals，motor， braking module and DC bus	ATV 31H018M2．．．H075M2， ATV 31H018M3X．．．HU15M3X		$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (AWG 14) } \\ & 0.8 \mathrm{Nm} \\ & \hline \end{aligned}$
	ATV 31HU11M2．．．HU22M2， ATV 31HU22M3X．．．HU40M3X， ATV 31H037N4．．．HU40N4， ATV 31H075S6X．．．HU40S6X		$\begin{aligned} & 5 \mathrm{~mm}^{2}(\text { AWG 10 }) \\ & 12 \mathrm{Nm} \end{aligned}$
	ATV 31HU55M3X，HU75M3X， ATV 31HU55N4，HU75N4， ATV 31HU55S6X，HU75S6X		$\begin{aligned} & 16 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 2.2 \mathrm{Nm} \end{aligned}$
	ATV 31HD11M3X，HD15M3X， ATV 31HD11N4，HD15N4， ATV 31HD11S6X，HD15S6X		$\begin{aligned} & 25 \mathrm{~mm}^{2} \text { (AWG 3) } \\ & 4 \mathrm{Nm} \end{aligned}$
Electrical isolation			Electrical isolation between power and control（inputs，outputs，power supplies）
Internal supplies available			Short－circuit and overload protection： －One $+10 \mathrm{~V}(0 /+8 \%)$ supply for the reference potentiometer（ 2.2 to $10 \mathrm{k} \Omega$ ），maximum current 10 mA －One＋ 24 V supply（min． 19 V ，max． 30 V ）for logic inputs，maximum current 100 mA
Configurable analog inputs			3 configurable analog inputs AI1，AI2，AI3． －Al1：analog voltage input 0 to +10 V ，impedance $30 \mathrm{k} \Omega$（maximum safe voltage 30 V ） －AI2：analog bipolar voltage input $\pm 10 \mathrm{~V}$ ，impedance $30 \mathrm{k} \Omega$（maximum safe voltage 30 V ） －AI3：analog current input $\mathrm{X}-\mathrm{Y} \mathrm{mA}$ by programming X and Y from 0 to 20 mA ，with impedance 250Ω AIP：potentiometer reference for ATV31 $\bullet \bullet$ A only Max．sampling time： 8 ms 10－bit resolution Precision $\pm 4.3 \%$ Linearity $\pm 0.2 \%$ of maximum value Use： － 100 m maximum with shielded cable － 25 m maximum with unshielded cable
Analog output configurable for voltage，current and logic output			1 analog output configurable for voltage，current． －AOC：analog current output 0 to 20 mA ，maximum load impedance 800Ω AOV：analog voltage output 0 to +10 V ，minimum load impedance 470Ω 8－bit resolution Precision $\pm 1 \%$ Linearity $\pm 0.2 \%$ Only analog output AOC is configurable as a logic output． AOC：operation as logic output 24 V 20 mA max． Max．sampling time： 8 ms
Configurable relay outputs	R1A，R1B，R1C		1 relay logic output，one＂N／C＂contact and one＂N／O＂contact with common point． Minimum switching capacity： 10 mA for $=5 \mathrm{~V}$ ． Maximum switching capacity： on resistive load（ $\cos \varphi=1$ and $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ ）： 5 A for $\sim 250 \mathrm{~V}$ or $-\mathrm{-} 30 \mathrm{~V}$ on inductive load（ $\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ ）： 2 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$ Max．sampling time： 8 ms Switching：100，000 operations
	R2A，R2B		1 relay logic output，one＂ N / C＂contact，contact open on fault． Minimum switching capacity： 10 mA for $=5 \mathrm{~V}$ ． Maximum switching capacity： －on resistive load（ $\cos \varphi=1$ and $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ ）： 5 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$ on inductive load（ $\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ ）： 2 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$ Max．sampling time： 8 ms Switching：100，000 operations

Variable speed drives for asynchronous motors
 \section*{Altivar 31}

Electrical characteristics (continued)
Logic inputs LI

Variable speed drives for asynchronous motors Altivar 31

1 Self-cooled motor: continuous useful torque (1)
2 Force-cooled motor: continuous useful torque
3 Transient overtorque 1.7 to 2 Tn
4 Torque in overspeed at constant power (2)

Torque characteristics (typical curves)

The curves below define the available continuous torque and transient overtorque for both force-cooled and self-cooled motors. The only difference is in the ability of the motor to provide a high continuous torque at less than half the nominal speed

Special uses

Use with a motor with a different rating to that of the drive
The device can supply any motor which has a power rating lower than that for which it is designed.
For motor ratings slightly higher than that of the drive, check that the current taken does not exceed the continuous output current of the drive.

Test on a low power motor or without a motor

In a testing or maintenance environment the drive can be checked without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives). This use requires deactivation of motor phase loss detection.

Connecting motors in parallel

The rating of the drive must be greater than or equal to the sum of the currents of the motors to be connected to the drive.
In this case, external thermal protection must be provided for each motor using probes or LR2 thermal bimetal overload relays designed for a 1.2 In motor.
If the number of motors in parallel is greater than or equal to 3 , it is advisable to install a 3-phase choke between the drive and the motors.

Switching the motor at the drive output

The drive can be switched when locked or unlocked. If the drive is switched on-thefly (drive unlocked), the motor is controlled and accelerates until it reaches the reference speed smoothly following the acceleration ramp.
This use requires configuration of automatic catching a spinning load ("catch on the fly") and activation of the function which manages the presence of a downstream contactor.

Example: breaking of downstream contactor

t1: deceleration without ramp (freewheel)
t2: acceleration with ramp
Typical applications: breaking safety circuit at drive outputs, "bypass" function, switching of motors connected in parallel.
(1) For power ratings $\leq 250 \mathrm{~W}$, motor derating is less important (20% instead of 50% at very low frequencies).
(2) The nominal frequency of the motor and the maximum output frequency can be adjusted between 40 and 500 Hz .
Note: Check the mechanical overspeed characteristics of the selected motor with the manufacturer.

Presentation:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors

Altivar 31

ATV 31H037M2

ATV 31HU40M3X

ATV 31HU75N4

ATV 31HD15N4A

Drives with heatsink (frequency range from 0.5 to 500 Hz)

Mot		Line supply				Altivar 31				
Power indicated on rating plate (1)		Line c (2)	at U2	Apparent power	Max. prospective line Isc (4)	Nominal current 4 kHz	Max. transient current for 60 s	Power dissipated at nominal load	Reference (5)	Weight
kW	HP	A	A	kVA	kA	A	A	W		kg
Single phase supply voltage: $200 . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, with integrated EMC filters										
0.18	0.25	3.0	2.5	0.6	1	1.5	2.3	24	ATV 31H018M2 (6)	1.500
0.37	0.5	5.3	4.4	1	1	3.3	5	41	ATV 31H037M2 (6)	1.500
0.55	0.75	6.8	5.8	1.4	1	3.7	5.6	46	ATV 31H055M2 (6)	1.500
0.75	1	8.9	7.5	1.8	1	4.8	7.2	60	ATV 31H075M2 (6)	1.500
1.1	1.5	12.1	10.2	2.4	1	6.9	10.4	74	ATV 31HU11M2 (6)	1.800
1.5	2	15.8	13.3	3.2	1	8	12	90	ATV 31HU15M2 (6)	1.800
2.2	3	21.9	18.4	4.4	1	11	16.5	123	ATV 31HU22M2 (6)	3.100

3-phase supply voltage: $200 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, without EMC filters (7)

0.18	0.25	2.1	1.9	0.7	5	1.5	2.3	23	ATV 31H018M3X (6)	1.300
0.37	0.5	3.8	3.3	1.3	5	3.3	5	38	ATV 31H037M3X (6)	1.300
0.55	0.75	4.9	4.2	1.7	5	3.7	5.6	43	ATV 31H055M3X (6)	1.300
0.75	1	6.4	5.6	2.2	5	4.8	7.2	55	ATV 31H075M3X (6)	1.300
$\mathbf{1 . 1}$	1.5	8.5	7.4	3	5	6.9	10.4	71	ATV 31HU11M3X (6)	1.700
$\mathbf{1 . 5}$	2	11.1	9.6	3.8	5	8	12	86	ATV 31HU15M3X (6)	1.700
2.2	3	14.9	13	5.2	5	11	16.5	114	ATV 31HU22M3X (6)	1.700
3	-	19.1	16.6	6.6	5	13.7	20.6	146	ATV 31HU30M3X (6)	2.900
4	5	24.2	21.1	8.4	5	17.5	26.3	180	ATV 31HU40M3X (6)	2.900
5.5	7.5	36.8	32	12.8	22	27.5	41.3	292	ATV 31HU55M3X (6)	6.400
7.5	10	46.8	40.9	16.2	22	33	49.5	388	ATV 31HU75M3X (6)	6.400
11	15	63.5	55.6	22	22	54	81	477	ATV 31HD11M3X (6)	10.500
15	20	82.1	71.9	28.5	22	66	99	628	ATV 31HD15M3X (6)	10.500

3-phase supply voltage: $380 . . .500 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, with integrated EMC filters

0.37	0.5	2.2	1.7	1.5	5	1.5	2.3	32	ATV 31H037N4 (6)	1.800
0.55	0.75	2.8	2.2	1.8	5	1.9	2.9	37	ATV 31H055N4 (6)	1.800
0.75	1	3.6	2.7	2.4	5	2.3	3.5	41	ATV 31H075N4 (6)	1.800
$\mathbf{1 . 1}$	1.5	4.9	3.7	3.2	5	3	4.5	48	ATV 31HU11N4 (6)	1.800
1.5	2	6.4	4.8	4.2	5	4.1	6.2	61	ATV 31HU15N4 (6)	1.800
2.2	3	8.9	6.7	5.9	5	5.5	8.3	79	ATV 31HU22N4 (6)	3.100
3	-	10.9	8.3	7.1	5	7.1	10.7	125	ATV 31HU30N4 (6)	3.100
4	5	13.9	10.6	9.2	5	9.5	14.3	150	ATV 31HU40N4 (6)	3.100
5.5	7.5	21.9	16.5	15	22	14.3	21.5	232	ATV 31HU55N4 (6)	6.500
7.5	10	27.7	21	18	22	17	25.5	269	ATV 31HU75N4 (6)	6.500
11	15	37.2	28.4	25	22	27.7	41.6	397	ATV 31HD11N4 (6)	11.000
15	20	48.2	36.8	32	22	33	49.5	492	ATV 31HD15N4 (6)	11.000

3-phase supply voltage: $525 . . .600 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, without EMC filters (7)

0.75	1	8	2.4	2.5	5	1.7	2.6	36	ATV 31H075S6X	1.700
1.5	2	8	4.2	4.4	5	2.7	4.1	48	ATV 31HU15S6X	1.700
2.2	3	6.4	5.6	5.8	5	3.9	5.9	62	ATV 31HU22S6X	2.900
4	5	10.7	9.3	9.7	5	6.1	9.2	94	ATV 31HU40S6X	2.900
5.5	7.5	16.2	14.1	15	22	9	13.5	133	ATV 31HU55S6X	6.200
7.5	10	21.3	18.5	19	22	11	16.5	165	ATV 31HU75S6X	6.200
11	15	27.8	24.4	25	22	17	25.5	257	ATV 31HD11S6X	10.000
15	20	36.4	31.8	33	22	22	33	335	ATV 31HD15S6X	10.000

(1) These power ratings are for a maximum switching frequency of 4 kHz , in continuous operation. The switching frequency is adjustable from 2 to 16 kHz .
Above 4 kHz , derate the nominal drive current. The nominal motor current should not exceed this value: see derating curve on page 2/60.
(2) Typical value for a 4-pole motor and a maximum switching frequency of 4 kHz , with no additional line choke, for the max. prospective line current.
(3) Nominal supply voltages, min. U1, max. U2 (200-240 V; 380-500 V; 525-600 V).
(4) If line Isc is greater than the values in the table, add line chokes (see page 2/45).
(5) To order a drive intended for wire guiding applications, add a \boldsymbol{T} to the end of the reference.
(6) The drive can also be ordered complete with potentiometer. In this case add the letter \boldsymbol{A} to the reference for the drive you require (e.g. ATV 31H018M2A).
(7) Optional EMC filter, see pages 2/46 and 2/47.

Presentation: pages $2 / 26$ to $2 / 33$	Characteristics: pages $2 / 34$ to $2 / 37$	Dimensions: pages $2 / 52$ to $2 / 57$	Schemes: pages $2 / 58$ to 2/61	Functions:

Variable speed drives for asynchronous motors

Altivar 31
Enclosed drives

ATV 31C/Hoooe

Customisable enclosed drives (frequency range from 0.5 to 500 Hz)

Mot		Line supply				Altivar 31				
Power indicated on rating plate (1)		Line	urrent (2) at U2	Apparent Max. power prospective line Isc (3)		Nominal current 4 kHz	Max. transient current for 60 s	Power dissipated at nominal load	Reference (4)	Weight
kW	HP	A	A	KVA	kA	A	A	W		kg
Single phase supply voltage: $200 . .240 \mathrm{~V}$ (5) $\mathbf{5 0 / 6 0 ~ H z ~ w i t h ~ i n t e g r a t e d ~ E M C ~ f i l t e r s ~}$										
0.18	0.25	3	2.5	0.6	1	1.5	2.3	24	ATV 31C018M2	6.300
0.37	0.5	5.3	4.4	1	1	3.3	5	41	ATV 31C037M2	6.300
0.55	0.75	6.8	5.8	1.4	1	3.7	5.6	46	ATV 31C055M2	6.300
0.75	1	8.9	7.5	1.8	1	4.8	7.2	60	ATV 31C075M2	6.300
1.1	1.5	12.1	10.2	2.4	1	6.9	10.4	74	ATV 31CU11M2	8.800
1.5	2	15.8	13.3	3.2	1	8	12	90	ATV 31CU15M2	8.800
2.2	3	21.9	18.4	4.4	1	11	16.5	123	ATV 31CU22M2	10.700

3-phase supply voltage: $\mathbf{3 8 0} \ldots \mathbf{5 0 0} \mathbf{V}$ (5) $\mathbf{5 0 / 6 0} \mathbf{~ H z}$ with integrated EMC filters

| 0.37 | 0.5 | 2.2 | 1.7 | 1.5 | 5 | 1.5 | 2.3 | 32 | ATV 31C037N4 | 8.800 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.55 | 0.75 | 2.8 | 2.2 | 1.8 | 5 | 1.9 | 2.9 | 37 | ATV 31C055N4 | 8.800 |
| 0.75 | 1 | 3.6 | 2.7 | 2.4 | 5 | 2.3 | 3.5 | 41 | ATV 31C075N4 | 8.800 |
| 1.1 | 1.5 | 4.9 | 3.7 | 3.2 | 5 | 3 | 4.5 | 48 | ATV 31CU11N4 | 8.800 |
| 1.5 | 2 | 6.4 | 4.8 | 4.2 | 5 | 4.1 | 6.2 | 61 | ATV 31CU15N4 | 8.800 |
| 2.2 | 3 | 8.9 | 6.7 | 5.9 | 5 | 5.5 | 8.3 | 79 | ATV 31CU22N4 | 10.700 |
| 3 | - | 10.9 | 8.3 | 7.1 | 5 | 7.1 | 10.7 | 125 | ATV 31CU30N4 | 10.700 |
| 4 | 5 | 13.9 | 10.6 | 9.2 | 5 | 9.5 | 14.3 | 150 | ATV 31CU40N4 | 10.700 |

Ready-assembled enclosed drives (frequency range from 0.5 to 500 Hz)

Please consult your Regional Sales Office.
(1) These power ratings are for a maximum switching frequency of 4 kHz , in continuous operation. The switching frequency is adjustable from 2 to 16 kHz .
Above 4 kHz , derate the nominal drive current. The nominal motor current should not exceed this value: see derating curve on page 2/60.
(2) Typical value for a 4-pole motor and a maximum switching frequency of 4 kHz , with no additional line choke, for the max. prospective line current
(3) If line Isc is greater than the values in the table, add line chokes (see page 2/45).
(4) To order a drive intended for wire guiding applications, add a \boldsymbol{T} to the end of the reference.
(5) Nominal supply voltages, min. U1, max. U2 (200-240 V; 380-500 V).

Presentation:	Characteristics:	Dimensions:	Schemes:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 52$ to $2 / 57$	pages $2 / 58$ to $2 / 61$

Variable speed drives for asynchronous motors

Altivar 31
Drive kits

ATV 31 K 0000

ATV 31K00000

3-phase supply voltage: 380...500 V (5) 50/60 Hz with integrated filters										
0.37	0.5	2.2	1.7	1.5	5	1.5	2.3	32	ATV 31K037N4	8.800
0.55	0.75	2.8	2.2	1.8	5	1.9	2.9	37	ATV 31K055N4	8.800
0.75	1	3.6	2.7	2.4	5	2.3	3.5	41	ATV 31K075N4	8.800
1.1	1.5	4.9	3.7	3.2	5	3	4.5	48	ATV 31KU11N4	8.800
1.5	2	6.4	4.8	4.2	5	4.1	6.2	61	ATV 31KU15N4	8.800
2.2	3	8.9	6.7	5.9	5	5.5	8.3	79	ATV 31KU22N4	10.700
3	-	10.9	8.3	7.1	5	7.1	10.7	125	ATV 31KU30N4	10.700
4	5	13.9	10.6	9.2	5	9.5	14.3	150	ATV 31KU40N4	10.700
5.5	7.5	21.9	16.5	15	22	14.3	21.5	232	ATV 31KU55N4	16.500
7.5	10	27.7	21	18	22	17	25.5	269	ATV 31KU75N4	16.500
11	15	37.2	28.4	25	22	27.7	41.6	397	ATV 31KD11N4	23.000
15	20	48.2	36.8	32	22	33	49.5	492	ATV 31KD15N4	23.000

[^10]| Presentation: | Characteristics: | Dimensions: | Fchemes: |
| :--- | :--- | :--- | :--- |
| pages $2 / 26$ to $2 / 33$ | pages $2 / 34$ to $2 / 37$ | pages $2 / 52$ to $2 / 57$ | pages $2 / 58$ to $2 / 61$ |

Plates for mounting on \downarrow ¢ rail			
Description	For drives	Reference	Weight kg
Plate for mounting on ᄂ 「rail, width 35 mm	ATV 31H018M2,ATV 31H037M2, ATV 31H055M2, ATV 31H075M2, ATV 31H018M3X, ATV 31H037M3X, ATV 31H055M3X, ATV 31H075M3X	VW3 A11851	0.200
	ATV 31HU11M2, ATV 31HU15M2, ATV 31HU11M3X, ATV 31HU15M3X, ATV 31HU22M3X, ATV 31H037N4, ATV 31H055N4, ATV 31H075N4, ATV 31HU11N4, ATV 31HU15N4, ATV 31H075S6X, ATV 31HU15S6X	VW3 A31852	0.220
UL Type 1 conformity kits (1)			
Description	For drives	Reference	Weight kg
Mechanical device fixing to the underside of the Altivar 31	ATV 31H018M2,ATV 31H037M2, ATV 31H055M2, ATV 31H075M2	VW3 A31812	0.400
	ATV 31H018M3X, ATV 31H037M3X, ATV 31H055M3X, ATV 31H075M3X	VW3 A31811	0.400
	ATV 31HU11M3X, ATV 31HU15M3X	VW3 A31813	0.400
	ATV 31HU11M2, ATV 31HU15M2, ATV 31HU22M3X, ATV 31H037N4, ATV 31H055N4, ATV 31H075N4, ATV 31HU11N4, ATV 31HU15N4, ATV 31H075S6X, ATV 31HU15S6X	VW3 A31814	0.500
	ATV 31HU22M2, ATV 31HU30M3X, ATV 31HU40M3X, ATV 31HU22N4, ATV 31HU30N4, ATV 31HU40N4, ATV 31HU22S6X, ATV 31HU40S6X	VW3 A31815	0.500
	ATV 31HU55M3X, ATV 31HU75M3X, ATV 31HU55N4, ATV 31HU75N4, ATV 31HU55S6X, ATV 31HU75S6X	VW3 A31816	0.900
	ATV 31HD11M3X, ATV 31HD15M3X, ATV 31HD11N4, ATV 31HD15N4, ATV 31HD11S6X, ATV 31HD15S6X	VW3 A31817	1.200

Altivar 28 substitution kits

Description	For drives	Reference	Weight kg
Mechanical adapters allowing an ATV 31 to be used in place of an ATV 28 of the same rating (using the same fixing holes)	ATV 31H018M2,ATV 31H037M2, ATV 31H055M2, ATV 31H075M2 ATV 31H018M3X, ATV 31H037M3X, ATV 31H055M3X, ATV 31H075M3X	VW3 A31821	

ATV 31HU11M2, ATV 31HU15M2,
ATV 31HU11M3X, ATV 31HU15M3X,
ATV 31HU22M3X,
ATV 31H037N4, ATV 31HU15N4
ATV 31H075S6X, ATV 31HU15S6X
ATV 31HU55N4, ATV 31HU75N4,
VW3 A31823 -
ATV 31HU55M3X, ATV 31HU75M3X,
ATV 31HU55S6X, ATV 31HU75S6X
Remote terminal

Description	Reference	Weight kg
For ATV 31 drives of all ratings, assembly comprising:	VW3 A31101	-

- terminal, cable fitted with 2 connectors
- seal and screws for IP 65 mounting on an enclosure door

Documentation

Description	Reference	Weight kg	
Simplified ATV 31 user's manual and CD-ROM, comprising: - a User's manual for the drives - a User's manual for Modbus and CANopen	Supplied with the drive	-	-
International Technical Manual (ITM)	CD-ROM	DCI CD39811	0.150

Variable speed drives for asynchronous motors

Altivar 31
Options: braking resistors

Presentation

Characteristics						VW3 A66704
Type of drive			VW3 A58702 to VW3 A58704	VW3 A58732 to VW3 A58735	VW3 A58736 and VW3 A58737	
Ambient air temperature		${ }^{\circ} \mathrm{C}$	40			
Degree of protection of enclosure			IP 00	IP 30		IP 23
Resistor protection			None	By temperature-controlled switch (1)		By thermal relay (2)
Temperature-controlled switch	Trip temperature	${ }^{\circ} \mathrm{C}$	-	$130 \pm 5 \%$	$260 \pm 14 \%$	-
	Max. voltage - max. current		-	$\sim 110 \mathrm{~V}-0.3 \mathrm{~A}$	$\sim 220 \mathrm{~V}-6 \mathrm{~A}$	-
	Min. voltage - min. current		-	$=-24 \mathrm{~V}-0.01 \mathrm{~A}$		-
	Maximum contact resistance	$\mathrm{m} \Omega$	-	150	50	-
Load factor of resistors			The value of the average power that can be dissipated by the resistor in the enclosure at $40^{\circ} \mathrm{C}$ is determined for a braking load factor corresponding to the majority of common applications: - braking for 2 seconds with a torque of 0.6 Tn every 40 seconds - braking for 0.8 second with a torque of 1.5 Tn every 40 seconds			
Load factor of drives			The internal circuits for drives used for braking on external resistors are sized for the following cycles. If they are exceeded, the drive will lock and display a fault. - 1.5 Tn for 60 seconds per 140 -second cycle - Tn continuously			

(1) The contact must be connected in sequence (used for signalling or for controlling the line contactor).
(2) To be ordered separately, 8 A rating.

Load factor and determining the nominal power

Load factor: $\frac{\mathrm{t}}{\mathrm{T}}$
t: braking time in s
T : cycle time in s
Chart 1
Graph of the average power as a function of the braking torque for a load factor.

Example:

Motor of power Pm $=4 \mathrm{~kW}$
Motor efficiency $\eta=0.85$
Braking torque $\mathrm{Tb}=0.6 \mathrm{Tn}$
Braking time $t=10 \mathrm{~s}$
Cycle time T $=50 \mathrm{~s}$
Load factor $L f=\frac{t}{T}=20 \%$
Use chart 1 to determine the coefficient K1
corresponding to a braking torque of 0.6 Tn and a load
factor of 20%. K1 $=0.06$

The value of the average power that can be dissipated by the resistor in the enclosure at $40^{\circ} \mathrm{C}$ is determined for a braking load factor corresponding to the majority of common applications. This load factor is defined above.
For a specific application (e.g. handling), the nominal resistor power has to be redefined by taking account of the new load factor.

Chart 2
Permissible resistor overload as a function of time (characteristic curve).

Use chart 2 to determine the coefficient K2 corresponding to a braking time of 10 seconds.
$\mathrm{K} 2=7$
The nominal resistor power (Pn) must be greater than:
$\mathrm{Pn}=\mathrm{Pm} \times \mathrm{K} 1 \times \eta\left(1+\frac{1}{\mathrm{~K} 2 \times \mathrm{Lf}}\right)=4,10^{3} \times 0,06 \times 0,85\left(1+\frac{1}{7 \times 0,2}\right)=350 \mathrm{~W}$

Variable speed drives
for asynchronous motors
Altivar 31
Options: braking resistors

VW3 A58702

VW3 A5873
$\left.\begin{array}{lllllll}\hline \text { For drives } & \begin{array}{l}\text { Min. } \\ \text { resistor } \\ \text { value }\end{array} & \begin{array}{l}\text { Ohmic } \\ \text { value }\end{array} & \begin{array}{l}\text { Average power } \\ \text { available at }\end{array} & \text { Reference } & \text { Weight } \\ & \text { (1) } & \Omega & \text { 40C(2) } & \text { 50C }\end{array}\right)$
(1) Depends on the drive rating.
(2) Power that can be dissipated by the resistor at the maximum temperature of $115^{\circ} \mathrm{C}$, corresponding to a maximum temperature rise of $75^{\circ} \mathrm{C}$ in a $40^{\circ} \mathrm{C}$ environment.
(3) The various ohmic values are obtained as a function of the connection, described in the resistor instructions.

Variable speed drives for asynchronous motors

 characteristicsAltivar 31
Options: line chokes

Presentation

These chokes provide improved protection against overvoltages on the line supply and reduce harmonic distortion of the current produced by the drive.

The recommended chokes are used to limit the line current.
They have been developed to conform to standard EN 50178 (VDE 0160 level 1 high energy overvoltages on the line supply).

The values of the chokes are defined for a voltage drop between 3% and 5% of the nominal line voltage. Values higher than this will cause loss of torque.

The use of line chokes is recommended in particular under the following circumstances:
■ Line supply with significant disturbance from other equipment (interference, overvoltages)
■ Line supply with voltage imbalance between phases $>1.8 \%$ of nominal voltage
■ Drive supplied with power by a line with very low impedance (in the vicinity of power transformers 10 times more powerful than the drive rating)

The prospective short-circuit current at the point of connection of the drive must not exceed the maximum value indicated in the tables of references. The use of line chokes allows connection on the following networks:

- Max. Isc 22 kA for 200/240 V
- Max. Isc 65 kA for 380/500 V and 525/600 V

■ Installation of a large number of frequency converters on the same line

- Reduction of overload in $\cos \varphi$ correction capacitors, if the installation has a power factor correction unit

Type of line choke			$\begin{aligned} & \text { VZ1 L00 } \\ & \text { 4M010 } \end{aligned}$	VZ1 L00 7UM50	VZ1 L01 8UM20	VW3 A6 6501	VW3 A6 6502	VW3 A6 6503	VW3 A6 6504	VW3 A6 6505	VW3 A6 6506
Characteristics											
Conforming to standards			EN 50178 (VDE 0160 level 1 high energy overvoltages on the line supply)								
Voltage drop			Between 3 and 5\% of the nominal line voltage. Values higher than this will cause loss of torque.								
Degree of protection	Choke		IP 00								
	Terminals		IP 20						IP 10		IP 00
Value of choke		mH	10	5	2	10	4	2	1	0.5	0.3
Nominal current		A	4	7	18	4	10	16	30	60	100
Loss		W	17	20	30	45	65	75	90	80	-

Variable speed drives for asynchronous motors

Altivar 31
Options: line chokes

VW3 A6650•

Altivar 31					Choke	
Single phase or 3-phase	Line current				Reference	Weight
	without choke		with			
	at U min. at U max. at U min. at U max.					
	A	A	A	A		kg
Single phase supply voltage: $200 . .240 \mathrm{~V}(1) \mathbf{5 0 / 6 0 ~ H z}$						
ATV 31H/C/K018M2	3.0	2.5	2.1	1.8	VZ1 L004M010	0.630
ATV 31H/C/K037M2	5.3	4.4	3.9	3.3		
ATV 31H/C/K055M2	6.8	5.8	5.2	4.3	VZ1 L007UM50	0.880
ATV 31H/C/K075M2	8.9	7.5	7.0	5.9		
ATV 31H/C/KU11M2	12.1	10.2	10.2	8.6	VZ1 L018UM20	1.990
ATV 31H/C/KU15M2	15.8	13.3	13.4	11.4		
ATV 31H/C/KU22M2	21.9	18.4	19.2	16		

3-phase supply voltage: $200 . . .240 \mathrm{~V}$ (1) $50 / 60 \mathrm{~Hz}$

ATV 31H018M3X	2.1	1.9	1	0.9	VW3 A66501	1.500
ATV 31H037M3X	3.8	3.3	1.9	1.6		
ATV 31H055M3X	4.9	4.2	2.5	2.2		
ATV 31H075M3X	6.4	5.6	3.3	2.9		
ATV 31HU11M3X	8.5	7.4	4.8	4.2	VW3 A66502	3.000
ATV 31HU15M3X	11.1	9.6	6.4	5.6		
ATV 31HU22M3X	14.9	13	9.2	8	VW3 A66503	3.500
ATV 31HU30M3X	19.1	16.6	12.3	10.7		
ATV 31HU40M3X	24.2	21.1	16.1	14	VW3 A66504	6.000
ATV 31HU55M3X	36.8	32	21.7	19		
ATV 31HU75M3X	46.8	40.9	29	25.2		
ATV 31HD11M3X	63.5	55.6	41.6	36.5	VW3 A66505	11.000
ATV 31HD15M3X	82.1	71.9	55.7	48.6		

3-phase supply voltage: $380 . . .500 \mathrm{~V}$ (1) $50 / 60 \mathrm{~Hz}$

ATV 31H/C/K037N4	2.2	1.7	1.1	0.9	VW3 A66501	1.500
ATV 31H/C/K055N4	2.8	2.2	1.4	1.2		
ATV 31H/C/K075N4	3.6	2.7	1.8	1.5		
ATV 31H/C/KU11N4	4.9	3.7	2.6	2		
ATV 31H/C/KU15N4	6.4	4.8	3.4	2.6		
ATV 31H/C/KU22N4	8.9	6.7	5	4.1	VW3 A66502	3.000
ATV 31H/C/KU30N4	10.9	8.3	6.5	5.2		
ATV 31H/C/KU40N4	13.9	10.6	8.5	6.6		
ATV 31H/KU55N4	21.9	16.5	11.7	9.3	VW3 A66503	3.500
ATV 31H/KU75N4	27.7	21	15.4	12.1		
ATV 31H/KD11N4	37.2	28.4	22.5	18.1	VW3 A66504	6.000
ATV 31H/KD15N4	48.2	36.8	29.6	23.3		

3-phase supply voltage: $525 . . .600 \mathrm{~V}$ (1) $50 / 60 \mathrm{~Hz}$

ATV 31H075S6X	2.5	2.4	1.4	1.4	VW3 A66501	1.500	
ATV 31HU15S6X	4.4	4.2	2.4	2.3			
ATV 31HU22S6X	5.8	5.6	3.8	3.6			
ATV 31HU40S6X	9.7	9.3	6	5.8	VW3 A66502	3.000	
ATV 31HU55S6X	14.7	14.1	7.8	7.5		3.500	
ATV 31HU75S6X	19.3	18.5	11	10.7	VW3 A66503	3	
ATV 31HD11S6X	25.4	24.4	15	14.4			
ATV 31HD15S6X	33.2	31.8	21.1	20.6	VW3 A66504	6.000	

(1) Nominal supply voltage: U min....U max.

Variable speed drives for asynchronous motors
 Altivar 31
 Options: additional EMC input filters

Presentation

Function

The Altivar 31 has built-in radio interference input filters to meet EMC "product" standards for variable speed drives IEC/EN 61800-3 and to comply with the European EMC (electromagnetic compatibility) directive.

The additional filters enable the drives to meet more stringent requirements: these filters are designed to reduce conducted emissions on the line supply below the limits of standards EN 55011 class A (1) or EN 55022 class B.

These additional filters are installed underneath ATV 31H drives. They can be installed at the side of the product in the case of ATV 31C and K drives. They act as supports for the drives and are fixed to them via tapped holes.

Use according to the type of network

Use of these additional filters is only possible on TN (neutral connection) and TT (neutral to earth) type networks.

The standard IEC 61800-3, annex D2.1, indicates that on IT (impedance earthed or isolated neutral) networks the filters can randomise the operation of insulation monitors.

The efficiency of additional filters on this type of network also depends on the nature of the impedance between neutral and earth and is therefore unpredictable.

If a machine is to be installed on an IT network, one solution is to insert an isolation transformer and to connect locally to the machine on a TN or TT network.
(1) See page 2/47.

Characteristics

Conforming to standards			EN 133200
Degree of protection			IP 21 and IP 41 on upper part
Maximum relative humidity			93\% without condensation or dripping water conforming to IEC 68-2-3
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	-10... 60
	Storage	${ }^{\circ} \mathrm{C}$	-25... 70
Maximum operating altitude	Without derating	m	1000 (above this, derate the current by 1% per additional 100 m)
Vibration resistance	Conforming to IEC 60068-2-6		1.5 mm peak to peak from 3 to 13 Hz 1 gn peak from 13 to 150 Hz
Shock resistance	Conforming to IEC 60068-2-27		15 gn for 11 ms
Max. nominal voltage	$50 / 60 \mathrm{~Hz}$ single phase	V	$240+10 \%$
	$50 / 60 \mathrm{~Hz} 3$-phase	V	$\begin{aligned} & 240+10 \% \\ & 500+10 \% \\ & 600+10 \% \end{aligned}$

Variable speed drives for asynchronous motors

Altivar 31
Options: additional EMC input filters

For drives	Filter					
Reference	Maximum length of shielded cable		$\begin{aligned} & \hline \mathbf{I n} \\ & (2) \end{aligned}$	$\begin{aligned} & \text { II } \\ & (3) \end{aligned}$	Reference	Weight
	EN 55011	EN 55022				
	class A (1)	class B (1)				
	m	m	A	mA		kg
Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
ATV 31H/C/K018M2	50	20	9	100	VW3 A31401	0.600
ATV 31H/C/K037M2						
ATV 31H/C/K055M2						
ATV 31H/C/K075M2						
ATV 31H/C/KU11M2	50	20	16	150	VW3 A31403	0.775
ATV 31H/C/KU15M2						
ATV 31H/C/KU22M2	50	20	22	80	VW3 A31405	1.130
3-phase supply voltage: $200 . . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
ATV 31H018M3X	5	-	7	7	VW3 A31402	0.650
ATV 31H037M3X						
ATV 31H055M3X						
ATV 31H075M3X						
ATV 31HU11M3X	5	-	15	15	VW3 A31404	1.000
ATV 31HU15M3X						
ATV 31HU22M3X						
ATV 31HU30M3X	5	-	25	35	VW3 A31406	1.650
ATV 31HU40M3X						
ATV 31HU55M3X	5	-	47	45	VW3 A31407	3.150
ATV 31HU75M3X						
ATV 31HD11M3X	5	-	83	15	VW3 A31408	5.300
ATV 31HD15M3X						
3-phase supply voltage: 380... $500 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
ATV 31H/C/K037N4	50	20	15	15	VW3 A31404	1.000
ATV 31H/C/K055N4						
ATV 31H/C/K075N4						
ATV 31H/C/KU11N4						
ATV 31H/C/KU15N4						
ATV 31H/C/KU22N4	50	20	25	35	VW3 A31406	1.650
ATV 31H/C/KU30N4						
ATV 31H/C/KU40N4						
ATV 31H/KU55N4	50	20	47	45	VW3 A31407	3.150
ATV 31H/KU75N4						
ATV 31H/KD11N4	50	20	49	45	VW3 A31409	4.750
ATV 31H/KD15N4						

(1) The filter selection tables show the length limits for the shielded cables connecting the motors to the drives for a switching frequency of 2 to 16 kHz . These limits are given as examples only as they vary depending on the interference capacity of the motors and the cables used. If motors are connected in parallel, it is the total length that should be taken into account.
(2) In: Nominal filter current.
(3) II: Maximum earth leakage current at 50 Hz .

Variable speed drives for asynchronous motors

Altivar 31
Options: output filters and motor chokes

Presentation

LR filter cell

This cell comprises 3 high frequency chokes and 3 resistors.

Motor choke

For standard motor cables longer than 100 m (50 m for shielded cables), a choke can be used to limit overvoltages at the motor terminals.

By inserting an output filter between the drive and the motor, it is possible to:
■ Limit the $\mathrm{dv} / \mathrm{dt}$ at the motor terminals (500 to $1500 \mathrm{~V} / \mu \mathrm{s}$), for cables longer
than 50 m
■ Filter interference caused by opening a contactor placed between the filter and
the motor
■ Reduce the motor earth leakage current
When using a downstream contactor between the drive and the motor, ferrite suppressors should be fitted to each motor cable for certain drive ratings supplied with a single phase or 3-phase 200 V supply.

Principle

LC filter cell

This cell comprises 3 high frequency chokes and 3 capacitors.

Ferrite suppressors for downstream contactor opening

Characteristics (1)						
			LR filter cells (2)	LC filter cells		Motor chokes
			VW3 A5845•	VW3 A6641•		VW3 A6650•
Drive switching frequency		kHz	$0.5 \ldots 4$ $\max .$	2 or 4	12	4
Length of motor cable	Shielded cables	m	$\leqslant 100$	$\leqslant 100$	$\leqslant 50$	$\leqslant 100$
	Unshielded cables	m	-	$\leqslant 200$	$\leqslant 100$	-
Degree of protection			IP 20	IP 00	IP 00	IP 20

(1) Filter performance is ensured if the cable lengths between the motor and the drive given in the above table are not exceeded
For an application with several motors connected in parallel, the cable length must include all tap-offs. If a cable longer than that recommended is used, the filters may overheat.
(2) Please consult your Regional Sales Office for frequencies greater than 4 kHz or cables longer than 100 m .

Variable speed drives for asynchronous motors

Altivar 31
Options: output filters and motor chokes

VW3 A58451

LR filter cells				
For drives	Loss	Nominal current	Reference	Weight
	W	A		kg
ATV 31H/C/K018M2	150	10	VW3 A58451	7.400
ATV 31H/C/K037M2				
ATV 31H/C/K055M2				
ATV 31H/C/K075M2				
ATV 31H/C/KU11M2				
ATV 31H/C/KU15M2				
ATV 31H018M3X				
ATV 31H037M3X				
ATV 31H055M3X				
ATV 31H075M3X				
ATV 31HU11M3X				
ATV 31HU15M3X				
ATV 31H/C/K037N4				
ATV 31H/C/K055N4				
ATV 31H/C/K075N4				
ATV 31H/C/KU11N4				
ATV 31H/C/KU15N4				
ATV 31H/C/KU22N4				
ATV 31H/C/KU30N4				
ATV 31H/C/KU40N4				

ATV 31H/C/KU22M2	180	16	VW3 A58452	7.400

ATV 31HU22M3X
ATV 31HU30M3X
ATV 31H/KU55N4
ATV 31HU75S6X

ATV 31HU40M3X	220	33	VW3 A58453	12.500

ATV 31HU55M3X
ATV 31HU75M3X
ATV 31H/KU75N4
ATV 31HD11S6X
ATV 31HD15S6X

LC filter cells		
For drives	Reference	Weight
kg		

$\left.\begin{array}{llllr}\hline \begin{array}{llll}\text { Motor chokes } \\ \text { For drives }\end{array} & \text { Loss } & \begin{array}{l}\text { Nominal } \\ \text { current }\end{array} & \text { Reference } & \text { Weight } \\ & \text { w } & \text { A }\end{array}\right)$ kg

ATV 31HD15M3X

For drives	Sold in lots of	Unit reference	Weight kg
ATV 31H018M2	3	VW3 A31451	-
ATV 31H037M2, ATV 31H018M3 ATV 31H037M3	3	VW3 A31452	-
ATV 31H055M2, ATV 31H075M2 ATV 31HU11M2, ATV 31HU15M2 ATV 31H055M3, ATV 31H075M3	3	VW3 A31453	-

Variable speed drives for asynchronous motors

Altivar 31

Communication options

Modbus and CANopen communication buses

The Altivar 31 can be connected directly to Modbus and CANopen buses by means of an RJ45 connector, which supports both protocols. The communication function provides access to the drive's configuration, adjustment, control and monitoring functions.

CANopen

Modbus

Connections via splitter blocks and Connections via junction boxes
RJ45 connectors

PLC (1)

2 CANopen trunk cable
3 CANopen tap junction VW3 CAN TAP2
4 CANopen drop cable VW3 CAN CA RRee

PLC (1)
2 Modbus cable depending on the type of 2 controller or PLC
Modbus splitter block LU9 GC3
Modbus drop cables VW3 A8 306 Ree
Line terminators VW3 A8 306 RC
Modbus T-junction boxes
VW3 A8 306 TFeo (with cable)

PLC (1)
Modbus cable depending on the type of controller or PLC
3 Modbus cables TSX CSA•00
4 T-junction box TSX SCA 50
5 Subscriber socket TSX SCA 62
6 Modbus drop cables VW3 A8 306
7 Modbus drop cables VW3 A8 306 D30

Connections via screw terminals

In this case, use a Modbus drop cable VW3 A8 306 D30 and line terminators VW3 A8 306 DRC.

Other communication buses

The Altivar 31 can also be connected to the following networks via a module (bridge or gateway):
■ Ethernet

- Fipio
- Profibus DP
- DeviceNet

The communication function provides access to the drive's configuration, adjustment, control and monitoring functions.

To network
Communication modules
3 Cables VW3 A8 306 Ree,
VW3 P07 306 R10 or
VW3 A8 306 D30, depending on the
type of module.
4 Modbus splitter block LU9 GC3
Modbus drop cables VW3 A8 306 Ree
6 Line terminator VW3 A8 306 RC

[^11]
Variable speed drives for asynchronous motors

Altivar 31
Communication options

TSX SCA 50

TSX SCA 62

LUF P1

LA9 P307

Modbus and CANopen communication buses				
Connection accessories				
Description			Unit reference	Weight kg
CANopen bus junction box			VW3 CAN TAP2	-
Modbus junction box 3 screw terminals, RC line terminator To be connected using cable VW3 A8 306 D30			TSX SCA 50	0.520
Modbus subscriber socket 2 female 15-way SUB-D connectors and 2 screw terminals, RC line terminator To be connected using cable VW3 A8 306			TSX SCA 62	0.570
Modbus splitter block 10 RJ45 connectors and 1 screw terminal			LU9 GC3	0.500
Modbus line terminators (1)	For RJ45 connector	$\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$	VW3 A8 306 RC	0.200
		$\overline{\mathrm{R}=150 \Omega}$	VW3 A8 306 R	0.200
	For screw terminals	$\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$	VW3 A8 306 DRC	0.200
		$\overline{\mathrm{R}=150 \Omega}$	VW3 A8 306 DR	0.200
Modbus T-junction boxes		With integrated cable (0.3 m) VW3 A8 306 TF03		-
		With integrated cable (1 m)	VW3 A8 306 TF10	-
Connecting cables				
Description	Length m	Connectors	Reference	Weight kg
Cables for CANopen bus	0.3 m	2 RJ45 connectors	VW3 CAN CA RR03	0.050
	1 m	2 RJ45 connectors	VW3 CAN CA RR1	0.500
Cables for Modbus bus	3	1 RJ45 connector and one end stripped	VW3 A8 306 D30	0.150
	3	1 RJ45 connector and 1 male 15-way SUB-D connector for TSX SCA 62	VW3 A8 306	0.150
	0.3	2 RJ45 connectors	VW3 A8 306 R03	0.050
	1	2 RJ45 connectors	VW3 A8 306 R10	0.050
	3	2 RJ45 connectors	VW3 A8 306 R30	0.150
Cables for Profibus DP gateway LA9 P307	1	2 RJ45 connectors	VW3 P07 306 R10	0.050
RS 485 double shielded twisted pair cables	100	Supplied without connector	TSX CSA 100	-
	200	Supplied without connector	TSX CSA 200	-

Other communication buses

Description	Cables to be connected	Reference	Weight kg
Ethernet/Modbus bridge with $1 \times$ Ethernet 10 baseT port (RJ45)	VW3 A8 306 D30	174 CEV 30020 (2)	0.500
Fipio/Modbus gateway (3)	VW3 A8 306 Re•	LUF P1	0.240
DeviceNet/Modbus gateway (3)	VW3 A8 306 Re•	LUF P9	0.240
Profibus DP/Modbus gateway Parameters set using standard Profibus DP configurator (4)	VW3 P07 306 R10	LA9 P307	0.240
Profibus DP/Modbus gateway Parameters set using ABC Configurator software (3)	VW3 A8 306 Re•	LUF P7	0.240

(2) Please consult our specialist catalogue.
(3) See pages 4/22 and 4/23.
(4) See pages $4 / 24$ and 4/25.

Variable speed drives for asynchronous motors
 Altivar 31

ATV 31H0eoM3X/MXA, ATV 31H0eoM2/M2A
Plate for EMC mounting
(supplied with the drive)

(1) Only for drives whose reference ends in \boldsymbol{A}.

ATV 31HUeoM2/M2A, ATV 31HU1॰M3X/M3XA to ATV 31HU4॰M3X/M3XA, ATV 31H0॰oN4/N4A to ATV 31HU40N4/N4A, ATV 31H075S6X to ATV 31HU40S6X

Plate for EMC mounting (supplied with the drive)

| ATV 31H | a | b | c | d | G | H | J | K | \varnothing |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| U1@M3X | 105 | 143 | 130 | 49 | 93 | 121.5 | 5 | 16.5 | 2×5 |
| U1@M2, U22M3X | 105 | 143 | 150 | 49 | 93 | 121.5 | 5 | 16.5 | 2×5 |
| O37N4 to U15N4 | | | | | | | | | |

(1) Only for drives whose reference ends in \boldsymbol{A}.

ATV 31HU55M3X/M3XA, ATV 31HU75M3X/M3XA, ATV 31HU55N4/N4A, ATV 31HU75N4/N4A, ATV 31HU55S6X, ATV 31HU75S6X
Plate for EMC mounting
(supplied with the drive)

(1) Only for drives whose reference ends in \mathbf{A}.

ATV 31HD1॰M3X/M3XA, ATV 31HD1•N4/N4A, ATV 31HD1•S6X
Plate for EMC mounting (supplied with the drive)

(1) Only for drives whose reference ends in \boldsymbol{A}.

Presentation:	Characteristics:	References:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$

Variable speed drives for asynchronous motors
 Altivar 31
 Enclosed drives

ATV 31C0eoM2

ATV 31CU11M2, ATV 31CU15M2, ATV 31C0eoN4, ATV 31CU11N4, ATV 31CU15N4

ATV 31CU22M2, ATV 31CU22N4, ATV 31CU30N4, ATV 31CU40N4

Variable speed drives for asynchronous motors
 Altivar 31

Drive kits

Mounting

ATV 31K	a	a1	b	b1	c	c1	E	F	G	H	K
0eeM2	254	214	280	240	153	123	10	117	234	260	130
U1॰M2, 0eeN4, U1॰N4	250	219	337	297	186	127	1	115	230	317	158.5
U22M2, UeeN4	265	234	380	340	209	134	1	122.5	245	360	180

Note: product supplied with drilling template.
ATV 31KU55N4, ATV 31KU75N4, ATV 31KD1॰N4/॰M2

Mounting

ATV 31K	a	a1	a2	b	b1	c	E	F	G	H	J	K	K1	\emptyset
U55N4, U75N4	400	340	334	600	444	243	12	155	250	49	500	180	0	12×6
D11N4, D15N4	450	370	386	700	546	267	13	180	280	39	600	150	180	14×6

Note: product supplied with drilling template.

Presentation: pages $2 / 26$ to $2 / 33$	Characteristics:	References:	Schemes:	Functions:
pages 2/34 to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages 2/58 to 2/61	pages 2/66 to 2/81	

Plates for mounting on $\longleftarrow \longleftarrow$ rail VW3 A11851

UL NEMA Type 1 conformity kits VW3 A31811 to VW3 A31817

| VW3 | $\Delta \mathbf{b}$ |
| :--- | :--- | :--- |
| A31812 | 77 |
| A31813 and $\mathbf{A 3 1 8 1 4}$ | 107 |
| A31815 | 138 |
| A31816 | 179 |
| A31817 | 244 |
| (1) Drive | |

Remote terminal

VW3 A31101

Variable speed drives for asynchronous motors
 Altivar 31

Bare braking resistors

VW3 A58702 and A58704
2-wire output, length 0.5 m

VW3 A58703

2-wire output, length 0.5 m

Protected braking resistors
VW3 A58732 to VW3 A58734

VW3	a	b	c	H
A58735	163	340	61	320
A58736, A58737	156	434	167	415

VW3 A66704

Presentation: pages 2/26 to 2/33	Characteristics: pages 2/34 to 2/37	$\begin{aligned} & \text { References: } \\ & \text { pages } 2 / 38 \text { to } 2 / 41 \end{aligned}$	$\begin{aligned} & \text { Schemes: } \\ & \text { pages } 2 / 58 \text { to 2/61 } \end{aligned}$	Functions: pages 2/66 to 2/81
2/56		elemecanique		

Variable speed drives for asynchronous motors
 Altivar 31

Single phase chokes
VZ1 Leocee.e

VZ1	a	b	c	G	H	\varnothing
L004M010	60	100	80	50	44	4×9
L007UM50	60	100	95	50	60	4×9
L018UM20	85	120	105	70	70	5×11

VW3	a	b	\mathbf{c}	$\mathbf{c 1}$	G	G1	H	\varnothing
A66501	100	135	55	60	40	60	42	6×9
A66502	130	155	85	90	60	80.5	62	6×12
A66503	130	155	85	90	60	80.5	62	6×12
A66504	155	170	115	135	75	107	90	6×12
A66505	180	210	125	165	85	122	105	6×12
A66506	275	210	130	160	105	181	100	11×22

Additional EMC input filters
Mounting of filter underneath the drive

Mounting of filter adjacent to drive

VW3	a	b	b1	c	G	H	\varnothing
A31401, A31402	72	185	-	50	60	121.5	$2 \times$ M4
A31403, A31404	105	185	-	60	93	121.5	$2 \times \mathrm{M} 4$
A31405, A31406	140	225	-	60	126	157	$4 \times \mathrm{M} 4$
A31407	180	275	-	60	210	160	$4 \times \mathrm{M} 4$
A31408, A31409	245	365	-	60	225	295	$4 \times \mathrm{M} 5$

Output filters

VW3 A58451 to VW3 A58453

VW3	a	b	c	G	H	\varnothing
A58451	169.5	340	123	150	315	7
A58452						
A58453	239	467.5	139.5	212	444	7

VW3	a	b	c	\varnothing
A31451	33.5	33	33	13
A31452	33	21.5	22.5	9
A31453	30	19	19	6

Presentation: pages $2 / 26$ to $2 / 33$	Characteristics: pages $2 / 34$ to $2 / 37$	References: pages $2 / 38$ to $2 / 41$	Schemes: pages 2/58 to 2/61	Functions:

ATV 31e0eゃM3X, ATV 31e0eeN4, ATV 31eeeeS6X
3-phase power supply

ATV 31e00eM2

Single phase power supply

(1) Line choke (single phase or 3-phase).
(2) Fault relay contacts. For remote signalling of drive status.
(3) Shared connection of the logic inputs depends on the position of a switch, see diagrams below.

Note: all terminals are located at the bottom of the drive.
Fit interference suppressors to all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Compatible components (for full references, please consult our specialist catalogue)
Code
Description

Q1	GV2 L or Compact NS (see pages $2 / 62$ to $2 / 65$)
KM1	LC1 eeө + LA4 DA2U (see pages $2 / 62$ to $2 / 65$)
S1, S2	XB2 B or XA2 B pushbuttons
T1	100 VA transformer 220 V secondary
Q2	GV2 L rated at twice the nominal primary current of T1
Q2	GB2 CB05

Examples of recommended circuit diagrams

Logic input switches

"Source" position

"Sink" position

3-wire control

LII: Stop
LI2: Forward
LIx: Reverse

CLI position with PLC transistor outputs

Analog voltage inputs

AOC output
Wired as logic output

Analog current input

Schemes

Additional radio interference suppression input filters VW3 A3140e
3-phase power supply
Single phase power supply

Connections to meet the requirements of EMC standards

Principle

- Grounds between the drive, motor and cable shielding must have "high frequency" equipotentiality.
- Use shielded cables with the shielding connected to ground throughout 360° at both ends for the motor cable, the braking resistor cable and the control/command cables. Metal ducting or conduit can be used for part of the shielding length provided that there is no break in continuity. - Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Installation diagram for ATV 31Hoee drives

1 Steel plate supplied with the drive, to be fitted on it (machine ground)
2 Altivar 31
3 Non-shielded power supply wires or cable
4 Non-shielded wires for the output of the safety relay contacts.
5 Fix and ground the shielding of cables 6,7 and 8 as close as possible to the drive: - strip the shielding,

- use cable clamps of an appropriate size on the parts from which the shielding has been stripped, to attach them to the plate 1.
The shielding must be clamped tightly enough to the metal plate to ensure good contact.
Cable clamps must be made from stainless steel.
6 Shielded cable for connecting the motor.
7 Shielded cable for connecting the control/command wiring. For applications requiring several conductors, use cables with a small cross-section ($0.5 \mathrm{~mm}^{2}$).
8 Shielded cable for connecting the braking resistor.
$6,7,8$, the shielding must be connected to ground at both ends. The shielding must be continuous and intermediate terminals must be in EMC shielded metal cases.
9 Ground screw for the motor cable with low ratings, as the screw on the heatsink is inaccessible.

[^12] via the filter output cable.

Operation on an IT system

IT system: isolated or impedance earthed neutral.
Use a permanent insulation monitor compatible with non-linear loads, e.g. Merlin Gerin type XM200.
ATV $31 \bullet 0 \bullet M 2$ and N4 drives feature built-in RFI filters. There are two ways of isolating these filters from ground for operation on an IT system: - ATV 31H018M2 to ATV 31HU22M2 and ATV 31H037N4 to ATV 31HU40N4, pull out a jumper to disconnect the filter.

- ATV 31HU55N4 to ATV 31HD15N4, move the cable tag to disconnect the filter.

Presentation: pages $2 / 26$ to $2 / 33$	Characteristics: pages $2 / 34$ to $2 / 37$	References: pages $2 / 38$ to $2 / 41$	Dimensions: pages 2/52 to 2/57	Functions:

Variable speed drives for asynchronous motors
 Altivar 31

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.

Mounting recommendations for ATV 31H drives

Install the unit vertically, at $\pm 10^{\circ}$.
■ Do not place it close to heating elements.

- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Types of mounting - Type A mounting

- Type B mounting

- Type C mounting

Removing the protective cover from the top of the drive (as shown opposite) changes the degree of protection to IP 20.

Derating curves for the nominal drive current (In) as a function of the temperature, switching frequency and type of mounting.

For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}$), interpolate between 2 curves.

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors Altivar 31

Specific recommendations for mounting ATV 31 drives in a wall-mounted or floor-standing enclosure

Observe the mounting recommendations on the opposite page.
To ensure proper air circulation in the drive:

- Fit ventilation grilles.

■ Ensure that there is sufficient ventilation. If there is not, install forced ventilation with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (see the table below).
■ Use special filters with IP 54 protection.

- Remove the protective cover from the top of the drive.

Fan flow rate depending on the drive rating
$\left.\begin{array}{ll}\text { ATV 31 } & \text { Flow rate } \mathrm{m}^{3} / \mathrm{min} \\ \begin{array}{l}\text { H018M2, H037M2, H055M2, H018M3X, } \\ \text { H037M3X, H055M3X, H037N4, H055N4, }\end{array} & 0.3 \\ \text { H075N4, HU11N4, H075S6X, HU15N6X }\end{array}\right]$

Dust and damp proof metal wall-mounted or floor-standing enclosure (IP 54 degree of protection)
The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.
This enables the drive to be used in an enclosure where the maximum internal temperature can reach $50^{\circ} \mathrm{C}$.

Calculating the size of the enclosure

Maximum thermal resistance Rth (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$R \mathrm{Rh}=\frac{\theta^{\circ}-\theta \mathrm{e}}{\mathrm{P}} \quad \begin{aligned} & \theta=\text { maximum temperature inside enclosure } \\ & \theta \mathrm{e}=\text { maximum external temperature in }{ }^{\circ} \mathrm{C}\end{aligned}$ $\theta \mathrm{e}=$ maximum external temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{P}=$ total power dissipated in the enclosure in W
Power dissipated by drive: see page $2 / 38$.
Add the power dissipated by the other equipment components.
Useful heat dissipation surface of enclosure $S\left(\mathrm{~m}^{2}\right)$
(sides + top + front panel if wall-mounted)
$S=\frac{K}{R t h} \quad K=$ thermal resistance per m^{2} of enclosure.
For metal enclosures: $\mathrm{K}=0.12$ with internal fan, $\mathrm{K}=0.15$ without fan
Note: do not use insulated enclosures as they have a poor level of conductivity.

Mounting recommendations for ATV 31 drives

Install the unit vertically, at $\pm 10^{\circ}$.
Do not place it close to heating elements.
Leave sufficient free space to ensure that the air required for cooling purposes can
circulate from the bottom to the top of the unit.

Presentation:	Characteristics:		References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages 2/38 to 2/41	pages 2/52 to 2/57	Functions:

Variable speed drives for asynchronous motors

Altivar 31
Motor starters

GV2 L
+C1 K
$+$
ATV 31Hecoe00

Applications

The combinations suggested below can be used to assemble a complete motor starter comprising a circuit-breaker, a contactor and an Altivar 31 variable speed drive.
The circuit-breaker provides protection against accidental short-circuits, isolation, and padlocking if required.
The contactor provides control and management of any safety features and isolation of the motor on stopping.
The Altivar 31 variable speed drive is electronically protected against short-circuits between phases and between phase and earth; it therefore provides continuity of service and thermal protection of the motor.
Motor starter for drive with heatsink

Variable speed drive Reference	Standard power rating of 4-pole $50 / 60 \mathrm{~Hz}$ motors (1)		Circuit-breaker (2)		Max. prosp. line Isc	Contactor (3) Add the voltage number to the basic reference to obtain the full reference (4)
			Reference	Rating		
	kW	HP		A	kA	
Single phase supply voltage: 200... 240 V						
ATV 31H018M2	0.18	0.25	GV2 L08	4	1	LC1 K0610•e
ATV 31H037M2	0.37	0.5	GV2 L10	6.3	1	LC1 K0610•e
ATV 31H055M2	0.55	0.75	GV2 L14	10	1	LC1 K0610e॰
ATV 31H075M2	0.75	1	GV2 L14	10	1	LC1 K0610e॰
ATV 31HU11M2	1.1	1.5	GV2 L16	14	1	LC1 K0610•๑
ATV 31HU15M2	1.5	2	GV2 L20	18	1	LC1 K0610•๑
ATV 31HU22M2	2.2	3	GV2 L22	25	1	LC1 D09••
3-phase supply voltage: 200... 240 V						
ATV 31H018M3X	0.18	0.25	GV2 L07	2.5	5	LC1 K0610•e
ATV 31H037M3X	0.37	0.5	GV2 L08	4	5	LC1 K0610•๑
ATV 31H055M3X	0.55	0.75	GV2 L10	6.3	5	LC1 K0610•e
ATV 31H075M3X	0.75	1	GV2 L14	10	5	LC1 K0610•e
ATV 31HU11M3X	1.1	1.5	GV2 L14	10	5	LC1 K0610•๑
ATV 31HU15M3X	1.5	2	GV2 L16	14	5	LC1 K0610•
ATV 31HU22M3X	2.2	3	GV2 L20	18	5	LC1 K0610•๑
ATV 31HU30M3X	3	-	GV2 L22	25	5	LC1 D09•๑
ATV 31HU40M3X	4	5	GV2 L22	25	5	LC1 D09••
ATV 31HU55M3X	5.5	7.5	NS80HMA	50	22	LC1 D32••
ATV 31HU75M3X	7.5	10	NS80HMA	50	22	LC1 D3200
ATV 31HD11M3X	11	15	NS80HMA	80	22	LC1 D40•๑
ATV 31HD15M3X	15	20	NS100HMA		22	LC1 D40••
3-phase supply voltage: 380... 500 V						
ATV 31H037N4	0.37	0.5	GV2 L07	2.5	5	LC1 K0610•e
ATV 31H055N4	0.55	0.75	GV2 L08	4	5	LC1 K0610•e
ATV 31H075N4	0.75	1	GV2 L08	4	5	LC1 K0610e॰
ATV 31HU11N4	1.1	1.5	GV2 L10	6.3	5	LC1 K0610e॰
ATV 31HU15N4	1.5	2	GV2 L14	10	5	LC1 K0610•e
ATV 31HU22N4	2.2	3	GV2 L14	10	5	LC1 K0610•e
ATV 31HU30N4	3	-	GV2 L16	14	5	LC1 K0610•e
ATV 31HU40N4	4	5	GV2 L16	14	5	LC1 K0610•๑
ATV 31HU55N4	5.5	7.5	GV2 L22	25	22	LC1 D09•๑
ATV 31HU75N4	7.5	10	GV2 L32	32	22	LC1 D180॰
ATV 31HD11N4	11	15	NS80HMA	50	22	LC1 D3200
ATV 31HD15N4	15	20	NS80HMA	50	22	LC1 D3200

(1) The HP values given are NEC-compliant (National Electrical Code).
(2) NS8OHMA: product sold under the Merlin Gerin brand.
(3) Composition of contactors

LC1-K06: 3 poles + 1 "N/O" auxiliary contact
LC1-D09/D32/D40: 3 poles + 1 "N/O" auxiliary contact
(4) Usual control circuit voltages.

a.c. control circuit

	Volts ~	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$
LC1-D	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
	Volts \sim	24	48	110	$220 / 230$	230	$230 / 240$
LC1-K	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7

For other voltages between 24 and 660 V, or d.c. control circuit, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

Altivar 31
Motor starters

GV2 L
$+$
LC1K
$+$
ATV 31H000000

Applications

The combinations suggested below can be used to assemble a complete motor starter comprising a circuit-breaker, a contactor and an Altivar 31 variable speed drive.
The circuit-breaker provides protection against accidental short-circuits, isolation, and padlocking if required.
The contactor provides control and management of any safety features and isolation of the motor on stopping.
The Altivar 31 variable speed drive is electronically protected against short-circuits between phases and between phase and earth; it therefore provides continuity of service and thermal protection of the motor.

Variable speed drive Reference	Standard power rating of 4-pole $50 / 60 \mathrm{~Hz}$ motors(1)		Circuit-breaker (2)		Max. prosp. line Isc	Contactor (3) Add the voltage number to the basic reference to obtain the full reference (4)
			Reference	Rating		
	kW	HP		A	kA	
3-phase supply voltage: 525... 600 V						
ATV 31H075S6X	0.75	1	GV2 L08	4	5	LC1 K0610ee
ATV 31HU15S6X	1.5	2	GV2 L10	6.3	5	LC1 K0610ee
ATV 31HU22S6X	2.2	3	GV2 L14	10	5	LC1 K0610ee
ATV 31HU40S6X	4	5	GV2 L16	14	5	LC1 K0610ee
ATV 31HU55S6X	5.5	7.5	GV2 L20	18	22	LC1 K0610ee
ATV 31HU75S6X	7.5	10	GV2 L22	25	22	LC1 K0610eө
ATV 31HD11S6X	11	15	GV2 L32	32	22	LC1 D09ee
ATV 31HD15S6X	15	20	NS80HMA	32	22	LC1 D09ee

(1) The HP values given are NEC-compliant (National Electrical Code).
(2) NS80HMA: product sold under the Merlin Gerin brand.
(3) Composition of contactors

LC1-K06: 3 poles + 1 "N/O" auxiliary contact
LC1-D09/D32/D40: 3 poles + 1 "N/O" auxiliary contact
(4) Usual control circuit voltages.
a.c. control circuit

a.c. Control circuit							
	Volts ~	24	48	110	220	230	240
LC1-D	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
	Volts ~	24	48	110	$220 / 230$	230	$230 / 240$
LC1-K	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7

For other voltages between 24 and 660 V , or d.c. control circuit, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

Altivar 31

Motor starters

[^13]
Applications

The combinations suggested below can be used to assemble a complete motor starter comprising a circuit-breaker, a contactor and an Altivar 31 variable speed drive.
The circuit-breaker provides protection against accidental short-circuits, isolation, and padlocking if required.
The contactor provides control and management of any safety features and isolation of the motor on stopping.
The Altivar 31 variable speed drive is electronically protected against short-circuits between phases and between phase and earth; it therefore provides continuity of service and thermal protection of the motor.

Motor starter for customisable enclosed drive

Variable speed drive Reference	Standard power rating of 4-pole $50 / 60 \mathrm{~Hz}$ motors (1)		Circuit-breaker		Max. prosp. line Isc	Contactor Add the voltage number to the basic reference to obtain the full reference (2)
			Reference	Rating		
	kW	HP		A	kA	
Single phase supply voltage: 200... 240 V						
ATV 31C018M2	0.18	0.25	GV2 L08	4	1	LC1 K0610•๑
ATV 31C037M2	0.37	0.5	GV2 L10	6.3	1	LC1 K0610•๑
ATV 31C055M2	0.55	0.75	GV2 L14	10	1	LC1 K0610•๑
ATV 31C075M2	0.75	1	GV2 L14	10	1	LC1 K0610•๑
ATV 31CU11M2	1.1	1.5	GV2 L16	14	1	LC1 K0610•e
ATV 31CU15M2	1.5	2	GV2 L20	18	1	LC1 K0610•e
ATV 31CU22M2	2.2	3	GV2 L22	25	1	LC1 D09••
3-phase supply voltage: 380... 500 V						
ATV 31C037N4	0.37	0.5	GV2 L07	2.5	5	LC1 K0610••
ATV 31C055N4	0.55	0.75	GV2 L08	4	5	LC1 K0610•e
ATV 31C075N4	0.75	1	GV2 L08	4	5	LC1 K0610•e
ATV 31CU11N4	1.1	1.5	GV2 L10	6.3	5	LC1 K0610•๑
ATV 31CU15N4	1.5	2	GV2 L14	10	5	LC1 K0610•e
ATV 31CU22N4	2.2	3	GV2 L14	10	5	LC1 K0610•e
ATV 31CU30N4	3	3	GV2 L16	14	5	LC1 K0610•e
ATV 31CU40N4	4	5	GV2 L16	14	5	LC1 K0610•๑

(1) The HP values given are NEC-compliant (National Electrical Code).
(2) Usual control circuit voltages.

a.c. control circuit							
	Volts ~	24	48	110	220	230	240
LC1-D	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
	Volts ~	24	48	110	$220 / 230$	230	$230 / 240$
LC1-K	$50 / 60 ~ H z$	B7	E7	F7	M7	P7	U7

For other voltages between 24 and 660 V , or d.c. control circuit, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

Altivar 31
Motor starters

Applications

The combinations suggested below can be used to assemble a complete motor starter comprising a circuit-breaker, a contactor and an Altivar 31 variable speed drive.
The circuit-breaker provides protection against accidental short-circuits, isolation, and padlocking if required.
The contactor provides control and management of any safety features and isolation of the motor on stopping.
The Altivar 31 variable speed drive is electronically protected against short-circuits between phases and between phase and earth; it therefore provides continuity of service and thermal protection of the motor.

Motor starter for drive kit						
Variable speed drive Reference	Standard power rating of 4-pole $50 / 60 \mathrm{~Hz}$ motors (1)		Circuit-bre Reference	ker Rating	Max. prosp. line Isc	Contactor Add the voltage number to the basic reference to obtain the full reference (2)
	kW	HP		A	kA	
Single phase supply voltage: 200... 240 V						
ATV 31K018M2	0.18	0.25	GV2 L08	4	5	LC1 K0610••
ATV 31K037M2	0.37	0.5	GV2 L10	6.3	5	LC1 K0610•e
ATV 31K055M2	0.55	0.75	GV2 L14	10	5	LC1 K0610•๑
ATV 31K075M2	0.75	1	GV2 L14	10	5	LC1 K0610•e
ATV 31KU11M2	1.1	1.5	GV2 L14	14	22	LC1 K0610•๑
ATV 31KU15M2	1.5	2	GV2 L20	18	22	LC1 K0610•๑
ATV 31KU22M2	2.2	3	GV2 L22	25	22	LC1 D09@e
3-phase supply voltage: 380...500 V						
ATV 31K037N4	0.37	0.5	GV2 L07	2.5	5	LC1 K0610••
ATV 31K055N4	0.55	0.75	GV2 L08	4	5	LC1 K0610•๑
ATV 31K075N4	0.75	1	GV2 L08	4	5	LC1 K0610•๑
ATV 31KU11N4	1.1	1.5	GV2 L10	6.3	5	LC1 K0610•e
ATV 31KU15N4	1.5	2	GV2 L14	10	5	LC1 K0610•e
ATV 31KU22N4	2.2	3	GV2 L14	10	5	LC1 K0610•e
ATV 31KU30N4	3	3	GV2 L16	14	5	LC1 K0610•๑
ATV 31KU40N4	4	5	GV2 L16	14	5	LC1 K0610•๑
ATV 31KU55N4	5.5	7.5	GV2 L22	25	22	LC1 D09•e
ATV 31KU75N4	7.5	10	GV2 L32	32	22	LC1 D18ee
ATV 31KD11N4	11	15	NS80 HMA	50	22	LC1 D32ee
ATV 31KD15N4	15	20	NS80 HMA	50	22	LC1 D3200

(1) The HP values given are NEC-compliant (National Electrical Code).
(2) Usual control circuit voltages.

a.c. control circuit							
	Volts ~	24	48	110	220	230	240
LC1-D	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
	Volts ~	24	48	110	220/230	230	230/240
LC1-K	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7

For other voltages between 24 and 660 V, or d.c. control circuit, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors
 Altivar 31

PowerSuite for PC welcome screen

PowerSuite for Pocket PC identification screen

Summary of functions	
Drive factory setting	page 2/67
Functions of the display and keys	page 2/67
Remote display terminal option	page 2/68
Menu access levels	page 2/68
Menu access code	page 2/68
Operating speed range	page 2/68
Acceleration and deceleration ramp times	page 2/68
Acceleration and deceleration ramp profile	page 2/69
Ramp switching	page 2/69
Automatic adaptation of deceleration ramp	page 2/70
Voltage/frequency ratio	page 2/70
Auto-tuning	page 2/70
Switching frequency, noise reduction	page 2/70
Skip frequencies	page 2/71
Speed reference	page 2/71
Analog inputs	page 2/71
Preset speeds	page 2/71
+/-speed	page 2/72
Save reference	page 2/72
Step by step (JOG)	page 2/73
Control and reference channels	page 2/73
Reference switching	page 2/73
Summing inputs	page 2/73
PI regulator	page 2/74
Spooling	page 2/74
Current limit switching	page 2/75
Limiting low speed operating time	page 2/75
Motor switching	page 2/75
Control mode switching	page 2/75
2-wire control	page 2/76
3-wire control	page 2/76
Forced local mode	page 2/76
Freewheel stop	page 2/76
Fast stop	page 2/76
DC injection stop	page 2/76
Brake control	page 2/77
Management of limit switch	page 2/77
Monitoring	page 2/77
Fault management	page 2/78
Fault reset	page 2/78
General reset (resets all faults)	page 2/78
Controlled stop on loss of line supply	page 2/78
Stop mode in the event of a fault	page 2/78
Automatic catching a spinning load with speed detection	page 2/79
Automatic restart	page 2/79
Derated operation in the event of an overvoltage	page 2/79
Fault relay, unlocking	page 2/79
Operating time reset to zero	page 2/79
Motor thermal protection	page 2/80
Drive thermal protection	page 2/80
R1, R2 relay configuration	page 2/80
AOC/AOV analog outputs	page 2/81
Saving and retrieving the configuration	page 2/81
Function compatibility table	page 2/81

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors Altivar 31

Drive factory setting

The drive is supplied ready for use in most applications, with the following functions and settings:

- Nominal motor frequency: 50 Hz
- Motor voltage: 230 V (ATV 31HeeeM2 and M3X), 400 V (ATV 31HeeeN4) or

600 V (ATV 31HeeeS6X)
■ Linear ramp times: 3 seconds
■ Low speed (LSP): 0 Hz , high speed (HSP): 50 Hz

- Normal stop mode on deceleration ramp

■ Stop mode in the event of a fault: Freewheel

- Motor thermal current = nominal drive current

■ Standstill injection braking current $=0.7 \times$ nominal drive current, for 0.5 seconds
■ Constant torque operation, with sensorless flux vector control

- Logic inputs:
- 2 directions of operation (LI1, LI2), 2-wire control
- 4 preset speeds (LI3, LI4): LSP (low speed), $10 \mathrm{~Hz}, 15 \mathrm{~Hz}, 20 \mathrm{~Hz}$
- Analog inputs:
- Al1 speed reference $(0+10 \mathrm{~V})$
$\square \mathrm{Al} 2(0 \pm 10 \mathrm{~V})$ summing of Al 1
- AI3 (4-20 mA) not configured

■ Relay R1: fault relay

- Relay R2: not assigned
- Analog output AOC: 0-20 mA, image of the motor frequency
- Automatic adaptation of the deceleration ramp in the event of excessive braking
- Switching frequency 4 kHz , random frequency

Functions of the display and keys

1 Information is displayed in the form of codes or values in four "7-segment" displays
2 Buttons for scrolling through the menus or modifying values
3 "ENT": Validation button for entering a menu or confirming the new value selected
4 "ESC": Button for exiting the menus (no confirmation)
52 diagnostic LEDs for the CANopen bus
■ For ATV 31Heee๑M2A, ATV 31HeeeM3XA and ATV 31HeeeN4A drives only:
6 Speed reference potentiometer
7 "RUN": Local control of motor operation
8 STOP/RESET: Controls motor stopping locally and resets any faults

Presentation:	Characteristics:	References:	Dimensions:	Schemes:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages 2/52 to 2/57	pages 2/58 to 2/61

Variable speed drives for asynchronous motors
 Altivar 31

Remote display terminal

Ramp adjustment with PowerSuite for PC

Remote display terminal option

The remote display terminal can be mounted on the door of a wall-fixing or floorstanding enclosure.
It comprises an LCD display with programming and control keys and a switch for locking access to the menus.
Drive control keys:

- "FWD/RV": reversal of the direction of rotation
- "RUN": motor run command
- "STOP/RESET": motor stop command or fault reset

The speed reference is given by the remote display terminal. Only the freewheel, fast stop and DC injection stop commands remain active on the terminal block. If the drive/operator terminal link is broken, the drive locks in fault mode.
Its subsequent action depends on the control and reference channel programming. Note: protection via customer confidential code has priority over the switch.

■ Menu access levels

There are 3 access levels:

- Level 1: access to standard functions. Significantly, this level is interchangeable with the Altivar 28.
- Level 2: access to advanced application functions.
\square Level 3: access to advanced application functions and management of mixed control modes.

- Menu access code

Enables the drive configuration to be protected using an access code. When access is locked using a code, only the adjustment and monitoring parameters can be accessed.

■ Operating speed range

Used to determine the 2 frequency limits which define the speed range permitted by the machine under actual operating conditions for all applications with or without overspeed.

LSP: low speed, from 0 to HSP, factory setting 0
HSP: high speed, from LSP to f max., factory setting 50 Hz
x : configurable between 0 and 20 mA , factory setting 4 mA
y : configurable between 4 and 20 mA , factory setting 20 mA

■ Acceleration and deceleration ramp times

Used to define acceleration and deceleration ramp times according to the application and the machine dynamics.

Linear acceleration ramp
t1: acceleration time
t2: deceleration time
t 1 and t 2 can be set independently between 0.1 and 999.9 s , factory setting: 3 s

Linear deceleration ramp

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors

 Altivar 31

 Altivar 31}

HSP: high speed
t1: ramp time set
t2 $=0.6 \times \mathrm{t} 1$
The curve coefficient is fixed.

- Acceleration and deceleration ramp profile

Used to gradually increase the output frequency starting from a speed reference, following a linear ratio or a preset ratio.
\square For applications such as material handling, packaging, transportation of people: the use of S ramps takes up mechanical play and eliminates jolts, and limits "nonfollowing" of speed during rapid transient operation of high inertia machines.
\square For pumping applications (installation with centrifugal pump and non-return valve): valve closing can be controlled more accurately if U ramps are used.
ם Selecting "linear", "S", "U" or customized profiles will affect both the acceleration and deceleration ramps.

HSP: high speed
t1: ramp time set
$\mathrm{t} 2=0.5 \times \mathrm{t} 1$
The curve coefficient is fixed.

Customized ramps

HSP: high speed
tA1: can be set between 0 and 100\% (of ACC or AC2)
tA2: can be set between 0 and (100% - tA1) (of ACC or AC2)
tA3: can be set between 0 and 100% (of dEC or dE2)
tA3: can be set between 0 and 100% (of dEC or dE2)
tA4: can be set between 0 and ($100 \%-\mathrm{tA} 3$) (of dEC or dE2)
tA4: can be set between 0 and (100%
ACC: acceleration ramp 1 time
AC2: acceleration ramp 2 time
dEC: deceleration ramp 1 time
dE2: deceleration ramp 2 time

- Ramp switching

Used to switch 2 acceleration or deceleration ramp times, which can be adjusted separately.
Ramp switching can be enabled by:
\square a logic input

- a frequency threshold
- a combination of logic input and frequency threshold

Function suitable for:

- material handling with smooth starting and approach
- machines with fast steady state speed correction

Acceleration 1 (ACC) and deceleration 1 (dEC):

- adjustment 0.1 to 999.9 s
- factory setting 3 s
- factory setting 3 s

Acceleration 2 (AC2) and de

- adjustment 0.1 to 999.9 s
- adjustment 0.1 to
- factory setting 5 s

HSP: high speed
Example of switching using logic input L/4

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors
 Altivar 31

Adjustment of the voltage/frequency ratio with PowerSuite for PC

- Automatic adaptation of deceleration ramp

Used to automatically adapt the deceleration ramp if the initial setting is too low when the load inertia is taken into account. This function avoids the drive locking in the event of an excessive braking fault.
Function suitable for all applications not requiring precise stopping and not using braking resistors.
Automatic adaptation must be cancelled if the machine has position control with stopping on a ramp and a braking resistor installed. This function is automatically disabled if the brake sequence is configured.

■ Voltage/frequency ratio

- Motor and power supply characteristics

Used to determine the limit values for the voltage/frequency ratio according to the line supply, the motor and the application.
The following values should be set for variable or constant torque applications with or without overspeed:

- the base frequency corresponding to the supply,
- the nominal motor frequency (in Hz) given on the motor rating plate,
- the nominal motor voltage (in V) given on the motor rating plate,
- the maximum output frequency of the drive (in Hz).
- Type of voltage/frequency ratio

Used to adapt the voltage/frequency ratio to the application in order to optimize performance for the following applications:

- constant torque applications (machines with average loads operating at low speed) with motors connected in parallel or special motors (e.g.: resistive cage motor): ratio L,
- variable torque applications (pumps, fans): ratio \mathbf{P},
- machines with heavy loads operating at low speed, machines with fast cycles, with (sensorless) flux vector control: ratio \mathbf{n},
- energy saving, for machines with slow speed and torque variations: ratio nLd. Voltage is automatically reduced to a minimum according to the necessary torque.

Un: Nominal motor voltage
frn: Nominal motor frequency

■ Auto-tuning

Auto-tuning may be performed:

- voluntarily by the operator using dialogue tools via local control mode or the serial link
- each time the drive is switched on
\square on each run command
\square by enabling a logic input
Auto-tuning is used to optimize application performance.

■ Switching frequency, noise reduction

The switching frequency can be adjusted to reduce the noise generated by the motor.
The switching frequency is modulated randomly in order to avoid resonance. This function can be disabled if it causes instability.
High frequency switching of the intermediate DC voltage can be used to supply the motor with a current wave that has a lower harmonic distortion. The switching frequency can be adjusted during operation to reduce the noise generated by the motor.
Value: 2 to 16 kHz , with a factory setting of 4 kHz .
For all applications which require low motor noise.

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors

 Altivar 31

 Altivar 31}

Adjustment of the skip frequency with PowerSuite for Pocket PC

Adjustment of preset speeds with PowerSuite for PC

- Skip frequencies

Used to suppress one or two critical speeds which may be the cause of mechanical resonance.
It is possible to prohibit the prolonged operation of the motor on 1 or 2 frequency bands (with a bandwidth of $\pm 1 \mathrm{~Hz}$), which can be set within the operating range. Function suitable for lightweight machines, bulk product conveyors with unbalanced motor, fans and centrifugal pumps.

Motor speed change depending on the skip frequency reference

- Speed reference

The speed reference can have different sources depending on the drive configuration:

- references provided by 3 analog inputs
- the potentiometer reference (for ATV 31e00A drives only)
\square the +/-speed function via logic input, using the keypad or remote terminal keys \square the remote display terminal reference
- speed references provided by the communication bus or networks

These different sources are managed by programming the reference functions and channels.

- Analog inputs

There are 3 analog inputs:

- 2 voltage inputs:
- 0-10 V (Al1)
$- \pm 10$ V (Al2)
- 1 current input:
- $\mathrm{X}-\mathrm{Y} \mathrm{mA}(\mathrm{Al} 3)$ where X is configurable between 0 and 20 mA , and Y is configurable between 4 and 20 mA .

- Preset speeds

Used to switch preset speed references.
$2,4,8$ or 16 preset speeds can be selected.
Enabled by means of 1,2,3 or 4 logic inputs.
The preset speeds can be adjusted in increments of 0.1 Hz from 0 Hz to 500 Hz .
Function suitable for material handling and machines with several operating speeds.

Variable speed drives for asynchronous motors
 Altivar 31

Adjustment of the "+/- speed" function with PowerSuite for PC

■ +/- speed

Used to increase or decrease a speed reference by means of 1 or 2 logic inputs, with or without the last reference being saved (motorised potentiometer function). This function is suitable for centralised control of a machine with several sections operating in one direction or for control by a pendant control station of a handling crane with two operating directions.

Two types of operation are available:
\square Use of single action buttons: two logic inputs are required in addition to the operating direction(s).
The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.

Example of " $+/-$ speed" with 2 logic inputs, single action buttons and reference saving

- Use of double action buttons (only one logic input assigned to "+ speed" is necessary):

Logic inputs:

Forward 9	Reverse 9	"+ speed" O \square 1		Released (- speed)	$1^{\text {st }}$ press (speed maintained)	$2^{\text {nd }}$ press (+ speed)
	$b^{\prime} /$		Forward button	-	a	a and b
a and b : c and d:	press press		Reverse button	-	C	c and d

LSP: low speed, HSP: high speed
Example with double action buttons and 1 logic input
Note: this type of "+/-speed" control is incompatible with 3-wire control

Save reference

This function is associated with " $+/-$ speed" control.
Enables the reading and saving of the last speed reference prior to the loss of the run signal or mains supply. The saved reference is applied at the next run signal.

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors
 Altivar 31

Example of reference switching

- Step by step (JOG)

Used for pulse operation with minimum ramp times (0.1 s), limited speed reference and minimum time between 2 pulses.
Enabled by a logic input and pulses given by the operating direction command.
This function is suitable for machines with product insertion in manual mode (example: gradual movement of the mechanism during maintenance operations).

- Control and reference channels

There are several control and reference channels which can be independent. Commands (forward, reverse, etc.) and speed references can be sent using the following methods:
\square terminals (logic and analog inputs)

- keypad for ATV 31000 A only (RUN/STOP and potentiometer)
- ATV 31 keypad
- via the serial link
- remote display terminal,
- Modbus control word,
- CANopen control word.

The control and speed reference channels can be separate.
Example: speed reference issued by CANopen and commands issued by the remote display terminal.
Note: the STOP keys on the keypad and the remote display terminal may retain priority.
The "summing inputs" and "Pl regulator" functions only apply to one reference channel.

- Reference switching

Switching between 2 speed references can be enabled via:
\square a logic input

- a bit in a Modbus or CANopen control word

Reference 1 is active if the logic input (or control word bit) is at 0 , reference 2 is active if the logic input (or control word bit) is at 1.
The reference can be switched with the motor running.

Connection diagram for reference switching

- Summing inputs

Used to add up 2 or 3 speed references from different sources.
The references to be added together are selected from all the possible types of speed reference.
Example:
Reference 1 sent by Al1
Reference 2 sent by Al2
Reference 3 sent by AIP
Drive speed reference: reference 1 + reference $2+$ reference 3 .

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors
 Altivar 31

PI regulator

Used for simple control of a flow rate or a pressure with a sensor which supplies a
feedback signal adapted to the drive.
This function is suitable for pumping and ventilation applications.

- PI reference:
- internal regulator reference, adjustable from 0 to 100,
- regulation reference selected from all the possible types of regulation reference,
- preset PI references.
- $\mathbf{2}$ or $\mathbf{4}$ preset PI references, adjustable from 0 to 100 , require the use of 1 or 2 logic inputs respectively.

\square Manual reference

- speed reference selected from all the possible types of speed reference.

\square PI feedback:

- analog input Al1, Al2 or Al3.
\square Auto/Man:
- logic input LI for switching operation to speed reference (Man) or PI regulation (Auto).
During operation in automatic mode, it is possible to adapt the process feedback, to correct inverse PI, to adjust the proportional and integral gain and to apply a ramp (time = ACC - DEC) for establishing the PI action on starting and stopping.
The motor speed is limited to between LSP and HSP.
Note: the PI function is incompatible with the "preset speeds" and "step by step (JOG)" functions
The PI reference can also be transmitted on line via the Modbus RS 485 serial link or via the CANopen bus.

Spooling (function only available with ATV 31eeeeT drives)

Function for winding reels of thread (in textile applications)

The cam speed of rotation must follow a precise profile to ensure steady winding.

When the function is configured, the ramp type is forced to linear ramp.

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors Altivar 31

Configuration of current switching with PowerSuite for PC

- Current limit switching

A 2nd current limit can be configured between 0.25 and 1.5 times the nominal drive current.
Used to limit the torque and the temperature rise of the motor.
Switching between 2 current limits can be enabled via:
\square a logic input
\square a bit in a Modbus or CANopen control word

■ Limiting low speed operating time

The motor is stopped automatically after an operating period at low speed (LSP) with zero reference and run command present.
This time can be set between 0.1 and 999.9 seconds (0 corresponds to an unlimited time).
Factory setting: 0 s . The motor restarts automatically on the ramp when the reference reappears or if the run command is broken and then re-established.
This function is suitable for automatic stopping/starting on pressure-regulated pumps.

■ Motor switching

Allows two motors with different powers to be supplied successively by the same
drive. Switching must take place with the
appropriate sequence at the drive output.
The function can be used to adapt the motor parameters. The following parameters are switched automatically:

- nominal motor voltage
\square nominal motor frequency
- nominal motor current
- nominal motor speed
- motor cosine Phi
- selection of the type of voltage/frequency ratio for motor 2
- IR compensation, motor 2
\square motor frequency loop gain
- motor stability
- motor slip compensation

Motor thermal protection is disabled by this function.
Motor switching can be enabled by:
\square a logic input

- a bit in a Modbus or CANopen control word

With hoisting applications, this function enables a single drive to be used for vertical and horizontal movements.

- Control mode switching

Control channel switching provides a choice of 2 operating modes.
Switching can be enabled by:
\square a logic input
\square a bit in a Modbus or CANopen control word.

Presentation:	Characteristics:	References:	Dimensions:	Schemes:
pages $2 / 26$ to $2 / 33$	pages 2/34 to $2 / 37$	pages 2/38 to 2/41	pages 2/52 to 2/57	pages 2/58 to 2/61

Variable speed drives for asynchronous motors
 Altivar 31

Example of operation with 3-wire control

- 2-wire control

Used to control the direction of operation by means of a maintained contact.
Enabled by means of 1 or 2 logic inputs (one or two directions).
This function is suitable for all non-reversing and reversing applications.
3 operating modes are possible:

- detection of the state of the logic inputs
\square detection of a change in state of the logic inputs
- detection of the state of the logic inputs with forward operation always having priority over reverse.

Wiring diagram for 2-wire control

- 3-wire control

Used to control the operating direction and stopping by means of pulsed contacts. Enabled by means of 2 or 3 logic inputs (non-reversing or reversing).
This function is suitable for all non-reversing and reversing applications.

- Forced local mode

Forced local mode imposes control via the terminals or operator terminal and prohibits all other control modes.
The following references and commands are available for forced local mode:

- references Al1, or Al2, or AI3 and control via logic inputs
- reference and control via RUN/STOP keys and potentiometer (ATV 31eeゃA drives only)
\square reference and control via the remote display terminal
The changeover to forced local mode is enabled by a logic input.

- Freewheel stop

Stops the motor by resistive torque only if the motor power supply is cut.
A freewheel stop is achieved:

- by configuring a normal stop command as a freewheel stop (on disappearance of a run command or appearance of a stop command)
\square by enabling a logic input.

- Fast stop

Used to achieve a braked stop with an acceptable deceleration ramp time (divided by 2 to 10) for the drive/motor unit to avoid locking on an excessive braking fault.
Used for conveyors with emergency stop electrical braking.
A fast stop is achieved:

- by configuring a normal stop as a fast stop (on disappearance of a run command or appearance of a stop command)
- by enabling a logic input.

■ DC injection stop

Used to brake (at low speed) high inertia fans, or to maintain torque on stopping in the case of fans located in an airflow.
A DC injection stop is achieved:

- by configuring a normal stop as a DC injection stop (on disappearance of a run command or appearance of a stop command)
- by enabling a logic input

The DC value and the standstill braking time are adjustable.

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors
 Altivar 31

Monitoring the different parameters with PowerSuite for PC

[^14]
■ Brake control

Used to manage control of an electromagnetic brake in synchronization with the starting and stopping of the motor to avoid jolts and load veering.
The brake control sequence is managed by the drive.
Values that can be adjusted for releasing the brake: current threshold and time delay. Values that can be adjusted for engaging the brake: frequency threshold and time delay.
Enabled: by relay logic output R2 or logic output AOC assigned to brake control. Function suitable for material handling applications with movements equipped with electromagnetic brakes (hoisting) and machines requiring a parking brake (unbalanced machines).

- Principle:

- Vertical lifting movement:

Maintain motor torque in an upward direction when the brake is being released and engaged, in order to hold the load, and start smoothly as soon as the brake is released.

- Horizontal lifting movement:

Synchronizes brake release with the build-up torque on starting and brake engage at zero speed on stopping, in order to prevent jerking.
Recommended settings for brake control for a vertical lifting application (for a horizontal lifting application set the current threshold to zero):

- Brake release current:

Adjust the brake release current to the nominal current indicated on the motor. If, during testing, the torque is insufficient, increase the brake release current (the maximum value is imposed by the drive).

- Acceleration time:

For lifting applications it is advisable to set the acceleration ramps to more than 0.5 seconds. Ensure that the drive does not change to current limiting.
The same recommendation applies for deceleration.
Note: For a lifting movement, a braking resistor should be used. Ensure that the settings and configurations selected cannot cause a drop or a loss of control of the lifted load.

- Brake release time delay t 1 :

Adjust according to the type of brake. It is the time required for the mechanical brake to release.

- Brake engage frequency:

Set to twice the nominal slip then adjust according to the result.

- Brake engage time delay t2:

Adjust according to the type of brake. It is the time required for the mechanical brake to engage.

■ Management of limit switch

Used to manage the operation of one or two limit switches (with 1 or 2 operating directions).
Each limit (forward, reverse) is associated with a logic input. The type of stop that occurs on detection of a limit can be configured as normal, freewheel or fast.
Following a stop, the motor is permitted to restart in the opposite direction only.

■ Monitoring

The following data can be displayed:

- frequency reference
- internal PI reference
- frequency reference (absolute value)
\square output frequency applied to the motor (value signed in two's complement)
- output value in customer units
- current in the motor
\square motor power: 100% = nominal power
- line voltage
- motor thermal state:
100% : nominal thermal state, 118% : motor overload threshold - drive thermal state:
100% : nominal thermal state, 118% : drive overload threshold
- motor torque: $100 \%=$ nominal torque
- last fault
- operating time
- auto-tuning status
- configuration and state of logic inputs
\square configuration of analog inputs.

Variable speed drives for asynchronous motors
 Altivar 31

Fault management with PowerSuite for PC

■ Fault management

There are different modes of operation on a resettable fault:

- freewheel stop
- the drive switches to the fallback speed
\square the drive maintains the speed at which it was operating when the fault occurred
until the fault disappears
\square stop on ramp
- fast stop

The detected resettable faults are as follows:
\square drive overheating
\square motor overheating
\square CANopen bus fault

- Modbus serial link failure
- external faults
- loss of 4-20 mA signal.

■ Fault reset

Used to clear the last fault by means of a logic input.
The restart conditions after a reset to zero are the same as those of a normal power-up.
Resets the following faults: overvoltage, overspeed, external fault, drive overheating, motor phase loss, DC bus overvoltage, loss of 4-20 mA reference, load veering, motor overload if the thermal state is less than 100%, serial link fault.
"Line supply undervoltage" and "line supply phase loss" faults are reset automatically when the line supply is restored.
Function suitable for applications where the drives are difficult to access, for example on moving parts in material handling systems.

■ General reset (resets all faults)

This function can be used to inhibit all faults, including thermal protection (forced operation) and may cause irreparable damage to the drive.
Function suitable for applications where a restart can be vital (conveyor in a furnace, smoke extraction station, machine with hardening products which need to be removed).
The function is enabled by a logic input.
Fault monitoring is active if the logic input is at state 1.
All faults are reset on a change of state Σ of the logic input.

■ Controlled stop on loss of line supply

Used to control motor stopping on a loss of line supply.
Function suitable for material handling, machines with high inertia, continuous product processing machines.
Type of stop possible:
\square locking of the drive and freewheel stop
\square stop which uses the mechanical inertia to maintain the drive power supply as long as possible

- stop on ramp
\square fast stop (depends on the inertia and the braking ability of the drive).

■ Stop mode in the event of a fault

The type of stop that occurs on detection of a fault can be configured as normal, freewheel or fast for the following faults:

- external fault (detection enabled by a logic input or a bit in a Modbus or CANopen control word)
- motor phase loss fault

If a downstream contactor is being used between the drive and the motor, the motor phase loss fault should be inhibited.

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

■ Automatic catching a spinning load with speed detection ("catch on the fly") Used to restart the motor smoothly after one of the following events, provided the run command is still present:

- loss of line supply or simple switch off
- fault reset or automatic restart
- freewheel stop

On disappearance of the event, the effective speed of the motor is detected in order to restart on a ramp at this speed and return to the reference speed. The speed detection time can be up to 1 s depending on the initial deviation.
This function is automatically disabled if the brake sequence is configured.
This function is suitable for machines where the speed loss is negligible during the time over which the mains supply is lost (machines with high inertia), fans and pumps driven by residual flow, etc.

- Automatic restart

Enables the drive to be restarted automatically after locking following a fault if this fault has disappeared and if the other operating conditions permit a restart. This restart is performed by a series of automatic attempts separated by increasingly longer wait periods of $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ then 1 minute for the rest.
The whole restart procedure can last anywhere from 5 minutes to an unlimited time. If the drive has not restarted after the configured time, it will lock and the procedure is abandoned until it has been switched off and on again.

The faults permitting this restart are:

- line supply overvoltage
- motor thermal overload
- drive thermal overload
- DC bus overvoltage
- failure of a line supply phase
- external fault
- loss of 4-20 mA reference
- CANopen bus fault
- Modbus serial link fault
- line supply voltage too low. For this fault, the function is always active, even if it is not configured.
For these types of fault, the relay configured as a fault relay remains activated if the function is configured. The speed reference and the direction of operation must be maintained for this function.
This function is suitable for machines or installations in continuous operation or without monitoring, and where a restart will not endanger equipment or personnel in any way.

■ Derated operation in the event of an overvoltage

The line voltage monitoring threshold is lowered to 50% of the motor voltage. In this case, a line choke must be used and the performance of the drive cannot be guaranteed.

- Fault relay, unlocking

The fault relay is energised when the drive is powered up and is not faulty.
It contains a "C/O" common point contact.
The drive can be unlocked after a fault in one of the following ways:

- by powering down until the "ON" LED extinguishes, then switching the power back on
\square by assigning a logic input to the "reset faults" function
- by the "automatic restart" function, if it has been configured

■ Operating time reset to zero
The drive operating time can be reset to zero.

Variable speed drives for asynchronous motors
 Altivar 31

■ Motor thermal protection
Indirect motor thermal protection is implemented via continuous calculation of its theoretical temperature rise.
Thermal protection can be adjusted from 0.2 to 1.5 times the nominal drive current.
This function is suitable for applications with self-cooled motors.

Motor thermal protection curves

■ Drive thermal protection

Thermal protection, by a PTC probe fitted on the heatsink or integrated in the power module, ensures that the drive is protected in the event of poor ventilation or excessive ambient temperatures.
Locks the drive in the event of a fault.

■ R1/R2 relay configuration

The following states are signalled when the relay is powered on:
口 drive fault
\square drive running

- frequency threshold reached
\square high speed reached
ㅁ current threshold reached
- frequency reference reached
- motor thermal threshold reached
- brake sequence (R2 only)

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 26$ to $2 / 33$	pages $2 / 34$ to $2 / 37$	pages $2 / 38$ to $2 / 41$	pages $2 / 52$ to $2 / 57$

Variable speed drives for asynchronous motors
 Altivar 31

Configuration of AOC/AOV outputs with PowerSuite for PC

- AOC/AOV analog outputs

The same data is available on analog outputs AOC and AOV.
The following assignments are possible:

- motor current
\square motor frequency
- motor torque
- power supplied by the drive
- drive fault
\square frequency threshold reached
\square high speed reached
- current threshold reached
\square frequency reference reached
a motor thermal threshold reached
- brake sequence.

The adjustment of analog outputs AOC/AOV is used to modify the characteristics of the current analog output AOC or the voltage analog output AOV.
AOC: can be set as $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$
$A O V$: can be set at $0-10 \mathrm{~V}$.

- Saving and retrieving the configuration

A configuration can be saved to the EEPROM. This function is used to store a configuration in addition to the current configuration.
Retrieving this configuration clears the current configuration.

Function compatibility table

■ Configurable I/O
Functions which are not listed in this table are fully compatible.
Stop functions have priority over run commands.
The selection of functions is limited:

- by the number of drive I/O
- by the incompatibility of certain functions with one another.

Functions	Summing inputs	+/- speed	Management of limit switch	Preset speeds	PI regulator	Jog operation	Brake sequence	DC injection stop	Fast stop	Freewheel stop
Summing inputs		θ		1	-	1				
+/- speed	θ			-	θ	θ				
Management of limit switch					θ					
Preset speeds	-	θ			θ	1				
PI regulator	-	θ	θ	-		-	θ			
Jog operation	4	-		-	-		-			
Brake sequence					θ	θ		θ		
DC injection stop							θ			\uparrow
Fast stop										
Freewheel stop								$=$	-	

Incompatible functions
Compatible functions
Not applicable

Priority functions (functions which cannot be active at the same time)
\square

The arrow indicates which function has priority
Example: the "Freewheel stop" function has priority over the "Fast stop" function

Variable speed drives for asynchronous motors

Altivar 38

Variable speed drives for asynchronous motors

 Altivar 38
Applications

The Altivar 38 is a frequency inverter for three-phase asynchronous motors powered by a three-phase supply $380 \mathrm{~V}-10 \%$ to $460 \mathrm{~V}+10 \%$ or $480 \mathrm{~V}+5 \%$ in the power range 0.75 kW to 315 kW .
The Altivar 38 has been designed for state-of-the-art applications in heating, ventilation and air conditioning (HVAC) in industrial and commercial buildings:

- ventilation
- air conditioning
- pumping

The Altivar 38 can reduce operating costs in buildings by optimizing energy consumption whilst improving user comfort.
Its numerous integrated options enable it to be adapted to and incorporated into electrical installations and sophisticated control systems.
The need for electromagnetic compatibility was taken into account at the outset of designing the drive. Depending on the drive rating, filters and chokes are either built-in or available as optional accessories.

Functions

The Altivar 38 (1) is supplied ready for use in pumping and ventilation applications. It comprises a terminal (2) which can be used to modify programming, adjustment, control or monitoring functions in order to adapt and customize the application to meet individual customer requirements.

- Specific functions for pumping/ventilation:
\square Energy saving
- Automatic catching a spinning load with speed detection (catch on the fly)
- Adaptation of current limiting according to speed
\square Faster/slower, preset speeds
- Integrated PI control, with preset PI references
\square Electricity and service hours meter
- Motor noise reduction
- Protection functions:
- Motor and fan thermal protection via PTC thermal probe
- Protection against overloads and overcurrents in continuous operation
- Machine mechanical protection via jump frequency function
- Protection via multiple fault management and configurable alarms
- Easy to integrate into control systems:
- 4 logic inputs, 2 relay outputs, 2 analogue inputs and 1 analogue output - Plug in I/O connectors
- Display of electrical variables and operating indicators
\square An RS 485 multidrop serial link with Modbus protocol as standard in the drive. This serial link can be used to connect PLCs (6), a PC, communication gateways or one of the available programming tools.

Options

■ PowerSuite advanced dialogue solutions:

3 solutions are available, with plain text display in 5 languages (English, French, German, Spanish, Italian) and configuration memory:

- Pocket PC for PowerSuite (3)
- PowerSuite software workshop for PC (4)
\square Magelis display unit (5).
■ Customizing the application:
- I/O extension cards (8)
\square Application cards (8):
pump switching, multi-motor function, multiple parameter settings and cycles - Communication cards for bus or network (8):

METASYS N2, Ethernet, Fipio, Uni-Telway/Modbus, Modbus Plus, AS-Interface, Profibus DP, InterBus, CANopen, DeviceNet
\square Communication module for LonWorks bus (7).

Standard versions

The Altivar 38 is available in two versions for integration into machines.
■ Drive with heatsink

- Altivar 38 ENERGY ready-assembled drive with a power rating between 3 and 75 kW.
The IP 55 enclosure is equipped with a drive with a cooling system and a Vario switch disconnector. A slot is provided for an additional contactor. The drives are supplied with a built-in line choke.
This enclosure can be installed next to the motor.

Altivar 38 ENERGY

Variable speed drives for asynchronous motors

Altivar 38

Environment characteristics

Presentation: pages $2 / 82$ and $2 / 83$	References:	Dimensions:
page 2/88	pages $2 / 96$ to $2 / 99$	Schemes:

Electrical characteristics

Power supply	a.c. voltage	V	ATV 38•eゃ०N4 and $\bullet \bullet \bullet \bullet N 4 X$ drives: $380-10 \%$ to $460+10 \%$ or $480+5 \%$, three-phase
	Frequency	Hz	$50 \pm 5 \%$ or $60 \pm 5 \%$
Output voltage			Maximum voltage equal to line supply voltage
Electrical isolation			Electrical isolation between power and control (inputs, outputs, power supplies)
Available internal supplies			Protected against short-circuits and overloads: - $1 \mathrm{x}+10 \mathrm{~V}(0,+10 \%)$ supply for the reference potentiometer ($1 \ldots 10 \mathrm{k} \Omega$), maximum current 10 mA $-1 \mathrm{x}+24 \mathrm{~V}$ supply (min. 20 V , max. 30 V) for control inputs, maximum current 200 mA
Analogue inputs AI			1 analogue voltage input Al1: 0-10 V, impedance $30 \mathrm{k} \Omega$ 1 analogue current input Al2: 0-20 mA, impedance 100Ω (reassignable to $\mathrm{X}-\mathrm{Y} \mathrm{mA}$ by programming X and Y with a precision of 0.1 mA) Frequency resolution at analogue reference: 0.1 Hz for 100 Hz (10 bits), precision $\pm 1 \%$, linearity $\pm 0.5 \%$ of the maximum output frequency Sampling time: 4 ms max. Other analogue inputs: see option cards
Analogue output AO1			Assignable analogue output 0-20 mA, max. load impedance 500Ω (reassignable to $\mathrm{X}-\mathrm{Y} \mathrm{mA}$ by programming X and Y from 0 to 20 with a precision of 0.1 mA) Resolution 0.04 mA (9 bits), linearity $\pm 0.1 \mathrm{~mA}$, precision $\pm 0.2 \mathrm{~mA}$ Max. sampling time 2 ms Other analogue inputs: see option cards
Logic inputs LI			4 assignable logic inputs, impedance $3.5 \mathrm{k} \Omega$, compatible with PLC level 1, standard IEC 65A-68. Maximum length of shielded cable: 100 m +24 V power supply (min .11 V , max. 30 V). State 0 if $<5 \mathrm{~V}$, state 1 if $\geq 11 \mathrm{~V}$ Sampling time: 2 ms max. Other logic inputs: see option cards
Logic outputs			2 relay logic outputs R1 (fault relay) and R2 (assignable) $1 \mathrm{C} / \mathrm{O}$ contact protected against overvoltages (relay R1) $1 \mathrm{~N} / \mathrm{O}$ contact protected against overvoltages (relay R2) Minimum switching capacity: 10 mA for $-\mathrm{-} 24 \mathrm{~V}$ Maximum switching capacity: - on resistive load ($\cos \varphi=1$): 5 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$ - on inductive load ($\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$): 1.5 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$. Other outputs: see option cards
Maximum connection capacity of I/O			$1.5 \mathrm{~mm}^{2}$ (AWG 14)
Communication			RS 485 multidrop serial link with Modbus protocol integrated into the drive Transmission speed: 9600 or 19200 bps, no parity Use: - connecting a terminal (option) or - connecting a microprocessor card or - connecting a PC or a pocket PC (options) or - connecting one or more PLCs
Acceleration and deceleration ramps			Ramp profiles can be selected: linear, S or U. Possibility of 2 ramp ranges which can be switched via frequency threshold or logic input. Can be adjusted separately between 0.05 and 999.9 s (precision 0.1 s) Automatic adaptation of deceleration ramp times if the braking capacity is exceeded (configurable option)
Braking to a standstill			By d.c. injection: - by a signal on an assignable logic input - automatically on stopping as soon as the frequency drops below 0.1 Hz , for a time which can be set between 0 and 30 s or alternately set - continuous
Main protection and safety features of the drive			Short-circuit protection: - between output phases - between output phases and earth - on internal supply outputs Thermal protection against excessive overheating and overcurrents Mains undervoltage and overvoltage safety circuits Loss of supply phase safety circuit (prevents single phase operation of 3-phase drives)
Motor protection			Thermal protection integrated into the drive via continuous calculation of $\mathrm{I}^{2} \mathrm{t}$ taking the speed into account: - the motor thermal state is saved when the drive is powered down. - the function can be modified via the terminal or by using the PowerSuite advanced dialogue solutions, depending on the type of motor (force-cooled or self-cooled). Protection against motor phase breaks Protection via PTC probes with option card
Insulation resistance to earth		M Ω	>500 (electrical isolation) at $-\mathrm{--} 500 \mathrm{~V}$
Dielectric strength		V	--- 2830 earth/power ~ 2000 control/power

Variable speed drives for asynchronous motors
 Altivar 38

Torque characteristics (typical curves)

The curves below define the available continuous torque and transient overtorque for both force-cooled and self-cooled motors.
The only difference is in the ability of the motor to provide a high continuous torque at less than half the nominal speed.

1 Self-cooled motor: continuous useful torque
2 Force-cooled motor: continuous useful torque
Transient overtorque
4 Torque in overspeed at constant power

Caution: check the mechanical overspeed characteristics of the selected motor with the manufacturer.

Motor thermal protection

The Altivar 38 drive features motor thermal protection designed specifically for selfcooled or forced-cooled variable speed motors.

This motor thermal protection is designed for a maximum ambient temperature of $40^{\circ} \mathrm{C}$ around the motor.

If the temperature around the motor exceeds $40^{\circ} \mathrm{C}$, thermal protection should be provided directly by thermistor probes integrated into the motor using one of the available option cards.

Special uses

Switching the motor at the drive output
The drive can be switched when locked or unlocked. If the drive is switched on-thefly (drive locked), the motor is controlled and accelerates until it reaches the reference speed smoothly following the acceleration ramp.
The "flying restart" must be configured for this type of use and the "loss of motor phase" protection function must be disabled.

Example: breaking of downstream contactor
Typical applications: breaking safety circuit at drive outputs, "bypass" function, switching of motors connected in parallel

Operation with intermittent cycle and high switching frequency

If the operating conditions are intermittent and the maximum cumulative running time is 36 s per 60 s cycle (load factor 60%), it is possible to operate at a high switching frequency without derating the power.
Switching frequencies (in kHz):

- 8-12-16 for ATV 38HU18N4 to HD23N4 drives.
- 8-12 for ATV 38HD25N4• to HD46N4• drives.
- 4 for ATV 38HD54N4• to HC33N4X drives.

Connecting motors in parallel

[^15]The nominal current of the drive must be greater than or equal to the sum of the currents of the motors to be controlled. In this case, provide external thermal protection for each motor using thermal probes or relays. If the number of motors connected in parallel is $\geqslant 3$, it is advisable to install an output filter between the drive and the motors or to reduce the switching frequency.

If several motors are used in parallel, there are 2 possible scenarios:

- the motors have equal power ratings, in which case the torque characteristics will remain optimised after the drive has been configured,
- the motors have different power ratings, in which case the drive configuration will be incompatible for the motors with the lowest power ratings and the overtorque at low speed will be considerably reduced.

Ensure that the cables are the correct length.
As the leakage currents are proportional to the total length of the cable between the drive and the motors, ensure $L \leqslant 100 \mathrm{~m}$ by $\mathrm{L}=\mathrm{I} 1+\mathrm{I} 2+\mathrm{Ix}+\mathrm{I} 4$.
For longer lengths, please consult your Regional Sales Office.

Presentation:	References:	Dimensions:
pages $2 / 82$ and $2 / 83$	page $2 / 88$	pages $2 / 96$ to $2 / 99$

Variable speed drives for asynchronous motors

Altivar 38
Variable torque applications (110 \% Tn)

ATV 38HU18N4

ATV 38HD28N4

3-phase supply voltage: $380 . .460$ V $50 / 60 \mathrm{~Hz}$							
Motor	Line supply (2)	Altivar 38					
Power (1)	Line current at 400 V	Nominal drive current	Max. transient current (3)	Power dissipated at nominal load (4)	Reference With integral EMC filters	No EMC filters	Weight
kW	A	A	A	W			kg
0.75	3.1	2.1	2.3	55	ATV 38HU18N4	-	3.800
1.5	5.4	3.7	4.1	65	ATV 38HU29N4	-	3.800
2.2	7.3	5.4	6	105	ATV 38HU41N4	-	3.800
3	10	7.1	7.8	145	ATV 38HU54N4	-	6.900
4	12.3	9.5	10.5	180	ATV 38HU72N4	-	6.900
5.5	16.3	11.8	13	220	ATV 38HU90N4	-	6.900
7.5	24.3	16	17.6	230	ATV 38HD12N4	-	13.000
11	33.5	22	24.2	340	ATV 38HD16N4	-	13.000
15	43.2	30	33	410	ATV 38HD23N4	-	15.000
18,5	42	37	41	670	ATV 38HD25N4	-	34.000
					-	ATV 38HD25N4X	34.000
22	49	44	49	750	ATV 38HD28N4	-	34.000
					-	ATV 38HD28N4X	34.000
30	65	60	66	925	ATV 38HD33N4	-	34.000
					-	ATV 38HD33N4X	34.000
37	79	72	80	1040	ATV 38HD46N4	-	34.000
					-	ATV 38HD46N4X	34.000
45	95	85	94	1045	ATV 38HD54N4	-	57.000
					-	ATV 38HD54N4X	57.000
55	118	105	116	1265	ATV 38HD64N4	-	57.000
					-	ATV 38HD64N4X	57.000
75	158	138	152	1730	ATV 38HD79N4	-	57.000
					-	ATV 38HD79N4X	57.000
90	156 (5)	173	190	2250	-	ATV 38HC10N4X	49.000
110	191 (5)	211	232	2750	-	ATV 38HC13N4X	75.000
132	229 (5)	253	278	3300	-	ATV 38HC15N4X	77.000
160	279 (5)	300	330	4000	-	ATV 38HC19N4X	77.000
200	347 (5)	370	407	5000	-	ATV 38HC23N4X	159.000
220	384 (5)	407	448	5500	-	ATV 38HC25N4X	166.000
250	433 (5)	450	495	6250	-	ATV 38HC28N4X	168.000
280	485 (5)	503	553	7000	-	ATV 38HC31N4X	168.000
315	536 (5)	564	620	7875	-	ATV 38HC33N4X	168.000

(1) Value indicated on the motor rating plate. These power levels are for the maximum switching frequency permitted by the drive (2 or 4 kHz depending on the rating) in continuous operation without derating. For switching frequencies above this level, the drive must be in intermittent operation or it must be set one rating lower (see special uses on the previous pages).
(2) The prospective short-circuit current at 400 V is 5 kA for $\mathrm{ATV} 38 \mathrm{HU18N} 4$ to HU90N4 drive ratings and 22 kA for ATV 38HD25N4• to HC33N4X drive ratings.
(3) For 60 seconds.
(4) These power levels are given for the maximum switching frequency permitted by the drive in continuous operation (2 or 4 Hz , depending on the rating).
(5) Line chokes must be used if the prospective short-circuit line current is greater than 22 kA . The current values given include the addition of a line choke.

Presentation:	Characteristics:	Dimensions:	Schemes:
pages 2/82 and 2/83	pages 2/84 and 2/85	pages 2/96 to 2/99	pages 2/100 to 2/103

Variable speed drives for asynchronous motors

references
Altivar 38
Options: dialogue

Operator terminal

The removable operator terminal fits into a designated slot on the front panel of the drive. The operator terminal is supplied with the drive or can be ordered separately.

The operator terminal can be used:

- in 5 languages (English, French, German, Spanish, Italian),
- to control, adjust and configure the drive,
- for visible remote signalling,
- to save and download configurations (4 files can be saved).

Its maximum operating temperature is $60^{\circ} \mathrm{C}$.

Description	Reference (if ordered separately)	Weight kg
Operator terminal	VW3 A58101	0.200

Kit for remote operator terminal

The removable operator terminal can be used remotely, mounted on an enclosure door, using this kit.

Description	Reference	Weight kg
Kit comprising:	VW3 A58103	0.200
- 1 cable fitted with connectors, length 3 m		
- seals and screws for IP 65 mounting on an		
enclosure door		
- installation guide		

PowerSuite software workshop

See pages $3 / 2$ and $3 / 3$.

Connection kit for RS 485

This kit can be used to connect the drive to PLCs, operator terminals, etc., via the RS 485 multidrop serial link. The kit is connected instead of the operator terminal (the two cannot be used simultaneously).

Description	Reference	Weight kg
Connection kit for RS 485 comprising:	VW3 A58306	0.200
-1×3 m cable with 1 male 9-way SUB-D		
connector and 1 male 15-way SUB-D connector		
- installation guide		

I/O extension cards

See pages 2/140 and 2/141.

Communication options

See pages 2/142 and 2/143.

Presentation:	Characteristics:	Dimensions:
pages $2 / 82$ and $2 / 83$	pages 2/84 and 2/85	pages 2/99

Control card fan kit

The fan kit enables the drive to operate at an ambient temperature of $60^{\circ} \mathrm{C}$, for example if it is mounted in an IP 54 enclosure. The circulation of air around the electronic cards prevents the formation of hot spots.

This kit is mounted on the upper part of the drive. It is powered by the drive.
The kit consists of:
■ a fan subassembly,

- mounting accessories.

For drives	Reference	Weight kg
ATV 38HU18N4, HU29N4, HU41N4	VW3 A58822	0.450
ATV 38HU54N4, HU72N4, HU90N4	VW3 A58823	0.450
ATV 38HD12N4, HD16N4, HD23N4	VW3 A58824	0.500
ATV 38HD25N4, HD28N4, HD33N4, HD46N4 ATV 38HD25N4X, HD28N4X, HD33N4X, HD46N4X	VW3 A58825	1.200
ATV 38HD54N4, HD64N4, HD79N4	VW3 A58826	1.200
ATV 38HD54N4X, HD64N4X, HD79N4X		

NEMA type 1 kit (IP 21 protection for mounting outside a wall-fixing or floor-standing enclosure)
The kit permits the connection of cables conforming to the NEMA type 1 standard.
The kit will provide IP 21 protection if the drive is mounted directly on a wall and not inside a wall-fixing or floor-standing enclosure.

This kit is mounted on the lower part of the drive.
The kit consists of:

- a cover made up of two metal parts,

■ mounting accessories.

For drives	Reference	Weight $\mathbf{k g}$
ATV 38HU18N4, HU29N4, HU41N4	VW3 A58852	0.950
ATV 38HU54N4, HU72N4, HU90N4	VW3 A58853	1.000
ATV 38HD12N4, HD16N4	VW3 A58854	1.100
ATV 38HD23N4	VW3 A58855	1.100
ATV 38HD25N4, HD28N4, HD33N4, HD46N4	VW3 A58856	1.120
ATV 38HD54N4, HD64N4, HD79N4	VW3 A58857	3.200

[^16]Presentation, characteristics, references

Variable speed drives for asynchronous motors

Altivar 38
Options: line chokes

Presentation

VW3 A6650•

Line chokes can be used to provide improved protection against overvoltages on the line supply and to reduce harmonic distortion of the current produced by the drive. The recommended chokes are used to limit the line current.
The use of line chokes is recommended in particular under the following circumstances:

- Line supply with significant interference from other equipment (interference, overvoltages)
- Line supply with voltage imbalance between phases > 1.8% of the nominal voltage - Line with very low impedance (in the vicinity of power transformers 10 times more powerful than the drive rating)
- Large number of frequency converters on the same line in order to reduce the line current
- Use of $\cos \varphi$ correction capacitors or a power factor correction unit.

ATV 38HD25N4 (18.5 kW) to HD79N4 (75 kW) and ATV 38HD25N4X (18.5 kW) to HD79N4X (75 kW) drives have a built-in line choke which limits the line current to the value of the nominal current of the motor.

VW3 A6850•

Characteristics

Chokes			VW3 A66501 to VW3 A66503 VW3 A66504				VW3 A6850•	
Conforming to standards			EN 50178 (VDE 0160 level 1 high energy overvoltages on the line supply)				IEC 60076 (with HD 398)	
Voltage drop			Between 3 and 5% of the supply voltage. Values higher than this will cause loss of torque.					
Degree of protection	Choke		IP 00		IP 00		IP 00	
	Terminals		IP 20		IP 10		-	
References								
Drive			Choke					
	Prospective line Isc	Line current without choke at 400 V	Line current with choke	Value of the choke	Nominal current	Loss	Reference	Weight
	kA	A	A	mH	A	W		kg
3-phase supply voltage: $\mathbf{3 8 0} \mathrm{V}-10 \% \ldots 460 \mathrm{~V}+10 \%$								
ATV 38HU18N4	5	3.1	1.8	10	4	45	VW3 A66501	1.500
ATV 38HU29N4	5	5.4	3.3	10	4	45	VW3 A66501	1.500
ATV 38HU41N4	5	7.3	4.8	4	10	65	VW3 A66502	3.000
ATV 38HU54N4	5	10	6.4	4	10	65	VW3 A66502	3.000
ATV 38HU72N4	5	12.3	8.3	4	10	65	VW3 A66502	3.000
ATV 38HU90N4	5	16.3	11.6	2	16	75	VW3 A66503	3.500
ATV 38HD12N4	22	24.3	15.4	2	16	75	VW3 A66503	3.500
ATV 38HD16N4	22	33.5	22.7	1	30	90	VW3 A66504	6.000
ATV 38HD23N4	22	43.2	29.4	1	30	90	VW3 A66504	6.000
ATV 38HD25N4• (1)	22	-	-	-	-	-	-	-
ATV 38HD28N4• (1)	22	-	-	-	-	-	-	-
ATV 38HD33N4• (1)	22	-	-	-	-	-	-	-
ATV 38HD46N4• (1)	22	-	-	-	-	-	-	-
ATV 38HD54N4• (1)	22	-	-	-	-	-	-	-
ATV 38HD64N4• (1)	22	-	-	-	-	-	-	-
ATV 38HD79N4• (1)	22	-	-	-	-	-	-	-
ATV 38HC10N4X	22	-	156 (2)	0.220	160	220	VW3 A68501	35.000
ATV 38HC13N4X	22	-	191 (2)	0.155	195	220	VW3 A68502	35.000
ATV 38HC15N4X	22	-	229 (2)	0.120	235	220	VW3 A68503	40.000
ATV 38HC19N4X	22	-	279 (2)	0.098	280	245	VW3 A68504	50.000
ATV 38HC23N4X	22	-	347 (2)	0.066	365	270	VW3 A68505	50.000
ATV 38HC25N4X, ATV 38HC28N4X	22	-	384 (2)	0.049	455	270	VW3 A68506	55.000
ATV 38HC31N4X, ATV 38HC33N4X	22	-	433 (2)	0.038	540	280	VW3 A68507	60.000

(1) The line choke is integrated into these drives.
(2) The addition of a line choke is recommended in particular for these drive ratings. The current values given include the addition of a line choke.

Dimensions

page 2/97

Variable speed drives for asynchronous motors

Altivar 38

Options: radio interference input filters

VW3 A68403

VW3 A68465

Function

■ Note about built-in filters:

ATV 38HU18N4 to HD79N4 drives have a built-in radio interference filter to meet EMC "product" standards for speed drives IEC 1800-3 and EN 61800-3. Compliance with these standards is sufficient to meet the requirements of the European EMC (electromagnetic compatibility) directive.

■ Additional input filters:

The additional radio interference input filters enable the drives to meet more stringent requirements.
These filters are designed to reduce emissions conducted on the line supply below the limits of standards EN 55011 class A or EN 55022 class B. They can be added to the following drives:

- ATV 38HU18N4 to ATV 38 D23N4 which already have a built-in filter, if the motor cable is more than 5 m long,
- ATV 38HD25N4• to ATV 38 D79N4• (1), available with or without built-in filters, if the motor cable is more than 25 m long,
- ATV 38HC10N4X to ATV 38HC33N4X without built-in filters.

Additional input filters should be installed on the line supply, upstream of the drive, if the surrounding environment is subject to electromagnetic interference and radioelectric frequencies above 150 kHz .
VW3 A58402 to VW3 A58408 filters can be installed on ATV $38 \mathrm{Heee} \mathrm{\bullet}$ drives.
They act as supports for the drives and are fixed to them via tapped holes. VW3 A68401 to VW3 A68403 and VW3 A68415, A68435 and A68465 filters should be installed next to the drives.
The motor cables should be shielded and not exceed the maximum length given in the reference table.
For the filter to operate efficiently, the installation conditions must be carefully respected.

Use according to the type of mains supply

The built-in filters are compatible with IT connection (impeding or isolated neutral) up to 460 V . They help to attenuate interference even in conditions not defined by the EMC standard.
These additional input filters may only be used on TN (connected to neutral) and TT (neutral to earth) type supplies. They are not permitted on IT (impedance or isolated neutral) supplies.
(1) If EMC conformance is not required, replace \bullet with an X in the drive reference.

Characteristics				
Filters			VW3 A5840•	VW3 A6840®
Conforming to standards			EN 133200	
Degree of protection				IP 00
Maximum relative humidity			93% without condensation or dripping water conforming to IEC 60068-2-3	
Maximum operating temperature	Operation	${ }^{\circ} \mathrm{C}$	-10...+60	$0 \ldots+45$, up to +55 with current derating of 2% per ${ }^{\circ} \mathrm{C}$ above $45^{\circ} \mathrm{C}$
	Storage	${ }^{\circ} \mathrm{C}$	-25... 70	
Maximum operating altitude	Without derating	m	1000 (above this, derate the c	\% per additional 100 m)

Variable speed drives for asynchronous motors

Altivar 38

Options: radio interference input filters

References						
For drives	Filters					
	Maximum length of motor cable (1)		Nominal filte current		Reference	Weight
	$\begin{aligned} & \text { EN } 55011 \\ & \text { class A } \end{aligned}$					
	m	m	A			kg
3-phase supply voltage: $\mathbf{3 8 0} \mathrm{V}-10 \% . . .460 \mathrm{~V}+10 \% 50-60 \mathrm{~Hz}$						
ATV 38HU18N4, HU29N4, HU41N4	50	20	25		VW3 A58402	3.600
ATV 38HU54N4, HU72N4, HU90N4	50	20	25		VW3 A58403	5.000
ATV 38HD12N4, HD16N4	50	20	45		VW3 A58404	10.000
ATV 38HD23N4	50	20	45		VW3 A58405	13.000
ATV 38HD25N4	200	100	50		VW3 A58406	13.000
ATV 38HD25N4X	50	20	50		VW3 A58406	13.000
ATV 38HD28N4	200	100	50		VW3 A58406	13.000
ATV 38HD28N4X	50	20	50		VW3 A58406	13.000
ATV 38HD33N4, HD46N4	200	100	80		VW3 A58407	13.000
ATV 38HD33N4X, HD46N4X	50	20	80		VW3 A58407	13.000
ATV 38HD54N4, HD64N4, HD79N4,	200	100	160		VW3 A58408	20.000
ATV 38HD54N4X, HD64N4X, HD79N4X	50	20	160		VW3 A58408	20.000
For drives	Filters					
	Maximum length of motor cable (1)		Nominal filter current	Loss	Reference	Weight
	With motor choke					
	m	m	A	W		kg
Supply voltage: 400 V ($\pm 15 \%$)						
ATV 38HC10N4X	120	40	170	20	VW3 A68401 (2)	5.000
ATV 38HC13N4X and HC15N4X	150	40	300	40	VW3 A68402 (2)	5.500
ATV 38HC19N4X	100	40	300	40	VW3 A68402 (2)	5.500
ATV 38HC23N4X, HC25N4X, HC28N4X, HC31N4X and HC33N4X	120	40	570	60	VW3 A68403 (2)	6.000
Supply voltage: 440 V ... 460 V (± 15 \%)						
ATV 38HC10N4X	100	25	180	38	VW3 A68415	6.500
ATV 38HC13N4X, HC15N4X and HC19N4X	120	25	320	40	VW3 A68435	10.500
ATV 38HC23N4X, HC25N4X, HC28N4X, HC31N4X and HC33N4X	100	25	600	65	VW3 A68465	11.000

(1) The length of the shielded cables connecting the motor to the drive is limited. If motors are connected in parallel, it is the total length that should be taken into account. The limits are given as examples only as they vary depending on the interference capacity of the motors and the cables used.
ATV 38HU18N4 to ATV 38HD79N4• drives: cable length limits given for a switching frequency between 0.5 and 12 kHz .
ATV 38HC10N4X to ATV 38HC33N4X drives: cable length limits given for a modulation frequency of 2.5 kHz . They should be multiplied by 0.6 for a frequency of 5 kHz and by 0.3 for 10 kHz . If the motor cable is longer, the addition of a motor choke enables the length to be multiplied by 2.5, and the use of a single cable with a larger cross-section instead of several cables in parallel enables it to be multiplied by 1.5 or 2 if it is not shielded. In this case the radiated emissions are not limited.
(2) Filters VW3 A68401 to 403 have 2 parts: the line choke should be mounted between them.

Presentation, principle, characteristics

Variable speed drives for asynchronous motors

Altivar 38
Options: output filters and motor chokes

Presentation

Choke + capacitor combination

This combination comprises 3 capacitors installed in a delta connection in a junction box to be connected to a VW3 A6650• 3-phase line choke.

By inserting an output filter between the drive and the motor, it is possible to:
■ Limit $\frac{\mathrm{dv}}{\mathrm{dt}}$ to $500 \mathrm{~V} / \mu \mathrm{s}$ at 400 V .
■ Limit overvoltages to on the motor terminals to 1000 V at 400 V .
■ Filter interference caused by opening a contactor placed between the filter and the motor.
■ Reduce the motor earth leakage current.
The offer comprises three types of filters and motor chokes.

Principle

LR filter cell

This cell comprises 3 high frequency chokes and

LC filter cell

This cell comprises 3 high frequency chokes and 3 capacitors. 3 resistors.

Motor choke

Overvoltages on the motor terminals can be limited by inserting an output choke between the drive and the motor. This is recommended for motor cable lengths over: -50 m (shielded cables) or 100 m (unshielded cables) for ATV 38HU18N4 to ATV 38HD79N4• drives,

- 50 m (shielded cables) or 80 m (unshielded cables) for ATV 38HC10N4X to ATV 38HC33N4X drives.

Characteristics (1)											
			LR filter cells (2)	LC filter cells VW3 A6641•		Chokes + capacitors combinations VW3 A6650• + VW3 A66421		Motor chokes			
						VW3 A6650•	VW3 A6855•				
Drive switching frequency		kHz	$\begin{aligned} & 0.5 \ldots 4 \\ & \text { max. } \end{aligned}$	2 or 4	12			2 or 4	12	4	-
Length of motor cable	Shielded cables	m	$\leqslant 80$	$\leqslant 100$	$\leqslant 50$	$\leqslant 40$	$\leqslant 20$	$\leqslant 100$	(3)		
	Unshielded cables	m	$\leqslant 80$	$\leqslant 40$	$\leqslant 100$	$\leqslant 200$	$\leqslant 100$	-	(3)		
Degree of protection			IP 20	IP 00	IP 00	IP 00	IP 00	IP 20	IP 00		

[^17](3) See page 2/95.

Variable speed drives for asynchronous motors

Altivar 38
Options: output filters and motor chokes

LR filter cells					
For drives		Nominal current	Loss	Reference	Weight
		A	W		kg
ATV 38HU18N4 to HU72N4		10	150	VW3 A58451	7.400
ATV 38HU90N4		16	180	VW3 A58452	7.400
ATV 38HD12N4 to HD23N4		33	220	VW3 A58453	12.500
LC filter cells					
For drives				Reference	Weight kg
ATV 38HD25N4 to HD33N4, ATV 38HD25N4X to HD33N4X				VW3 A66412	35.000
ATV 38HD46N4 to HD64N4 ATV 38HD46N4X to HD64N4X				VW3 A66413	40.000
Chokes (1) + capacitors combination					
For drives		Description		Reference	Weight kg
ATV 38HD25N4 to HD46N4 ATV 38HD25N4X to HD46N4X		Motor chokes		VW3 A66506	16.000
		Capacitors (2)		VW3 A66421	0.250
ATV 38HD54N4 to HD79N4 ATV 38HD54N4X to HD79N4X		Motor chokes		VW3 A66507	45.000
		Capacitor	(2)	VW3 A66421	0.250
Motor chokes					
For drives				Reference	Weight kg
ATV 38HD23N4 to HD46N4 ATV 38HD25N4X to HD46N4X				VW3 A66506	16.000
ATV 38HD54N4 to HD79N4 ATV 38HD54N4X to HD79N4X				VW3 A66507	45.000
For drives	ngth of (3)	Nominal current	Max. loss	Reference	Weight
	Shielded				
	m	A	W		kg
Power supply voltage $400 \mathrm{~V} \pm 15$ \%					
ATV 38HC10N4X 250	150	170	500	VW3 A68551	11.500
ATV 38HC13N4X 300	200	300	650	VW3 A68552	18.000
ATV 38HC15N4X 300	200	300	650	VW3 A68552	18.000
ATV 38HC19N4X 250	150	300	650	VW3 A68552	18.000
ATV 38HC23N4X 300	250	580	800	VW3 A68553	40.000
ATV 38HC25N4X 300 ATV 38HC28N4X	250	580	800	VW3 A68553	40.000
ATV 38HC31N4X 250 ATV 38HC33N4X	200	580	800	VW3 A68553	40.000
Power supply voltage $440 \mathrm{~V}-10 \% . .460 \mathrm{~V}+10 \%$					
ATV 38HC10N4X 200	150	170	500	VW3 A68551	11.500
ATV 38HC13N4X 250	200	300	650	VW3 A68552	18.000
ATV 38HC15N4X 250	200	300	650	VW3 A68552	18.000
ATV 38HC19N4X 200	150	300	650	VW3 A68552	18.000
ATV 38HC23N4X 280	200	580	800	VW3 A68553	40.000
ATV 38HC25N4X 250 ATV 38HC28N4X	200	580	800	VW3 A68553	40.000
ATV 38HC31N4X 220 ATV 38HC33N4X	180	580	800	VW3 A68553	40.000

(1) It is not recommended to connect option VW3 A66421 to drive terminals without chokes as this could cause a drive fault to be displayed.
(2) Connected to terminals S1, S2, S3 of the selected choke using wires with a cross-section of $1.5 \mathrm{~mm}^{2}$.
(3) For longer cables, please consult your Regional Sales Office.

Choke performance is ensured if the cable lengths above are not exceeded. If motors are connected in parallel, it is the total length that should be taken into account. If a cable longer than that recommended is used, the motor chokes may overheat.

VW3 A68553

Variable speed drives for asynchronous motors

Altivar 38

ATV 38HU18N4 to ATV 38HD23N4

ATV 38H

U18N4 to U90N4: 6 mm² (AWG 8)
D12N4 to D23N4: $10 \mathrm{~mm}^{2}$ (AWG 6)

ATV 38HC10N4X to ATV 38HC33N4X

ATV 38H		a	b	c	G	H	\varnothing
C10N4X		370	630	360	317.5	609	12
C13N4X, C15N4X, C19N4X		480	680	400	426	652	12
C23N4X, C25N4X, C28N4X, C31N4X, C33N4X		660	950	440	598	920	15
Maximum connection capacity							
ATV 38H	Earth connection	Power terminal					
C10N4X to C15N4X	$60 \mathrm{~mm}^{2}$	100 mm ${ }^{2}$					
C19N4X	$100 \mathrm{~mm}^{2}$	$150 \mathrm{~mm}^{2}$					
C23N4X to C25N4X	$100 \mathrm{~mm}^{2}$	$200 \mathrm{~mm}^{2}$					
C28N4X to C33N4X	150 mm ${ }^{2}$	$150 \times 2 \mathrm{~mm}^{2}$					

EMC mounting plate (supplied with drive)

| Mounting on ATV 38H | $\Delta \mathbf{b}$ | $\varnothing(3)$ |
| :--- | :--- | :--- | :--- |
| U18N4 to U90N4 | 64.5 | M4 |
| D12N4 to D23N4 | 62 | M4 |
| D25N4• to D46N4• | 80 | M5 |
| D54N4• to D79N4• | 110 | M5 |

(1) Drive
(2) Mounting plate
(3) Tapped holes for fixing the EMC clamps

Control card fan kit NEMA type 1 kit

VW3	
A58822	db
A58823	25
A58824	25
A58825	25
A58826	60
(1) $V W 3$ A58822 to $V W 3$ A58826	

(1) VW3 A58822 to VW3 A58826
(2) Drive

(1) VW3 A58852 to VW3 A58857
(2) Drive

Presentation:		Characteristics:
pages $2 / 82$ and $2 / 83$	pages $2 / 84$ to $2 / 87$	References:

Dimensions (continued)

Variable speed drives for asynchronous motors
Altivar 38

3-phase chokes (line and motor) VW3 A66501 to VW3 A66507

VW3	a	b	c	c1	G	G1	H	\varnothing
Line chokes								
A66501	100	135	55	60	40	60	42	6×9
A66502	130	155	85	90	60	80.5	62	6×12
$\mathbf{A 6 6 5 0 3}$	130	155	85	90	60	80.5	62	6×12
A66504	155	170	115	135	75	107	90	6×12
Motor chokes								
A66506	275	210	130	160	105	181	100	11×22
A66507	320	290	172	215	190	230	142	-

Radio interference suppression filters (EMC)

VW3 A58402 to VW3 A58408

3-phase line chokes
VW3 A68501 to VW3 A68507

A68501	280	305	240	210	200	200	125	275	9	9	9
$\mathbf{A 6 8 5 0 2}$	280	330	260	210	200	200	125	300	11	9	9
$\mathbf{A 6 8 5 0 3}$	320	380	300	210	200	225	150	350	11	9	9
$\mathbf{A 6 8 5 0 4}$	320	380	300	210	200	225	150	350	11	9	9
$\mathbf{A 6 8 5 0 5}$	320	380	300	250	230	225	150	350	13	11	11
$\mathbf{A 6 8 5 0 6}$	320	380	300	250	230	225	150	350	13	11	11
$\mathbf{A 6 8 5 0 7}$	320	380	300	250	$\mathbf{2 3 0}$	225	150	350	13	11	11

(1) min .25 mm

VW3 A68401 (2 elements)

VW3	a	b	c	G	H	\varnothing
A58402	150	276	50	133	260	5
A58403	175	340	60	153	320	6
A58404	230	390	60	200	370	6
A58405	230	480	60	200	460	6
A58406	240	690	85	205	650	7
A58407	240	690	85	205	650	7
A58408	350	770	90	300	770	9

(1) Cable

Presentation: pages $2 / 90$ and $2 / 92$	References: pages $2 / 91$ and 2/93	Schemes: page 2/102
	(隼 Telemecanique	$2 / 97$

Variable speed drives for asynchronous motors
Altivar 38

Radio interference suppression filters (EMC) (continued)
VW3 A68402, A68403 (2 elements)
VW3 A68415

VW3	a	a1		(1)
A68402	204	35	11	bar $\mathbf{3 0} \times \mathbf{5}$
A68403	224	40	13.5	bar $\mathbf{4 0} \times \mathbf{5}$

Output filters
VW3 A58451 to A58453

VW3 A68435 and A68465

VW3	c	L
A68435	115	6
A68465	135	8

VW3	a	b	c	G	H	\varnothing
A58451	169.5	340	123	150	315	7
A58452	169.5	340	123	150	315	7
A58453	239	467.5	139.5	212	444	7

Additional motor chokes

VW3 A68551

Additional motor chokes
VW3 A68553

VW3 A68552

Mounting the remote operator terminal VW3 A58103

Presentation:	References:	Schemes:
pages 2/92 and 2/94	pages 2/93 and 2/95	page 2/102

Mounting recommendations

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories. Install the unit vertically, at $\pm 10^{\circ}$.
Do not place it close to heating elements.
Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.
$\left.\begin{array}{l|l|l}\text { Mounting recommendations } \\ e \geqslant 10 \mathrm{~mm}, \mathrm{~h} \geqslant 50 \mathrm{~mm}\end{array}\right]$

Mounting in a metal wall-mounted or floor-standing enclosure with degree of protection IP 23 or IP 54
Observe the mounting recommendations above.
$\theta^{\circ} \leq 40^{\circ} \mathrm{C}$
ventilation is adequate - if not, install forced ventilation with a filter.
■ Use special filters with IP 54 protection.

Fan flow rate depending on the drive rating

ATV 38 drive	Flow rate $\boldsymbol{m}^{\mathbf{3}}$ /hour
ATV 38HU18N4	not cooled
ATV 38HU29N4, HU41N4, U54N4	36
ATV 38HU72N4, HU90N4, HD12N4, HD16N4, HD23N4	72
ATV 38HD25N4•, HD28N4•, HD33N4•, HD46N4•	292
ATV 38HD54N4•, HD64N4•, HD79N4•	492
ATV 38HC10N4X	600
ATV 38HC13N4X, HC15N4X, HC19N4X	900
ATV 38HC23N4X, HC25N4X, HC28N4X, HC31N4X, HC33N4X	900

Metal wall-mounted or floor-standing enclosure with IP 54 degree of protection

The drive must be mounted in a dust and damp proof casing in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.
To avoid hot spots in the drive, add a fan to circulate the air inside the enclosure, reference VW3 A5882• (see page 2/90). This enables the drive to be used in an enclosure where the maximum internal temperature can reach $60^{\circ} \mathrm{C}$.

Calculating the size of the wall-mounted or floor-standing enclosure

 Maximum thermal resistance Rth (${ }^{\circ} \mathrm{C} / \mathrm{W}$)Rth $=\frac{\theta-\theta \mathrm{e}}{\mathrm{P}} \quad \begin{array}{ll}\theta=\text { maximum temperature inside the enclosure in }{ }^{\circ} \mathrm{C}, \theta \mathrm{e}=\text { maximum external temperature in }{ }^{\circ} \mathrm{C} \\ \mathrm{P}=\text { total power dissipated in the enclosure in } \mathrm{W}\end{array}$
Power dissipated by drive: see page $2 / 88$. Add the power dissipated by the other equipment components.
Effective exchange surface area of enclosure $S\left(\mathbf{m}^{2}\right)$
(sides + top + front panel if wall-mounted)
$S=\frac{K}{R t h} \quad K$ is the thermal resistance per m^{2} of casing
For ACM type metal enclosures: $\mathrm{K}=0.12$ with internal fan, $\mathrm{K}=0.15$ without fan.
Caution: do not use insulated enclosures as they have a poor level of conductivity.

Presentation:				
pages 2/82 and 2/83	Characteristics: pages 2/84 to 2/87	References: pages 2/88 and 2/89		Schemes:
:---				
pages 2/100 to 2/103				

Variable speed drives for asynchronous motors
 Altivar 38

Scheme without line contactor, recommended for machines which are not dangerous
ATV 38Heece
3-phase power supply

(5)

- Y m

Reference potentiometer
X - Y mA
(5)

Scheme with line contactor, recommended for dangerous machines which are switched off and on infrequently

3-phase power supply

Variable speed drives for asynchronous motors Altivar 38

Scheme with downstream contactor, recommended for dangerous machines which are switched off and on frequently

ATV 38HU18N4 to ATV 38HD23N4

3-phase power supply

ATV 38HD25N4• to ATV 38HC33N4X

3-phase power supply

(1) Line choke recommended.
(2) Fault relay contacts for remote signalling of drive status.
(3) Internal $+24 V$. If an external $+24 V$ supply is used, connect the $0 V$ on the external supply to the COM terminal, do not use the +24 terminal on the drive, and connect the common of the LI inputs to the +24 V of the external supply.
(4) Use the "downstream contactor control" function with relay R2 (or with the logic output LO of one of the "I/O extension" cards, when connecting).
(5) X and Y can be configured between 0 and 20 mA independently for Al2 and AO1.

Nota :

1 All terminals are located at the bottom of the drive.
2 Fit interference suppressors to all specific circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Compatible components

Code Description

A1	Drive
Q1	GV2-L or Compact NS circuit-breaker (see pages 2/104 and 2/105)
KM2	LC1-Dee contactor with interference suppressor (see pages $2 / 104$ and 2/105)
T1	100 VA transformer 220 V secondary
Q2	GV2-L circuit-breaker rated at twice the nominal primary current of T1
Q3	GB2-CB05

Presentation:		
pages $2 / 82$ and $2 / 83$	Characteristics:	References:
pages $2 / 84$ to $2 / 87$	pages $2 / 88$ and 2/89	Dimensions:
pages 2/106 to 2/109		

Variable speed drives
for asynchronous motors
Altivar 38

External 24 V supply for the logic inputs and/or the logic output

Motor protection via PTC probes, with optional analogue input extension card

2-wire control

Additional radio interference suppression input filters
VW3 A5840•

3-phase power supply

VW3 A6650• + VW3 A66421
Motor chokes + capacitors

Variable speed drives for asynchronous motors
 Altivar 38
 Electromagnetic compatibility

Principle

- Grounds between drive, motor and cable shielding must have "high frequency" equipotentiality.

■ Use shielded cables with shielding connected to earth over 360° at both ends for the motor cable and the control-command cables. Conduit or metal ducting can be used for part of the shielding length provided that there is no break in continuity.
■ Ensure maximum separation between the power supply cable (mains supply) and the motor cable.
Mounting: installation diagram for ATV 38HU18N4 to HD79N4@ drives

1 Steel plate supplied with the drive, to be fitted on it (machine ground)
2 Altivar 38
3 Non-shielded power supply wires or cable
4 Non-shielded wires for the output of the safety relay contacts
5 Fix and earth the shielding of cables 6 and 7 as close as possible to the drive: - strip the shielding

- use the correct size clamps on the stripped part of the shielding to fix to metal sheet 1 . The shielding must be clamped tightly enough on the metal sheet to ensure good contact
- types of clamp: stainless steel

6 Shielded cable (1) for connecting the motor
7 Shielded cable (1) for connecting the control/command system. For applications requiring several conductors, use small cross-sections ($0.5 \mathrm{~mm}^{2}$).
(1) The shielding of cables 6 and 7 must be connected to earth at both ends.

The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

Nota :

1 Although there is an HF equipotential earth connection between the drive, the motor and the cable shielding, it is still necessary to connect the PE protective conductors (green-yellow) to the appropriate terminals on each of the devices.
2 If using an additional input filter, it should be mounted beneath the drive and connected directly to the mains supply via an unshielded cable. The connection 3 is then made via the filter cable.

Wiring recommendations for ATV 38HC10N4X to HC33N4X drives

Line chokes must be used if the prospective short-circuit line current is greater than 22 kA . These chokes provide improved protection against overvoltages on the mains supply and reduce harmonic distortion of the current produced by the drive. The chokes are used to limit the line current.

Power wiring

The power wiring should consist of cables with 4 conductors or individual cables maintained as close as possible to the PE cable. Take care to route the motor cables well away from the power supply cables.
The power supply cables are not shielded. If a radio interference filter is used, the grounds for the filter and the drive should be at the same potential with low-impedance links at high frequency (fixed to unpainted steel plate with anti-corrosion treatment/machine ground wiring). The filter should be fitted as close as possible to the drive.
If the environment is sensitive to radiated radio interference, the motor cables should be shielded. On the drive side, fix and connect the shielding to the machine ground with rustproof clamps. The main function of the motor cable shielding is to limit their radio frequency radiation. Therefore, use 4-pole cables for the motor, connecting each end of the shielding in accordance with established practice for High Frequency wiring. The type of protective material (copper or steel) is less important than the quality of the connection at both ends. An alternative is to use a metal cable duct with good conductivity and no break in continuity.
Nota : when using a cable with a protective sleeve (NYCY type) which fulfils the dual function of PE + screen, it must be connected correctly to both the drive and the motor (its radiation efficiency is reduced).

Control wiring

1 Shielding clamp
2 Cable grip. Check that the cable follows the path indicated by the clips.

Presentation: pages 2/82 and 2/83	Characteristics: pages 2/84 to 2/87	References: pages 2/88 and 2/89

Variable speed drives for asynchronous motors

Altivar 38
Motor starters

NS80HMA
${ }_{\text {LC1 D }}^{+}$
$\stackrel{+}{\text { ATV }} 38$

Applications

Circuit-breaker/contactor/drive combinations can be used to ensure continuous service of the installation with optimum safety.
The selected circuit-breaker/contactor combination can reduce maintenance costs in the event of a short-circuit by minimising the time required to make the necessary repairs and the cost of replacement equipment. The combinations suggested correspond to type 2 coordination.
Type 2 coordination: a short-circuit will not damage the device or affect its settings. The motor starter should be able to operate once the electrical fault has been removed. The electrical isolation provided by the circuit-breaker will not be affected by the short-circuit. Welding of the contactor contacts is permissible if they can be separated easily.

The downstream contactor is not affected by type 2 coordination.
The drive controls the motor, provides protection against short-circuits between the drive and the motor and protects the motor cable against overloads. The overload protection is provided by the drive's motor thermal protection.
If this protection is removed, external thermal protection should be provided.
Before restarting the installation, the cause of the trip must be removed.

3-phase supply voltage: 380 to 415 V

(for 0.75 to 315 kW motors)
Motor circuit-breaker:
NSeeeeMA product sold under the Merlin Gerin brand
Composition of contactors:
LC1 D09 to LC1 D150: 3 poles + 1 "N/O" auxiliary contact and 1 " N / C " auxiliary contact
LC1 Fee: 3 poles

Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW	Reference (2)	Rating A	Reference (3)	Reference (3)	Reference (5)
0.75	GV2 L08	4	LC1 D1800	LC1 D09BL (4)	ATV 38HU18N4
1.5	GV2 L10	6.3	LC1 D18ee	LC1 D09BL (4)	ATV 38HU29N4
2.2	GV2 L14	10	LC1 D18ee	LC1 D09BL (4)	ATV 38HU41N4
3	GV2 L16	14	LC1 D18ee	LC1 D09BL (4)	ATV 38HU54N4
4	GV2 L16	14	LC1 D18ee	LC1 D09BL (4)	ATV 38HU72N4
5.5	GV2 L22	25	LC1 D25ee	LC1 D09BL (4)	ATV 38HU90N4
7.5	NS80@MA50	50	LC1 D40•e	LC1 D09BL (4)	ATV 38HD12N4
11	NS800MA50	50	LC1 D40*e	LC1 D25BL (4)	ATV 38HD16N4
15	NS80@MA50	50	LC1 D40•e	LC1 D25BL (4)	ATV 38HD23N4
18.5	NS800MA50	50	LC1 D40ee	LC1 D2500	ATV 38HD25N4@
22	NS80^MA50	50	LC1 D50ee	LC1 D32e•	ATV 38HD28N4@
30	NS80^MA80	80	LC1 D650e	LC1 D40••	ATV 38HD33N4@
37	NS80@MA80	80	LC1 D80•e	LC1 D50e•	ATV 38HD46N4e
45	NS100^MA100		LC1 D80•e	LC1 D80e•	ATV 38HD54N4@
55	NS160॰MA150		LC1 D1150॰	LC1 D80^e	ATV 38HD64N4•
75	NS160॰MA150		LC1 D15000	LC1 D11500	ATV 38HD79N4@
90	NS2500MA	220	LC1 F18500	LC1 D11500	ATV 38HC10N4X
110	NS250^MA	220	LC1 F22500	LC1 D1150e	ATV 38HC13N4X
132	NS250^MA	220	LC1 F26500	LC1 D150ee	ATV 38HC15N4X
160	NS4000MA	320	LC1 F33000	LC1 F225ee	ATV 38HC19N4X
200	NS6300MA	320	LC1 F40000	LC1 F265ee	ATV 38HC23N4X
220	NS6300MA	500	LC1 F40000	LC1 F33000	ATV 38HC25N4X
250	NS630^MA	500	LC1 F500*	LC1 F400ee	ATV 38HC28N4X
280	NS630^MA	500	LC1 F630*	LC1 F400ee	ATV 38HC31N4X
315	NS630^MA	500	LC1 F63000	LC1 F500ee	ATV 38HC33N4X

(1) Standard power ratings for 4-pole motors $50 / 60 \mathrm{~Hz} 400 \mathrm{~V}$.
(2) Replace \bullet with N, H or L, according to the breaking capacity, in the table below.

Breaking capacity of circuit-breakers according to standard IEC60947-2

380/415 V	Icu (kA)		
GV2 L	50		
NS800MA	70		
380/415 V	N	H	L
NS100•MA	25	70	130
NS160@MA, NS250@MA	35	70	130
NS400॰MA, NS630^MA	-	70	130

(3) Replace \bullet with the control circuit voltage reference indicated in the table on the opposite page.
(4) LC1 DeoBL contactors have 24 V d.c. Iow consumption coils (100 mA). Up to 15 kW , they are powered by the internal drive power supply. For power ratings above this level, use an external supply and complete the contactor coil voltage according to footnote (3).
(5) For drives without integrated EMC filter, replace the \bullet with an X.

Note: the maximum line current is determined with a maximum upstream short-circuit power rating of 5 kA at between 0.75 and 5.5 kW (22 kA between 7.5 and 315 kW).

Variable speed drives for asynchronous motors

Altivar 38
Motor starters

NS8OHMA
+C1 D
$+{ }_{\text {ATV }} 38$

3-phase supply voltage: $\mathbf{4 4 0}$ to $\mathbf{4 6 0}$ V

(for 0.75 to 315 kW motors)
Motor circuit-breaker:
NSeeooMA: product sold under the Merlin Gerin brand
Composition of contactors:
LC1 D09 to LC1 D150: 3 poles + 1 "N/O" auxiliary contact and 1 " N / C " auxiliary contact LC1 Fee: 3 poles

Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW	Reference (2)	Rating A	Reference (3)	Reference (3)	Reference 5)
0.75	GV2 L08	4	LC1 D18ee	LC1 D09BL (4)	ATV 38HU18N4
1.5	GV2 L10	6.3	LC1 D25ee	LC1 D09BL (4)	ATV 38HU29N4
2.2	GV2 L10	6.3	LC1 D2500	LC1 D09BL (4)	ATV 38HU41N4
3	GV2 L14	10	LC1 D2500	LC1 D09BL (4)	ATV 38HU54N4
4	GV2 L14	10	LC1 D25ee	LC1 D09BL (4)	ATV 38HU72N4
5.5	NS800MA50	50	LC1 D40•e	LC1 D09BL (4)	ATV 38HU90N4
7.5	NS800MA50	50	LC1 D40e•	LC1 D09BL (4)	ATV 38HD12N4
11	NS800MA50	50	LC1 D40e•	LC1 D25BL (4)	ATV 38HD16N4
15	NS800MA50	50	LC1 D40••	LC1 D25BL (4)	ATV 38HD23N4
18.5	NS100^MA50	50	LC1 D80•e	LC1 D25ee	ATV 38HD25N4•
22	NS100^MA50	50	LC1 D80ee	LC1 D32•e	ATV 38HD28N4•
30	NS100॰MA50	50	LC1 D800॰	LC1 D40ee	ATV 38HD33N40
37	NS100^MA80	100	LC1 D80•e	LC1 D50•e	ATV 38HD46N40
45	NS100॰MA100	100	LC1 D80ee	LC1 D80•e	ATV 38HD54N4•
55	NS100^MA100	100	LC1 D115ee	LC1 D80•e	ATV 38HD64N4•
75	NS160^MA150	150	LC1 D150•e	LC1 D115*e	ATV 38HD79N4•
90	NS160^MA	150	LC1 D150•e	LC1 D115ee	ATV 38HC10N4X
110	NS250@MA	220	LC1 F18500	LC1 D115ee	ATV 38HC13N4X
132	NS250@MA	220	LC1 F26500	LC1 F15000	ATV 38HC15N4X
160	NS400@MA	320	LC1 F265*0	LC1 F22500	ATV 38HC19N4X
200	NS400^MA	320	LC1 F330*	LC1 F26500	ATV 38HC23N4X
220	NS400•MA	320	LC1 F400*e	LC1 F33000	ATV 38HC25N4X
250	NS630*MA	500	LC1 F40000	LC1 F40000	ATV 38HC28N4X
280	NS630^MA	500	LC1 F500*0	LC1 F40000	ATV 38HC31N4X
315	NS630*MA	500	LC1 F500*0	LC1 F500ee	ATV 38HC33N4X

(1) Standard power ratings for 4-pole motors $50 / 60 \mathrm{~Hz} 400 \mathrm{~V}$.
(2) Replace \bullet with N, H or L, according to the breaking capacity, in the table below.

Breaking capacity of circuit-breakers according to standard IEC60947-2

400/460 V	Icu (kA)		
GV2 L08, L10	> 100		
GV2 L14, L16, L22	20		
NS800MA	65		
440/460 V	N	H	L
NS100@MA	25	65	130
NS160॰MA, NS250^MA	35	65	130
NS400@MA, NS630^MA	-	65	130

(3) Replace © with the control circuit voltage reference indicated in the table below.
a.c. control circuit Volts ~ $50 / 60 \mathrm{~Hz}$$\quad 24$

(4) LC1 DeeBL contactors have 24 V d.c. Iow consumption coils (100 mA). Up to 15 kW , they are powered by the internal drive power supply. For power ratings above this level, use an external supply and complete the contactor coil voltage according to footnote (3).
(5) For drives without integrated EMC filter, replace the \bullet with an X.

Note: the maximum line current is determined with a maximum upstream short-circuit power rating of 5.5 kA at between 0.75 and 5.5 kW (22 kA between 7.5 and 315 kW).

Variable speed drives for asynchronous motors

Altivar 38

Summary of functions	
Operating speed range	page 2/107
Acceleration and deceleration ramp times	page 2/107
Acceleration and deceleration ramp profiles	page 2/107
Alternate ramp switching	page 2/108
Automatic adaptation of deceleration ramp	page 2/108
Reverse operation	page 2/108
Disabling reverse	page 2/108
Jog operation	page 2/108
2-wire control	page 2/109
3-wire control	page 2/109
+/- speed	page 2/109
Save reference	page 2/109
Motor switching	page 2/110
Downstream contactor control	page 2/110
Preset speeds	page 2/110
Adjusting analog input Al2	page 2/110
Summing inputs	page 2/111
Reference switching	page 2/111
PI regulator	page 2/111
Speed feedback with tachogenerator	page 2/112
Incremental speed feedback	page 2/112
Incremental speed reference	page 2/112
Controlled stop	page 2/112
Automatic catching a spinning load with speed detection	page 2/113
Automatic restart	page 2/113
Maintaining the speed following loss of the 4-20 mA reference	page 2/113
Operating speed limit at low speed	page 2/113
Fault reset	page 2/113
General reset (inhibits all faults)	page $2 / 113$
Forced local mode	page 2/113
External fault	page 2/113
Fault relay, unlocking	page 2/114
Motor thermal protection	page 2/114
PTC probe protection	page 2/114
Drive thermal protection	page 2/114
Switching frequency, noise reduction	page 2/114
Energy saving	page 2/115
Adaptation of the current limit	page 2/115
Auto-tuning	page 2/115
Skip frequencies	page 2/115
Reassignable logic outputs	page 2/115
Analog outputs AO1 and AO	page 2/115
Adjusting analog outputs AO1 and AO	page 2/115
Configurable I/O	page 2/116

Drive factory setting

To facilitate installation of the drive, the functions, parameters and I/O have been assigned to meet the requirements of pumping and ventilation applications.

Drive I/O:

- logic input LI1: forward,
- logic input LI2: reverse,
- logic input LI3: fault reset,
- logic input LI4: not assigned,
- analog input Al1: speed reference,
- analog input Al2: summing speed reference,
- relay R1: drive fault,
- relay R2: drive running,
- analog output AO1: motor frequency.

Extension card I/O:

- logic input LI5: ramp switching,
- logic input LI6: not assigned,
- analog input AI3 or encoder inputs: summing speed reference,
- logic output LO: high speed reached,
- analog output AO: motor current.

Variable speed drives for asynchronous motors

Altivar 38

Linear acceleration ramp

[^18]Operating speed range
Used to determine 2 frequency limits which define the speed range permitted by the machine under actual operating conditions. Three operating modes are possible:

- Pedestal mode
- Deadband mode
$\mathrm{f}(\mathrm{Hz})$

LSP: low speed, from 0 to HSP, factory setting 0
HSP: high speed, from LSP to f max., factory setting $50 / 60 \mathrm{~Hz}$
x : configurable between 0 and 20 mA , factory setting 4 mA
y : configurable between 0 and 20 mA , factory setting 20 mA

- Acceleration and deceleration ramp times

Used to define acceleration and deceleration ramp times according to the application and the machine dynamics.

Adjustment for t 1 and t 2 between 0.05 and 999.9 s , factory setting 3 s .

Linear deceleration ramp

- Acceleration and deceleration ramp profiles

Used to gradually increase the output frequency starting from a speed reference, following a inear ratio or a preset ratio which enables the ramp to be given an S or a U profile. For a pumping application (installation with centrifugal pump and non-return valve): the closing of the valve can be controlled more accurately if U-shape ramps are used. Selecting "linear", "S", or "U" profiles will affect both the deceleration and acceleration ramps.

ㅁ U-shape ramps

HSP: high speed
The curve coefficient is fixed, with $\mathrm{t} 2=0.5 \mathrm{xt1}$.
where $t 1$ = set ramp time

Variable speed drives for asynchronous motors
 Altivar 38

Acceleration 1 (Acc 1) and deceleration 1 (Dec 1): adjustment 0.05 to 999.9 s factory setting 3 s

Acceleration 2 (Acc 2) and deceleration 2 (Dec 2)

- adjustment 0.05 to 999.9 s ,
factory setting 5 s .
HSP: high speed
Acceleration and deceleration
Example of switching using logic input LI4
 $-t$
- Jog operation

Used for pulse operation at minimum ramp times (0.1 s), limited speed reference and minimum time between 2 pulses.
Enabled by means of an adjustable logic input LI, assigned to this function, and pulses given by the operating direction command.
This function is suitable for machines with product insertion in manual mode (example: gradual movement of the mechanism during maintenance operations).

Alternate ramp switching

Used to switch 2 acceleration or deceleration ramp times, which can be adjusted separately The function is enabled by reassigning 1 logic input or by defining 1 frequency threshold. It is suitable for machines with fast continuous speed correction and high speed lathes with acceleration and deceleration limiting above certain speeds.

- Automatic adaptation of deceleration ramp

Used to automatically adapt the deceleration ramp if the initial setting is too low when the load inertia is taken into account. This function avoids the drive locking in the event of an excessive braking fault

- Reverse operation

Used to reverse the direction of operation by means of a logic input.
LI2 is assigned to this function in the factory setting.
This function can be suppressed in non-reversing motor applications by reassigning input LI2 to a different function.

- Disabling reverse direction

Used to:
口 inhibit operation in the opposite direction to that controlled by the logic inputs, even if this reversal is required by a summing or feedback control function,
a inhibit reverse operation if it is requested using the REV key on the terminal.
To be used if the direction of operation should not be reversed (example: fan).

Speed reference:

- adjustment 0 to 10 Hz
- factory setting 10 Hz

Minimum time tm between
2 pulses:

- adjustment 0 to 2 s
- factory setting 0.5 s

Jog function

Variable speed drives for asynchronous motors

Altivar 38

3-wire control

- With saving of the last reference and 2 logic inputs

Example of "+/-speed" with 2 logic inputs

- 2-wire control

Used to control the direction of operation by means of a maintained contact.
Enabled by means of 1 or 2 logic inputs (one or two directions).
This function is suitable for all one or two direction applications.
3 operating modes are possible:

- detection of the state of the logic inputs,
- detection of a change in state of the logic inputs,
a detection of the state of the logic inputs with forward operation always having priority over reverse.

- 3-wire control

Used to control the operating and stopping direction by means of pulsed contacts.
Enabled by means of 2 or 3 logic inputs (non-reversing or reversing).
This function is suitable for all non-reversing and reversing applications.

Wiring diagram for 3-wire control

- +/- speed

Used to increase or decrease a speed reference by means of 1 or 2 logic commands, with or without the last reference being saved (motorised potentiometer function). The maximum speed is given by the reference applied to the analog inputs. For example, connect Al1 to the +10 V . Enabled by assigning 1 or 2 logic inputs.
This function is suitable for centralised control of a machine with several sections operating in one direction or for controlling pendant control station, using a handling crane in two operating directions.
\square Without saving of the last reference and a single logic input ("+ speed")

LSP: low speed
Example with double action buttons

Note: this type of "+/- speed" control is incompatible with 3-wire control.

- Save reference

This function is associated with "+/- speed" control. Select yes or no.
Enables the new speed reference to be applied if the run command or line supply is lost. The save is applied the next time a run command is received.

Variable speed drives for asynchronous motors
 Altivar 38

■ Motor switching

Allows two motors with different powers to be supplied successively by the same drive. Switching must take place with the drive stopped and locked, using an appropriate sequence at the drive output.
The function can be used to adapt the motor parameters. The following parameters are switched automatically:

- nominal motor current,
- injection current.

Motor thermal protection is disabled by this function.
Enabled by assigning logic input LI to this function.
The associated parameter is the coefficient which provides the ratio between the power of the smallest motor and the power of the drive: 0.2 to 1 .

■ Downstream contactor control

Allows the drive to control a contactor located between the drive and the motor.
The request to close the contactor is made when a run command appears.
The request to open the contactor is made when there is neither a run command nor a current present in the motor (freewheel stop, drive locked or braking terminated).
Enabled by means of logic output LO or relay R2.

- This function avoids the need for frequency switching on the power circuit upstream of the drive (otherwise premature aging of the filtering capacitors will occur) and requires a specific connection diagram (see page 2/101).
- This function must be used for cycles < $\mathbf{6 0} \mathbf{s}$ with motor isolation on stopping.
- Preset speeds

Used to switch preset speed references.
2,4 , or 8 preset speeds can be selected.
Enabled by means of 1, 2 or 3 logic inputs.
The preset speeds can be adjusted in increments of 0.1 Hz to 0 Hz up to the maximum speed.

Example of operation with 4 preset speeds

- Adjusting analog input Al2

It is possible to modify the characteristics of analog current input AI2.
Factory setting: $4-20 \mathrm{~mA}$.
Other values: $0-20 \mathrm{~mA}, 20-4 \mathrm{~mA}$ or $\mathrm{X}-\mathrm{Y} \mathrm{mA}$ by programming X and Y with a precision of 0.1 mA .

Variable speed drives for asynchronous motors

Altivar 38

Example of reference switching

- Summing inputs

Analog input Al2 (and/or analog input Al3 with extension card) can be assigned as a summing input with Al1.
The sum is limited to the value corresponding to the high speed (HSP).
This function is suitable for machines on which the speed is controlled by a process controller signal on input Al2.

- Reference switching

Allows 2 analog references to be switched by means of a logic command. This function avoids having to switch low level signals and makes the 2 reference inputs Al1 and AI2 independent. Enabled by means of 1 reassignable logic input LI.
This function is suitable for all machines with automatic/manual operation.
Automatic control via a sensor on input Al2, enabled by setting the logic input to 0 .
Manual control by means of potentiometer on input Al1 (local control).

Connection diagram for reference switching

- PI regulator

Used for simple control of a flow rate or a pressure with a sensor which supplies a feedback signal adapted to the drive.
This function is suitable for pumping and ventilation applications.

Preset PI references:

2 or 4 preset references require the use of 1 or 2 logic inputs respectively.

2 preset references Assign: Llx to Pr2	4 preset references Assign: LIx to Pr2, Lly to Pr4			
Rix	Reference	Lly	Llx	Reference
0	Analog reference	0	0	Analog reference
1	Process max $(=10 \mathrm{~V})$	0	1	PI2 (adjustable)
	1	0	PI3 (adjustable)	
	1	1	Process max $(=10 \mathrm{~V})$	

Variable speed drives for asynchronous motors

 Altivar 38

 Altivar 38}

Speed feedback with tachogenerator

Used for precise speed control, irrespective of the state of the motor load
Assigned to logic input AI3, with extension card/analog input
The maximum tachogenerator voltage must be between 5 and 9 V . If necessary, use an external divider bridge to adapt this value (1).
The value can be set precisely in the "Adjust" menu. Consistency between the motor frequency and the speed feedback is monitored in the drive fault management system.
This function is suitable for all applications requiring exact speed irrespective of the load.
Connection diagram for speed feedback via tachogenerator

- Use in 1 operating direction

Connection diagram with inductive sensor or simple control photoelectric sensor (not very precise at low speeds)

Consistency between the motor frequency and the speed feedback is monitored in the drive fault management system.
This function is suitable for applications requiring precise speed control irrespective of the load and a high level of immunity to interference.

Incremental speed reference
Enabled by assigning the logic inputs on the above extension card/encoder inputs to the
"summing inputs" function.
Synchronization of the speed of a number of drives.
Nominal voltage $24 \mathrm{~V}=-$
Max. reading frequency 33 kHz at max. speed HSP

- Controlled stop

Used to define stop modes in addition to the standard drive stops. These stop requests always have priority.

Three stop modes are available for selection

- freewheel stop: the drive is locked and the motor stops in accordance with the inertia and the resistive torque
- fast stop: the motor brakes to a stop with the deceleration ramp time divided by a coefficient which can be set between 1 and 10,
- d.c. injection braking: adjustment of the time (0 to 30 s , factory setting 0.5 s) and current (10 \% to 110% of the nominal drive current in high torque applications, factory setting 70%).
Continuous braking is possible but is limited automatically to another adjustable value (10% to 100% of the nominal motor current, factory setting 50%) after 30 s .

Enable modes:

a by means of 1 reassignable logic input LI : active at 0 for freewheel stop and fast stop, active at 1 for injection stop,

- automatically when stopping (frequency less than 0.1 Hz) for injection braking, as this function can be combined with the others. In this case, only the current after 30 s of injection can be adjusted.
- Automatic catching a spinning load with speed detection ("catch on the fly") Used to restart the motor smoothly after one of the following events:
- loss of line supply or power off,
- fault reset or automatic restart,
- freewheel stop or injection stop with logic input,
- uncontrolled loss of power downstream of the drive.

On restarting, the effective speed of the motor is detected in order to restart on the ramp at this speed and return to the reference speed. The speed detection time can be up to 1 s depending on the initial deviation.
Factory setting: active.
This function is automatically disabled if the brake sequence is configured.
This function is suitable for machines for which the loss of motor speed is negligible during the supply loss time (machines with high inertia), fans and pumps driven by a residual flux, etc.

- Automatic restart

Enables the drive to be restarted automatically after locking following a fault if this fault has disappeared and if the other operating conditions permit a restart.
This restart is performed by a series of automatic attempts at 30 s intervals.
If a restart has not been possible after 6 attempts, the procedure is abandoned and it remains locked until it has been switched off and on again.
Factory setting: inactive.
The faults permitting this restart are:

- supply overvoltage,
- motor thermal overload,
- drive thermal overload,
- loss of 4-20 mA reference,
- d.c. bus overvoltage,
- external fault,
- motor phase loss,
- serial link fault,
- mains voltage too low. For this fault, the function is always active, even if it is not configured. For this type of fault, the drive fault relay remains activated if the function is configured. The speed reference and the direction of operation must be maintained for this function. This function is suitable for machines or installations in continuous operation or without monitoring, and where a restart will not endanger equipment or personnel in any way.
- Maintaining the speed following loss of the 4-20 mA reference Enables the motor speed to be maintained following loss of the $4-20 \mathrm{~mA}$ reference. This function is suitable for applications which must not be interrupted.
- Limiting low speed operating time (LSP)

The motor is stopped automatically after an operating period at low speed (LSP) with zero reference and run command present.
This time can be set between 0.1 and 999.9 s or no limit. Factory setting 5 s . The motor restarts automatically on the ramp when the reference reappears or if the run command is broken and then re-established.
This function is suitable for automatic stopping/starting on pressure-regulated pumps.

- Fault reset

Enables faults to be reset by means of a logic input LI which can be reassigned to this function. The restart conditions after a reset to zero are the same as those of a normal power-up.
Fault reset: overvoltage, overspeed, external fault, drive overheating, loss of motor phase, d.c. bus overvoltage, loss of 4-20 mA reference, load veering, motor overload if the thermal state is less than 100%, serial link fault.
"Mains undervoltage" and "mains phase loss" faults are reset automatically when the mains supply is restored.
This function is suitable for applications with drives which are difficult to access.

- General reset (inhibits all faults)

This function can be used to inhibit all faults, including thermal protection (forced operation) except short-circuit faults, to ensure operation unless irreparable damage has been caused in extreme operating conditions.
This function is suitable for applications where a restart could be vital (tunnel smoke extraction system).

- Forced local mode

Forced local mode switches the drive from serial link control to terminal control. A logic input LI can be reassigned to this function.

- External fault

When the input assigned to this function changes to 1 , the motor stops in accordance with the parameter configuration and the drive locks in an "EPF external fault" fault.

Variable speed drives for asynchronous motors
 Altivar 38

Thermal protection characteristics (warm and cold)

- Without derating, for continuous or intermittent operation (frequencies of 0.5 and 1 kHz should be used for long cable lengths).

Drive	Configurable switching frequency $\mathbf{- k H z}$
ATV 38HU18N4 to HD46N4	$0.5-1-2-4$
ATV 38HD25N4X to HD46N4X	
ATV 38HU54N4 to HC33N4	$0.5-1-2$
ATV 38HD54N4X to HC33N4X	

The fault relay is energised when the drive is powered up and is not faulty.
It has one " C / O " contact at the common point.
The drive can be unlocked after a fault in one of the following ways:

- by switching the drive off until the "power on" LED goes out and then switching it on again,
- by assigning a logic input to the "fault reset" function,
- using the "automatic restart" function (if it has been configured).
- Motor thermal protection

Indirect motor thermal protection is implemented via continuous calculation of its theoretical temperature rise.
The drive is locked by default if this temperature rise exceeds 118% of the nominal temperature rise.

- This function is suitable for applications with self-cooled or force-cooled motors: the microprocessor calculates the theoretical temperature rise of the motor based on various elements:
- the operating frequency,
- the current taken by the motor,
- the operating time,
- the maximum ambient temperature around the motor $\left(40^{\circ} \mathrm{C}\right)$.

Adjustment:

0.25 to 1.36 times the nominal current of the drive in high torque applications, factory setting 0.9 times the nominal current indicated on the motor rating plate.

- Special applications

Adaptation of thermal protection in the fault configuration menu:

- applications with force-cooled motor: in this case, the tripping curves are those shown opposite for the nominal frequency $50 / 60 \mathrm{~Hz}$,
- suppression of thermal protection in harsh environments: temperature greater than $40^{\circ} \mathrm{C}$ around the motor, which may cause the cooling fins to become clogged (provide direct thermal protection via thermistor probes integrated into the motor),
- motor thermal protection using PTC probes: see "thermal protection with PTC probes" function with option card,
- if several motors are connected in parallel on the same drive, fit each motor starter with a thermal relay to reduce the risk of the load being distributed unevenly.

Note: when the drive is switched off, calculation I2t is saved and the amount by which it has decreased is calculated.

- PTC probe protection

Used for motor thermal protection (if the motor is fitted with PTC probes).
Assigned to logic input Al3, with extension card/analog input.
Maximum resistance of probe circuit at $20^{\circ} \mathrm{C}: 750 \Omega$ ($3 \times 250 \Omega$ probes connected in series).
Probe break and short-circuit faults are monitored.
This function is suitable for use in all applications.

- Thermal protection of drive

Enables the drive to be protected directly via a thermistor fitted on the heatsink, ensuring that components are protected in the event of poor ventilation or excessive ambient temperatures. Locks the drive in the event of a fault.

- Switching frequency, noise reduction

High frequency switching of the intermediate d.c. voltage can be used to supply the motor with a current wave with low harmonic distortion.
The switching frequency can be adjusted to reduce the noise generated by the motor. In addition, the switching frequency is random in order to avoid resonance. This function can be disabled if it causes instability.
This function is suitable for all applications which require low motor noise.

- Without derating, with intermittent operating cycle or with derating by one power rating in continuous operation (1).

Drives	Configurable switching frequency $\mathbf{- k H z}$
ATV 38HU18N4 to HD23N4	$8-12-16$
ATV 38HU25N4 to HD46N4	$8-12$
ATV 38HU25N4X to HD46N4X	$4-8$
ATV 38HU54N4 to HD79N4	4
ATV 38HU54N4X to HD79N4X 38HC10N4X to HC33N4X	4
(1) In intermittent operation, the frequency automatically decreases in the case of overheating.	

Variable speed drives for asynchronous motors

Altivar 38

Adaptation of the current limit

CLI: internal current limit HSP: high speed

Energy saving
Enables the power consumption to be adapted according to the load, improving efficiency.

- Adaptation of the current limit

The current limit can be adapted automatically according to the speed in order to avoid a motor overload fault.
This function is suitable for ventilation applications in which the load curve changes according to the air density.

- Auto-tuning

Auto-tuning is only possible by means of user intervention using the dialogue tools and an assignable logic input. It is used to optimize performance.
This function is suitable for use in all applications.

- Skip frequencies

Skip frequencies can be used to suppress up to three critical speeds which may be the cause of mechanical resonance.
Prolonged operation of the motor can be prohibited on one to three adjustable frequency bands (with a band width of 5 Hz), which can be set within the operating range.
This function is suitable for use in fans and centrifugal pumps.

- Reassignable logic outputs

Relay R2 (or LO solid state output with I/O extension card):

- remote signalling of the following information as required:
- drive operating (running or braking),
- frequency threshold reached (greater than or equal to an adjustable threshold),
- $2^{\text {nd }}$ frequency threshold reached,
- frequency reference reached (motor frequency equal to the reference),
- current threshold reached (greater than or equal to an adjustable threshold),
- motor thermal threshold reached (greater than or equal to an adjustable threshold),
- drive thermal threshold reached (greater than or equal to an adjustable threshold),
- high speed reached,
- loss of 4-20 mA reference.
- remote downstream contactor control.
- Analog outputs AO1 (or AO with I/O extension card)

Analog outputs AO and AO1 ($x-y \mathrm{~mA}$) can be assigned to the following parameters:

- motor current (y mA = twice the nominal current of the drive),
- motor frequency (y mA = maximum frequency),
- ramp output (y mA = maximum frequency),
- signed ramp (x mA = maximum reversing frequency, y mA = maximum forward frequency),
- Pl reference ($x \mathrm{~mA}=$ minimum reference, $\mathrm{y} \mathrm{mA}=$ maximum reference),
- PI feedback ($\mathrm{x} \mathrm{mA}=$ minimum feedback, y $\mathrm{mA}=$ maximum feedback),
- PI error ($\mathrm{x} \mathrm{mA}=$ maximum error <0, y $\mathrm{mA}=$ minimum error >0),
- Pl integral (y mA = integral saturated),
- motor power ($x \mathrm{~mA}=0 \%$ of the nominal motor power, $\mathrm{y} \mathrm{mA}=200 \%$ of the nominal motor power),
- motor thermal state calculated: ($\mathrm{xmA}=0 \%, \mathrm{y} \mathrm{mA}=200 \%$),
- drive thermal state: ($\mathrm{x} \mathrm{mA}=0 \%$, y mA $=200 \%$).

Note: x and y can be set between 0 and 20 mA

- Adjusting the analog outputs AO1 (or AO with I/O extension card)

The characteristics of analog current outputs AO and AO1 can be modified.
Factory setting: 0-20 mA
Other values: 4-20 mA, 20-4 mA or $x-y \mathrm{~mA}$ by programming x and y with a definition of 0.1 mA .
This function is suitable for use in applications with a signal other than 0-20 mA.

Variable speed drives for asynchronous motors
 Altivar 38

Compatibility table for configurable I/O functions
■ Configurable I/O
Functions which are not listed in this table are fully compatible.

- stop functions have priority over run commands,
- speed references via logic command have priority over analog references.

The selection of functions is limited:

- by the number of drive I/O which can be reassigned: if necessary, add an I/O extension card,
- by the incompatibility of certain functions with one another.

Functions	d.c. injection braking	Summing inputs	PI regulator	+/- speed	Reference switching	Freewheel stop	Fast stop	Jog operation	Preset speeds	Speed regulation with tachogenerator or encoder
d.c. injection braking						\uparrow	†			
Summing inputs					-					
PI regulator				e				θ	-	θ
+/- speed			θ		e			\uparrow	-	
Reference switching		θ		θ					θ	
Freewheel stop	-						-			
Fast stop						\uparrow				
Jog operation			-	4					-	
Preset speeds			θ	θ	θ			\uparrow		
Speed regulation with tachogenerator or encoder			-							

θ	Incompatible functions
	Compatible functions
	Not applicable

Priority functions (functions which cannot be active at the same time)
The arrow indicates which function has priority.
Example: the "fast stop" function has priority over the
"d.c. injection braking" function

Variable speed drives for asynchronous motors
 Altivar 38

Summary table of the configurable I/O assignments

	Drive I/O								
	Without option card				With I/O extension cards				
	Relay R2	Analog input Al2	Analog output AO1	3 logic inputs LI2-LI3-LI4	2 logic inputs LI5LI6	Analog input Al3	Logic output LO	Analog output AO	Encoder inputs A-, A+, B-, B+
Functions									
Auto-tuning									
Reverse operation									
Alternate ramp switching									
Jog operation									
+/-speed									
Preset speeds									
Reference switching									
External fault									
Freewheel stop									
Injection stop									
Fast stop									
Motor switching									
Forced local mode									
Pl auto/man									
Fault reset									
General reset (inhibits all faults)									
Summing reference									
Pl regulator									
$2^{\text {nd }}$ speed reference									
Speed feedback									
PTC probes									
Downstream contactor control									
Frequency threshold reached									
High speed reached									
Frequency reference reached									
Current threshold reached									
Motor thermal threshold reached									
Drive thermal threshold reached									
Drive running									
Loss of 4-20 mA reference									
Motor current									
Motor frequency									
Ramp output (signed)									
Pl function outputs									
Motor power									
Motor thermal state									
Drive thermal state									

Ready-assembled Altivar 38

Altivar 38 ENERGY ready-assembled drives are motor starters specifically designed for pump and fan applications powered by a three-phase supply 380 to 460 V in the power range 3 to 75 kW or 5 to 100 HP .
They are housed inside a dust and damp proof enclosure 1 which contains:

- An ATV 38 drive
- A line choke
- A Vario switch disconnector with padlockable front external control 3
- A "frequency" reference potentiometer
- A 3-position switch for selecting the direction of operation - An operator terminal 4

A slot is provided for installing an additional contactor.
The front panel has a hinged cover 2 . For safety reasons, it can only be opened when the switch disconnector is in the "OFF" position. The underside of the enclosure should be fitted with cable glands 5 via which the cables can be routed.

Options

- Common functions of the Altivar 38 and the Altivar 38 ENERGY:
- Extension cards (see pages $2 / 140$ and $2 / 141$)
- Communication cards (see pages $2 / 142$ and $2 / 143$)
- Powersuite software workshop (see pages $3 / 2$ and $3 / 3$)
- Braking module and resistors to be mounted externally (see pages $2 / 144$ to 2/147)
- Specific options for Altivar 38 ENERGY:
- An IP 65 enclosure for the remote operator terminal
- A line or downstream contactor
\square A SUB-D cable gland.

Characteristics

The ready-assembled Altivar 38 has the same environmental, drive and electrical characteristics as the Altivar 38 with heatsink, with the exception of those detailed in the table below.

Degree of protection		IP 55	
Ambient air temperature around the device	Storage	${ }^{\circ} \mathbf{C}$	$-25 \ldots+65$
Operation	${ }^{\circ} \mathbf{C}$	$-10 \ldots+40$	
Shock resistance	Conforming to IEC $60068-2-27$		10 gn for 11 ms
References			

ATV 38ED12N4

$$
\text { a : values obtained for jumper positioned on } 50 \mathrm{~Hz} \text { at } \mathrm{U}=400 \mathrm{~V}
$$

b : values obtained for jumper positioned on 60 Hz at $\mathrm{U}=460 \mathrm{~V}$
(1) These power ratings are given for a maximum permissible switching frequency of 4 kHz in continuous operation without derating. For higher switching frequencies, the drive must be in intermittent operation or it must be set one rating lower (see special uses on page 2/131).
(2) Typical value without additional choke.
(3) For 60 seconds.
(4) Nominal supply voltages, U min...U max.

Please refer to the table summarising the possible combinations for drives, options and accessories on pages 2/120 and 2/121

References (continued),
dimensions,
mounting,

schemes

Variable speed drives for asynchronous motors
Ready-assembled Altivar 38

References (continued)

IP 65 enclosure for the remote operator terminal

The plug-in operator terminal can be used remotely, hand-held or fixed to the machine, using this IP 65 dust and damp proof kit.

Description	For drives	Reference	Weight kg
Kit comprising:	ATV 38ED all ratings	VW3 A58864	0.300
- 1 cable fitted with connectors,			
length 3 m			
- IP 65 enclosure with flexible,			
transparent membrane			
- instructions			
"Line" or "downstream" contactor			

"Line" or "downstream" contactor
A slot is provided for mounting a contactor on ATV 38ED drives. The contactor is wired as a line or downstream contactor by the user, depending on requirements. To select a contactor, see pages 2/172 to 2/175.

Accessories			
Description	For drives	Reference	Weight $\mathbf{k g}$
IP65 potentiometer	ATV 38ED	VW3 A58866	0.100
$2.2 \mathrm{k} \Omega$			

Dimensions

ATV 38ED	a	b	c	d	G1	G2	H1	H2
05N4, 07N4, 09N4, 12N4, 16N4, 23N4	500	700	300.5	250	437.5	550	637.5	750
25N4, 28N4, 33N4, 46N4	460	850	365.5	315	397.5	510	787.5	900
54N4, 64N4, 79N4	570	1050	405.5	340	507.5	620	987.5	100

ATV 38ED
05N4, 07N4, 09N4, 12N4, 16N4, 23N4, 25N4, 28N4, 33N4, 46N4, 54N4, 64N4, 79N4

Do not place equipment close to heating elements.
Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Variable speed drives for asynchronous motors

Altivar 38 with heatsink， ready－assembled Altivar 38

Possible combinations for drives with or without integrated EMC filters（see page 2／88）
Altivar 38 with heatsink

Line supply Supply voltage $50 / 60 \mathrm{~Hz}$	Motor Power indicated on rating plate kW	ATV 38 drive With integrated EMC filters	No EMC filters	Options Line choke	1 extension or	IP 65 enclosure for	PowerSuite dialogue so	advanced utions	RS 485 interconnection
					communica－ tion card	the remote operator terminal	Software workshop	Magelis XBT display unit	
$\begin{aligned} & 380 \ldots 460 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	0.75	ATV 38HU18N4	－	VW3 A66501	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	1.5	ATV 38HU29N4	－	VW3 A66501	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	2.2	ATV 38HU41N4	－	VW3 A66502	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	3	ATV 38HU54N4	－	VW3 A66502	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	4	ATV 38HU72N4	－	VW3 A66502	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	5.5	ATV 38HU90N4	－	VW3 A66503	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	7.5	ATV 38HD12N4	－	VW3 A66503	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	11	ATV 38HD16N4	－	VW3 A66504	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	15	ATV 38HD23N4	－	VW3 A66504	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	18.5	ATV 38HD25N4	－	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
		－	ATV 38HD25N4X	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	22	ATV 38HD28N4	－	Integrated	VW3 A58•＊॰	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
		－	ATV 38HD28N4X	Integrated	VW3 A58•eセ	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	30	ATV 38HD33N4	－	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
		－	ATV 38HD33N4X	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	37	ATV 38HD46N4	－	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A81・セ	HM017010A8	VW3 A58306
		－	ATV 38HD46N4X	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	45	ATV 38HD54N4	－	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
		－	ATV 38HD54N4X	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	55	ATV 38HD64N4	－	Integrated	VW3 A58•＊॰	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
		－	ATV 38HD64N4X	Integrated	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	75	ATV 38HD79N4		Integrated	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
		－	ATV 38HD79N4X	Integrated	VW3 A58•＊॰	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	90	－	ATV 38HC10N4X	VW3 A68501	VW3 A58•＊॰	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	110	－	ATV 38HC13N4X	VW3 A68502	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	132	－	ATV 38HC15N4X	VW3 A68503	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	160	－	ATV 38HC19N4X	VW3 A68504	VW3 A58・セ๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	200	－	ATV 38HC23N4X	VW3 A68505	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	220	－	ATV 38HC25N4X	VW3 A68506	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	250	－	ATV 38HC28N4X	VW3 A68506	VW3 A58•e๑	VW3 A58103	VW3 A81•0	HM017010A8	VW3 A58306
	280	－	ATV 38HC31N4X	VW3 A68507	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306
	315	－	ATV 38HC33N4X	VW3 A68507	VW3 A58•e๑	VW3 A58103	VW3 A8100	HM017010A8	VW3 A58306

Possible combinations for ready－assembled drives（see pages $2 / 118$ and 2／119）
Altivar 38 ENERGY

Line supply Supply voltage $50 / 60 \mathrm{~Hz}$	Motor Power indicated on rating plate		ATV 38 drive	Options						
			Line choke	1 extension or communica－ tion card	IP 65 enclosure for the remote operator terminal	PowerSuite advanced dialogue solutions		RS 485 interconnection		
			Software workshop			Magelis XBT display unit				
$\begin{aligned} & 380 \ldots 460 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	3	－		ATV 38ED05N4	VW3 A66502	VW3 A58ee๑	VW3 A58864	VW3 A81・セ	HM017010A8	VW3 A58306
	4	5	ATV 38ED07N4	VW3 A66502	VW3 A58•e๑	VW3 A58864	VW3 A81•๑	HM017010A8	VW3 A58306	
	5.5	7.5	ATV 38ED09N4	VW3 A66503	VW3 A58•0๑	VW3 A58864	VW3 A81•¢	HM017010A8	VW3 A58306	
	7.5	10	ATV 38ED12N4	Integrated	VW3 A58ee๑	VW3 A58864	VW3 A81•๑	HM017010A8	VW3 A58306	
	11	15	ATV 38ED16N4	Integrated	VW3 A58ee๑	VW3 A58864	VW3 A81•๑	HM017010A8	VW3 A58306	
	15	20	ATV 38ED23N4	Integrated	VW3 A58•eө	VW3 A58864	VW3 A81・セ	HM017010A8	VW3 A58306	
	18.5	25	ATV 38ED25N4	Integrated	VW3 A58•e॰	VW3 A58864	VW3 A81・セ	HM017010A8	VW3 A58306	
	22	30	ATV 38ED28N4	Integrated	VW3 A5800ө	VW3 A58864	VW3 A81••	HM017010A8	VW3 A58306	
	30	40	ATV 38ED33N4	Integrated	VW3 A58eッ๑	VW3 A58864	VW3 A81•๑	HM017010A8	VW3 A58306	
	37	50	ATV 38ED46N4	Integrated	VW3 A58eeө	VW3 A58864	VW3 A81・セ	HM017010A8	VW3 A58306	
	45	60	ATV 38ED54N4	Integrated	VW3 A5800๑	VW3 A58864	VW3 A81•๑	HM017010A8	VW3 A58306	
	55	75	ATV 38ED64N4	Integrated	VW3 A58ee๑	VW3 A58864	VW3 A81・セ	HM017010A8	VW3 A58306	
	75	100	ATV 38ED79N4	Integrated	VW3 A58•e๑	VW3 A58864	VW3 A81••	HM017010A8	VW3 A58306	

[^19]

Variable speed drives for asynchronous motors
Altivar 58

5

Abstract

Applications The Altivar 58 is a frequency inverter for three-phase squirrel cage asynchronous motors which incorporates the latest technological developments and functions suitable for the most common applications, including: ■ horizontal and vertical materials handling, - packing/packaging, - special machines, - ventilation/air conditioning, - pumps and compressors.

Its numerous integrated options enable it to be adapted to sophisticated and advanced control systems.

For applications in which only a small amount of overtorque is required, drives with power ratings of $\geq 11 \mathrm{~kW}$ at $208 \ldots 240 \mathrm{~V}$ and $\geq 18.5 \mathrm{~kW}$ at $380 \ldots 500 \mathrm{~V}$ can be oversized.

Functions

The main functions are:
■ starting, dynamic braking and braking to a standstill, and speed control,
■ energy saving, PI regulator (flow rate, pressure, etc.),

- brake sequence,

■ speed loop with tachogenerator or pulse generator,
■ +/- speed, S ramps, U ramps, preset speeds, JOG operation,

- automatic catching a spinning load with speed detection (catch on the fly),

■ adaptation of current limiting according to speed for ventilation applications,

- automatic limitation of low speed operating time, motor and drive protection, etc.

Standard versions

The Altivar 58 is available in three versions for integration into machines.

Standard drive with heatsink (1)

For normal environments and ventilated enclosures

Drive on base plate (2 and 3)

This version is designed for applications in which the degree of protection required for the prevailing environmental conditions prevents ventilation.

The drive can be mounted in the following ways:

- in a dust and damp proof enclosure sold separately in order to dissipate heat externally (2),
■ on the machine chassis if the chassis frame can absorb the heat (3)
In both cases, no special cut-outs other than the fixing holes for the drive are needed.

Ready-assembled drive (4 and 5)

■ Altivar 58 COMPACT, power rating between 0.37 and 5.5 kW (4)
This ready-to-use IP 55 enclosure is equipped with a drive on a base plate with an external heatsink, a circuit-breaker to provide type 2 coordination and protection, and a downstream contactor.
This enclosure can be installed next to the motor.
■ Altivar 58 ENERGY, power rating between 3 and 75 kW (5)
The IP 55 enclosure is equipped with a drive with a cooling system and a Vario switch disconnector. A slot is provided for an additional contactor. The drives are supplied with an integrated line choke.
This enclosure can be installed next to the motor.

Characteristics:	References:	Dimensions, schemes:	Functions:
pages $2 / 127$ to $2 / 129$	pages $2 / 130$ and $2 / 131$	pages $2 / 160$ to $2 / 170$	pages $2 / 190$ to $2 / 205$

Variable speed drives for asynchronous motors
Altivar 58

Quick programming using macro-configurations

The Altivar 58 can be programmed quickly and easily using macro-configurations which correspond to the various functions and applications: materials handling, general use, variable torque.
Each of these configurations can of course be modified as required.

Dialogue functions

The Altivar 58 (1) has an RS 485 multidrop serial link with a simplified Modbus protocol integrated into the base product. This serial link can be used to connect PLCs (6), a PC, a communication gateway or one of the available programming tools.

4 advanced dialogue solutions, with plain text display in 5 languages (English, French, German, Spanish, Italian) and configuration memory:

- operator terminal, on drive or enclosure door (2),
- PowerSuite advanced dialogue solutions:
- Pocket PC for PowerSuite (3),
- PowerSuite software workshop for PC (4),
\square Magelis display unit with matrix screen (5).

Customizing the application

Functions can be extended by adding an extension card or a communication bus.

- I/O extension cards (8):
- I/O and speed loop with analogue input or encoder input.
- Communication bus (7 and 8):
- Fipio, Uni-Telway/Modbus, INTERBUS-S, Modbus Plus, AS-Interface, Profibus DP, Ethernet, CANopen, DeviceNet, METASYS N2 communication bus,
- Lonworks communication gateway.
- Customer-specific card (8) on request:
- software functions, for example special cycles and servo control, - hardware functions, for example specific inputs or outputs.

Cards are already available for:

- pump switching,
- multi-motor function,
- multi-parameter settings,
- simple position control.

Electromagnetic compatibility EMC

- Integrated EMC filters:

ATV 58 drives can be supplied with integrated EMC filters. Incorporation of the filters in the drives facilitates machine installation and conformity for $C \in$ marking purpose at low cost.
They have been sized to conform to IEC/EN 61800-3 standards (residential and industrial environments).

ATV 58 drives with power ratings $\geqslant 18.5 \mathrm{~kW}$ at $380 \ldots 500 \mathrm{~V}$ are also available without EMC filters for applications which do not require EMC conformance.

Drives with power ratings $\leqslant 11 \mathrm{~kW}$ at $208 \ldots 240 \mathrm{~V}$ are available with integrated EMC filters. For ratings $\geqslant 11 \mathrm{~kW}$, EMC filters are available as an option.

- Line chokes:

ATV 58 drives with power ratings $\geqslant 11 \mathrm{~kW}$ at $208 \ldots 240 \mathrm{~V}$ and $\geqslant 18.5 \mathrm{~kW}$ at $380 \ldots 500 \mathrm{~V}$ are available with integrated line chokes which limit the line current to the value of the nominal current of the motor.
Separate line chokes are available as an option for other ratings.

Characteristics: pages 2/127 to 2/129	References: pages 2/132 to 2/134	Dimensions, schemes: pages 2/160 to 2/170	Functions: pages 2/190 to 2/205	
(1) Telemecanique				2/125

Variable speed drives for asynchronous motors

Altivar 58

Operator terminal

The Altivar 58 has a slot on the front panel for a removable operator terminal which can be supplied with the drive or ordered separately. It can be used:
■ in 5 languages (English, French, German, Spanish, Italian),

- to control, adjust and configure the drive,
- for visible remote signalling,
- to save and download configurations (4 storage files).

A "remote terminal" option enables the terminal to be used remotely (using a 3 m cable) and to be mounted on the door of an enclosure with IP 65 protection on the front panel.

Backlit display (1)

$\curvearrowleft \quad$ Flashing: indicates the selected direction of rotation.
ค Steady: indicates the direction of motor rotation.

LOC Indicates control via the terminal.
PROG Appears in setup and programming mode.
Flashing: indicates that a value has been modified but not saved.
4 digits visible at 5 m : displays numeric values and codes.
One line of 16 characters: displays messages in plain text.
The keys are used (2):
To adjust and configure the drive.
To control the drive.

PowerSuite advanced dialogue solutions

[^20]| Characteristics: | References: | Dimensions, schemes: | Functions: |
| :--- | :--- | :--- | :--- |
| pages $2 / 127$ to $2 / 129$ | pages $2 / 132$ to $2 / 134$ | pages $2 / 160$ to $2 / 170$ | pages $2 / 190$ to $2 / 205$ |

Environment characteristics

Conforming to standa			Altivar 58 drives have been developed to conform to the strictest national and international standards and the recommendations relating to electrical industrial control devices (IEC, EN, NFC, VDE), in particular: - Low voltage EN 50178 - EMC immunity: - IEC/EN 61000-4-2 level 3 - IEC/EN 61000-4-3 level 3 - IEC/EN 61000-4-4 level 4 - IEC/EN 61000-4-5 level 3 - IEC/EN 61800-3, environments 1 and 2 - EMC, radiated and conducted emissions: - IEC/EN 61800-3, environments: 2 (industrial supply) and 1 (public supply) restricted distribution - EN 55011 class A (drives with built-in radio interference filters) - EN 55022 class B, with additional filters
C¢ marking			The drives have been designed to meet the requirements of the European low voltage (73/23/ EEC and 93/68/EEC) and EMC (89/336/EEC) directives. Altivar 58 drives are therefore permitted to carry the $C \in$ European Union mark.
Product certifications			UL, CSA, DNV
Degree of protection			Unprotected drives: IP 21 and IP 41 on upper part (conforming to EN 50178)
Vibration resistance			Conforming to IEC 60068-2-6: 1.5 mm peak from 2 to 13 Hz 1 gn from 13 to 200 Hz
Shock resistance			Conforming to IEC 60068-2-27: 15 gn for 11 ms
Maximum ambient poll			Drives ATV 58HD16M2X to HD46M2X, ©D28N4 to •D79N4 and HD28N4X to HD79N4X: Degree 3 conforming to UL 508C Other drives: degree 2 conforming to IEC 664-1 and EN 50178
Maximum relative hum			93% without condensation or dripping water conforming to IEC 60068-2-3
Ambient temperature	Storage	${ }^{\circ} \mathrm{C}$	-25... 65
around the unit	Operation	${ }^{\circ} \mathrm{C}$	ATV 58Peeee drives, all ratings: - 10... +40 Drives ATV 58HU09M2 to HU72M2 and HU18N4 to HU90N4: $-10 \ldots+50$ without ventilation kit, without derating Up to +60 with ventilation kit, with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$ Drives ATV 58HU90M2 to HD12M2 and HD12N4 to HD23N4: $-10 \ldots+40$ without ventilation kit, without derating Up to +50 with ventilation kit, with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$ Drives ATV 58HD16M2X to HD46M2X, HD28N4 to HD79N4 and HD28N4X to HD79N4X: $-10 \ldots+40$ without ventilation kit, without derating Up to +60 with ventilation kit, current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$
Maximum operating al		m	1000 without derating (above this, derate the current by 1% per additional 100 m)
Operating position			Vertical
Drive character	tics		
Output frequency rang		Hz	0.1... 500
Configurable switchin	equency	kHz	- Without derating, in continuous operation: - 0.5-1-2-4 for drives ATV 58•U09M2 to •D12M2, HD16M2X and HD23M2X, ©U18N4 to -D46N4 and HD28N4X to HD46N4X ㅁ. 0.5-1-2 for drives ATV 58HD28M2X to HD46M2X, ©D54N4 to •D79N4 andHD54N4X to HD79N4X Without derating with intermittent operating cycle or with derating by one power rating in continuous operation: ㅁ 8-12-16 for drives ATV 58•U09M2 to •D12M2 and \bullet U18N4 to \bullet D23N4 ㅁ 8-12 for drives ATV 58HD16M2X, HD23M2X, ©D28N4 to -D46N4 and HD28N4X to HD46N4X ㅁ 4-8 for drives ATV 58HD28M2X to HD46M2X, ©D54N4 to eD79N4 and HD54N4X to HD79N4X
Speed range			1... 100
Speed precision For a torque variation of	Tn to Tn		$\pm 1 \%$ of nominal speed, without speed feedback $\pm 0.1 \%$ of nominal speed, with tachogenerator feedback (option card) $\pm 0.2 \%$ of nominal speed, with encoder feedback (option card)
Transient overtorque			200% (140% in standard torque) of the nominal motor torque (typical value at $\pm 10 \%$) for 2 s 170% (120% in standard torque) of the nominal motor torque (typical value at $\pm 10 \%$) for 60 s
Braking torque			30% of the nominal motor torque without braking resistor (typical value). Up to 150% with braking resistor fitted as option
Voltage/frequency ratios			Sensorless flux vector control: at constant torque, variable torque or in energy saving mode, configurable

Variable speed drives for asynchronous motors

Altivar 58

Electrical characteristics

Presentation:	References:	Dimensions, schemes:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 132$ to $2 / 134$	pages $2 / 160$ to $2 / 170$	pages $2 / 190$ to $2 / 205$

Variable speed drives for asynchronous motors
 Altivar 58

Torque characteristics (typical curves)

The curves below define the available continuous torque and transient overtorque for both force-cooled and self-cooled motors. The only difference is in the ability of the motor to provide a high continuous torque at less than half the nominal speed.

High torque applications

1 Self-cooled motor: continuous useful torque (1)
2 Force-cooled motor: continuous useful torque
3 Transient overtorque
4 Torque in overspeed at constant power (2)

Standard torque applications

1 Self-cooled motor: continuous useful torque (1)
2 Force-cooled motor: continuous useful torque
3 Transient overtorque
4 Torque in overspeed at constant power (2)

Motor thermal protection

The Altivar 58 drive features motor thermal protection designed specifically for selfcooled or forced-cooled variable speed motors.

This motor thermal protection is designed for a maximum ambient temperature of $40^{\circ} \mathrm{C}$ around the motor.

If the temperature around the motor exceeds $40^{\circ} \mathrm{C}$, external thermal protection should be provided directly by thermistor probes integrated into the motor using one of the available option cards.

[^21]| Presentation: | References: | Dimensions, schemes: | Functions: |
| :--- | :--- | :--- | :--- |
| pages $2 / 122$ to $2 / 126$ | pages $2 / 132$ to $2 / 134$ | pages $2 / 160$ to $2 / 170$ | pages $2 / 190$ to $2 / 205$ |

Variable speed drives for asynchronous motors
 Altivar 58

Special uses
 Motor power lower than drive power

The Altivar 58 drive can supply any motor which has a power rating lower than that for which it is designed. Using the drive in this way provides a possible solution for applications requiring high intermittent overtorques.
Examples: machine with very high starting torque, grinder, kneader, etc.
Nota : in this case, it is advisable to increase the rating of the drive to the standardised power rating immediately above that of the motor.
Example: an 11 kW motor connected to a 15 kW drive.

Motor power greater than drive power

A motor with a power rating greater than that of the drive may be used as long as the current taken by the motor is less than or equal to the nominal current of the drive. This gives a self-cooled motor a greater speed range in continuous operation.
Nota : the motor power should be limited to the standardised power rating immediately above that of the drive.

Example: a 2.2 kW drive connected to a 3 kW motor (the 3 kW motor will be used as a 2.2 kW motor with a speed range between 10 and 50 Hz).

1 Continuous motor torque
Example: 2.2 kW
Motor power = drive power
2 Continuous motor torque
Example: 3 kW
Motor power > drive power
$3 \quad 2.2$ kW drive: nominal current

Connecting motors in parallel

The nominal current of the drive must be greater than or equal to the sum of the currents of the motors to be controlled. In this case, provide external thermal protection for each motor using probes or thermal overload relays. If the number of motors connected in parallel is ≥ 3, it is advisable to install an output filter between the drive and the motors or to reduce the switching frequency.

Calculating the drive rating:
\ln drive $>\ln 1+\ln 2+\ldots \ln x$
If several motors are used in parallel, there are 2 possible scenarios:

- the motors have equal power ratings, in which case the torque characteristics will remain optimised after the drive has been configured,
- the motors have different power ratings, in which case the drive configuration will be incompatible for the motors with the lowest power ratings and the overtorque at low speed will be considerably reduced.

Using a motor at overspeed

The maximum output frequency of the drive can be adjusted between 40 and 500 Hz . Before using a standard asynchronous motor at overspeed, check the mechanical overspeed characteristics of the selected motor with the manufacturer.
Above its nominal speed (corresponding to a frequency of $50 / 60 \mathrm{~Hz}$), the motor operates with decreasing flux and its torque drops significantly (see the graph opposite).
The application must support this mode of operation at reduced torque and very high speed.
1 Machine torque (decreasing torque)
2 Machine torque (low motor torque)
3 Continuous motor torque
Typical applications: wood-working machine and increase of the operating speed range on motors with low loads.

Presentation:	Characteristics:	References:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 132$ to $2 / 134$	Dimensions, schemes:
$2 / 130$	年Telemecanique pages $2 / 160$ to $2 / 170$		

Example: breaking of downstream contactor
$\mathrm{t1}$: deceleration without ramp (freewheel)
t2: acceleration with ramp

Special uses (continued)
 Using a motor at constant torque up to $87 / 104 \mathrm{~Hz}$

One $400 \mathrm{~V}, 50 \mathrm{~Hz}$ motor with a connection can be used at constant torque up to 87 Hz if it has a Δ connection.
In this special case, the initial power of the motor and the power of the first drive connected are multiplied by $\sqrt{ } 3$ (you must select a drive with a suitable power rating). Example: a $2.2 \mathrm{~kW}, 50 \mathrm{~Hz}$ motor with a connection supplies 3.8 kW at 87 Hz with a Δ connection.
(Check that it can operate at overspeed).

Using special motors

- Special brake motors: tapered rotor or flux bypass

This is the magnetic field of the motor which releases the brake. In order to operate the Altivar 58 in this way, the voltage must be set at low frequency.
Nota : the no-load current can be high but operation at low speed may only be intermittent.

- Synchronised synchronous or asynchronous motors

These motors have a low level of self-inductance and require the use of chokes connected in series. The low speed torque remains limited. Special settings are required (suppression of slip compensation, adjustment of the motor power supply ratio).

- Asynchronous motors with resistive rotor

The excessive slip on these motors limits the low speed torque. Special settings are required (adjustment of slip compensation and motor power supply ratio).

- Special high-speed motors

These motors are designed for constant torque applications with high frequency ranges: 0 to $200 / 500 \mathrm{~Hz}$. In some cases, it is advisable to install an output filter between the drive and the motor.

Switching the motor at the drive output

Switching is possible with the drive locked or unlocked. With switching on-the-fly (drive unlocked), the motor is controlled and accelerates smoothly until it reaches the reference speed following the acceleration ramp.
The "flying restart" must be configured for this type of use and the "output phase loss" protection function must be disabled.

Typical applications: safety breaking at the drive output, bypass function, switching of motors connected in parallel.

Operation with intermittent cycle and high switching frequency

It is possible to operate at a high switching frequency (1) without derating the power if the operating conditions are intermittent within the following limits: cumulative running time 36 s maximum per 60 s cycle (load factor 60%).
(1) Possible frequencies (in kHz):

8-12-16 for drives ATV 58•U09M2 to •D12M2 and oU18N4 to oD23N4
8-12 for drives ATV 58HD16M2X, HD23M2X and HD28N4 to HD46N4
4-8 for drives ATV 58HD28M2X to HD46M2X and HD54N4 to HD79N4

Variable speed drives for asynchronous motors

Altivar 58 with heatsink and integrated EMC filters
for asynchronous motors from 0.37 to 75 kW or 0.5 to 100 HP

ATV 58HU18M2

ATV 58HD28N4

ATV 58HD54N4

High torque applications (170 \% Tn)										
Motor		Line supply				Altivar 58				
Power indicated on rating plate (1)		Line c	rrent (2)	Max. prosp Isc	tive line	Nominal drive current	Max. transient current (3)	Power dissipated at nominal	Reference to be completed (5)	Weight
		at U min	$\begin{aligned} & \text { at } \\ & \mathrm{U}_{\text {max. }} . \end{aligned}$	at U min.	$\begin{aligned} & \text { at } \\ & \mathrm{U} \text { max. } \end{aligned}$			load (4)		
kW	HP	A	A	kA	kA	A	A	W		kg
Single phase supply voltage: 200... 240 V (6) 50/60 Hz										
0.37	0.5	5.6	4.7	2	2	2.3	3.1	42	ATV 58HU09M2	2.200
0.75	1	9.8	8.3	2	2	4.1	5.6	64	ATV 58HU18M2	2.200
1.5	2	18.5	15.6	5	5	7.8	10.6	107	ATV 58HU29M2	3.800
2.2	3	24.8	21.1	5	5	11	15	145	ATV 58HU41M2	3.800
3	-	24.7	21.3	5	5	13.7	18.6	220	ATV 58HU72M2 (7)	6.900
4	5	35	30	22	22	18.2	24.7	235	ATV 58HU90M2 (7)	13.000
5.5	7.5	46	39.4	22	22	24.2	32.9	310	ATV 58HD12M2 (7)	13.000
3-phase supply voltage: $200 . . .240 \mathrm{~V}$ (6) 50/60 Hz										
1.5	2	9.7	8.3	5	5	7.8	10.6	107	ATV 58HU29M2 (8)	3.800
2.2	3	13.4	11.4	5	5	11	15	145	ATV 58HU41M2 (8)	3.800
3	-	17.2	15	5	5	13.7	18.6	170	ATV 58HU54M2 (8)	6.900
4	5	22.4	19.5	5	5	18.2	24.7	220	ATV 58HU72M2 (8)	6.900
5.5	7.5	34.7	30	22	22	24.2	32.9	235	ATV 58HU90M2 (8)	13.000
7.5	10	44.4	38.2	22	22	31	42.2	310	ATV 58HD12M2 (8)	13.000
3-phase supply voltage: $\mathbf{3 8 0} . .500 \mathrm{~V}$ (6) $50 / 60 \mathrm{~Hz}$										
0.75	1	3.4	2.6	5	5	2.3	3.1	55	ATV 58HU18N4 (8)	3.800
1.5	2	6	4.5	5	5	4.1	5.6	65	ATV 58HU29N4 (8)	3.800
2.2	3	7.8	6	5	5	5.8	7.9	105	ATV 58HU41N4 (8)	3.800
3	-	10.2	7.8	5	5	7.8	10.6	145	ATV 58HU54N4 (8)	6.900
4	5	13	10.1	5	5	10.5	14.3	180	ATV 58HU72N4 (8)	6.900
5.5	7.5	17	13.2	5	5	13	17.7	220	ATV 58HU90N4 (8)	6.900
7.5	10	26.5	21	22	22	17.6	24	230	ATV 58HD12N4 (8)	13.000
11	15	35.4	28	22	22	24.2	32.9	340	ATV 58HD16N4 (8)	13.000
15	20	44.7	35.6	22	22	33	44.9	410	ATV 58HD23N4 (8)	15.000
18.5	25	43	35	22	65	41	55	670	ATV 58HD28N4	34.000
22	30	51	41	22	65	48	66	780	ATV 58HD33N4	34.000
30	40	68	55	22	65	66	90	940	ATV 58HD46N4	34.000
37	50	82	66	22	65	79	108	940	ATV 58HD54N4	57.000
45	60	101	82	22	65	94	127	1100	ATV 58HD64N4	57.000
55	75	121	98	22	65	116	157	1475	ATV 58HD79N4	57.000

Standard torque applications ($120 \% \mathrm{Tn}$)
3-phase supply voltage: $\mathbf{3 8 0} \ldots 500 \mathrm{~V}$ (6) $50 / 60 \mathrm{~Hz}$

22	30	51	41	22	65	44	55	750	ATV 58HD28N4	34.000
30	40	67	53	22	65	60	66	925	ATV 58HD33N4	34.000
37	50	82	66	22	65	72	90	1040	ATV 58HD46N4	34.000
45	60	99	79	22	65	85	108	1045	ATV 58HD54N4	57.000
55	75	121	97	22	65	105	127	1265	ATV 58HD64N4	57.000
75	100	160	130	22	65	138	157	1730	ATV 58HD79N4	57.000

(1) These power levels are given for the maximum switching frequency permitted by the drive (2 or 4 kHz depending on the rating) in continuous operation without derating. For higher switching frequencies, the drive must be in intermittent operation or it must be set one rating lower (see special uses on the previous pages).
(2) Typical value without additional choke for a 4-pole motor. Exceptions: ATV 58HU72M2, HU90M2 and HD12M2 (single phase) (7).
(3) For 60 seconds.
(4) These power levels are given for the maximum switching frequency permitted by the drive in continuous operation (2 or 4 kHz depending on the rating).
(5) Drive supplied with an operator terminal mounted on it. To obtain a drive without an operator terminal, add the letter \mathbf{Z} at the end of the reference.
Example: for ATV 58HU09M2 without operator terminal, the reference is ATV 58HU09M2Z. (6) Nominal supply voltages, U min...U max.
(7) A line choke must be used if these drives are connected to a single phase supply.
(8) These drives are available with power supplied via the d.c. bus, without an operator terminal. To order these drives, add Z290 at the end of the reference.
Example: ATV 58HU18N4 becomes ATV 58HU18N4Z290 with power supply via the d.c. bus.
Note: please refer to the table summarising the possible combinations for drives, options and accessories on pages 2/154 and 2/155.

Presentation:	Characteristics:	Dimensions, schemes:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 160$ to $2 / 170$	pages $2 / 190$ to $2 / 205$

Variable speed drives for asynchronous motors

Altivar 58 with heatsink and no EMC filters for asynchronous motors from 0.37 to 75 kW or 0.5 to 100 HP

ATV 58HD28N4X

ATV 58HD54N4X

High torque applications (170 \% Tn)

Motor	Line supply				Altivar 58				
Power indicated on rating plate (1)	Line	rrent (2)	Max. prospe Isc	ctive line	Nominal drive current	Max. transient current (3)	Power dissipated at nominal load (4)	Reference to be completed (5)	Weight
	at $U \min$.	at U max.	at U min.	$\begin{aligned} & \text { at } \\ & U_{\text {max. }} . \end{aligned}$					
kW HP	A	A	kA	kA	A	A	W		kg
Single phase supply voltage: $208 . . .240 \mathrm{~V}$ (6) $\mathbf{5 0 / 6 0 ~ H z}$									
$11 \quad 15$	43	40	10	22	48	64	745	ATV 58HD16M2X	34.000
$15 \quad 20$	59	54	10	22	66	82	900	ATV 58HD23M2X	34.000
18.5 25	71	64	10	22	79	102	895	ATV 58HD28M2X	57.000
2230	84	78	10	22	94	120	1030	ATV 58HD33M2X	57.000
$30 \quad 40$	115	104	10	22	116	158	1315	ATV 58HD46M2X	57.000
3-phase supply voltage: $\mathbf{3 8 0} . .500 \mathrm{~V}$ (6) $50 / 60 \mathrm{~Hz}$									
18.525	43	35	22	65	41	55	660	ATV 58HD28N4X	34.000
$22 \quad 30$	51	41	22	65	48	66	775	ATV 58HD33N4X	34.000
$30 \quad 40$	68	55	22	65	66	90	925	ATV 58HD46N4X	34.000
$37 \quad 50$	82	66	22	65	79	108	930	ATV 58HD54N4X	57.000
$45 \quad 60$	101	82	22	65	94	127	1085	ATV 58HD64N4X	57.000
$55 \quad 75$	121	98	22	65	116	157	1455	ATV 58HD79N4X	57.000

Standard torque applications (120 \% Tn)

$$
\text { 3-phase supply voltage: } 208 . . .240 \mathrm{~V} \text { (6) } 50 / 60 \mathrm{~Hz}
$$

15	20	58	52	10	22	66	64	890	ATV 58HD16M2X	34.000
18.5	25	70	63	10	22	79	82	980	ATV 58HD23M2X	34.000
22	30	82	74	10	22	94	102	975	ATV 58HD28M2X	57.000
30	40	114	102	10	22	116	120	1215	ATV 58HD33M2X	57.000
37	50	141	125	10	22	143	158	1610	ATV 58HD46M2X	57.000
3-phase supply voltage: $380 \ldots 500 \mathrm{~V}$ (6) $50 / 60 \mathrm{~Hz}$										
22	30	51	41	22	65	44	55	735	ATV 58HD28N4X	34.000
30	40	67	53	22	65	60	66	915	ATV 58HD33N4X	34.000
37	50	82	66	22	65	72	90	1020	ATV 58HD46N4X	34.000
45	60	99	79	22	65	85	108	1030	ATV 58HD54N4X	57.000
55	75	121	97	22	65	105	127	1245	ATV 58HD64N4X	57.000
75	100	160	130	22	65	138	157	1700	ATV 58HD79N4X	57.000

(1) These power levels are given for the maximum switching frequency permitted by the drive (2 or 4 kHz depending on the rating) in continuous operation without derating. For higher switching frequencies, the drive must be in intermittent operation or it must be set one rating lower (see special uses on the previous pages).
(2) Typical value for a 4-pole motor.
(3) For 60 seconds.
(4) These power levels are given for the maximum switching frequency permitted by the drive in continuous operation (2 or 4 kHz depending on the rating).
(5) Drive supplied with an operator terminal mounted on it. To obtain a drive without an operator terminal, add the letter \boldsymbol{Z} at the end of the reference.
Example: for ATV 58HD16M2X without operator terminal, the reference is ATV 58HD16M2XZ.
(6) Nominal supply voltages, U min...U max

Note: please refer to the table summarising the possible combinations for drives, options and accessories on pages 2/154 and 2/155.

Presentation:	Characteristics:	Dimensions, schemes:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 160$ to $2 / 170$	pages $2 / 190$ to $2 / 205$

Variable speed drives for asynchronous motors

Altivar 58 on base plate, with integrated EMC filters
for asynchronous motors from 0.37 to 15 kW or 0.5 to 20 HP

ATV 58PU18M2

0.75	1	3.4	2.6	5	5	2.3	3.1	35	ATV 58PU18N4	2.900
1.5	2	6	4.5	5	5	4.1	5.6	40	ATV 58PU29N4	2.900
2.2	3	7.8	6	5	5	5.8	7.9	50	ATV 58PU41N4	2.900
3	-	10.2	7.8	5	5	7.8	10.6	55	ATV 58PU54N4	4.800
4	5	13	10.1	5	5	10.5	14.3	65	ATV 58PU72N4	4.800
5.5	7.5	17	13.2	5	5	13	17.7	80	ATV 58PU90N4	4.800
7.5	10	26.5	21	22	22	17.6	24	90	ATV 58PD12N4	11.500
11	15	35.4	28	22	22	24.2	32.9	110	ATV 58PD16N4	11.500
15	20	44.7	35.6	22	22	33	44.9	140	ATV 58PD23N4	13.500

(1) These power levels are given for the maximum switching frequency permitted by the drive (2 or 4 kHz depending on the rating) in continuous operation without derating. For higher switching frequencies, the drive must be in intermittent operation or it must be set one rating lower (see special uses on the previous pages).
(2) Typical value without additional choke for a 4-pole motor. Exceptions: ATV 58PU72M2, 58PU90M2 et 58PD12M2 (single phase) (7).
(3) For 60 seconds.
(4) These power levels are given for the maximum switching frequency permitted by the drive in continuous operation (2 or 4 kHz depending on the rating).
(5) Drive supplied with an operator terminal mounted on it. To obtain a drive without an operator terminal, add the letter \boldsymbol{Z} at the end of the reference.
Example: for ATV 58PU09M2 without operator terminal, the reference is ATV 58PU09M2Z. (6) Nominal supply voltages, U min...U max.
(7) A line choke must be used if these drives are connected to a single phase supply.

Note: please refer to the table summarising the possible combinations for drives, options and accessories on pages 2/154 and 2/155.

Presentation:	Characteristics:	Dimensions, schemes:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 160$ to $2 / 170$	pages $2 / 190$ to $2 / 205$

Variable speed drives for asynchronous motors

Altivar 58
Options: accessories

VW3 A5880

VW3 A5880•

Kit for mounting in dust and damp proof enclosure (IP 54 degree of protection)

This kit is used to mount the drive on a base plate inside a dust and damp proof enclosure, evacuating heat via an externally mounted heatsink. The only work to be done on the enclosure involves drilling the fixing holes.

The kit consists of:

- sealing joints,
- a heatsink,

■ a set of instructions.

This does not apply to the ATV 58PU09M2 and 58PU18M2, as the power dissipated by models on a heatsink is low enough for these products to be mounted in an enclosure (the ATV 58PU09M2 and 58PU18M2 are only designed for direct mounting on machine frames).

Characteristics of the enclosure

The surface of the cabinet or enclosure used for mounting the drive must have the following characteristics:
■ thickness 1.5 to 3 mm ,

- metal sheet: stainless or painted steel, adequately smooth,

■ heat-treated epoxy paintwork (do not use lacquer), max. thickness $70 \mu \mathrm{~m}$, fine or medium texture.

For drives	Reference	Weight $\mathbf{k g}$
ATV 58PU29M2, PU41M2, PU18N4, PU29N4, PU41N4	VW3 A58802	3.800
ATV 58PU54M2, PU72M2, PU54N4, PU72N4, PU90N4	VW3 A58803	8.300
ATV 58PU90M2, PD12M2, PD12N4, PD16N4	VW3 A58804	6.000
ATV 58PD23N4	VW3 A58805	7.600

Kit for mounting "air exchanger" (IP 23 degree of protection)

This kit is used for mounting certain drives with heatsinks (ATV 58HDeeM2X, HD28N4 to HD79N4 and HD28N4X to HD79N4X) inside a dust and damp proof enclosure. It evacuates heat using fittings which allow the fan to draw in cold air at the bottom, and to evacuate hot air to the outside at the top. This requires two cut-outs in the enclosure.

The mounting kit consists of:
■ 1 set of bellows (max. length $=1 \mathrm{~m}$),

- 2 grilles,
- 1 set of instructions.

For drives	Reference	Weight kg
ATV 58HD16M2X, HD23M2X	VW3 A58806	4.000
ATV 58HD28N4, HD33N4, HD46N4		
ATV 58HD28N4X, HD33N4X, HD46N4X		
ATV 58HD28M2X, HD33M2X, HD46M2X	VW3 A58807	5.000
ATV 58HD54N4, HD64N4, HDT9N4		
ATV 58HD54N4X, HD64N4, HD79N4X		

Variable speed drives for asynchronous motors

Altivar 58

Options: accessories

Control card fan kit

The fan kit enables the drive to operate at an ambient temperature of $60^{\circ} \mathrm{C}$, for example if it is mounted in an IP 54 enclosure. The circulation of air around the electronic cards prevents the formation of hot spots but not the derating: see page 2/127.

This kit is mounted on the upper part of the drive. It is powered by the drive.
The kit consists of:

- a fan subassembly,

■ mounting accessories.

For drives	Reference	Weight kg
ATV 58•U09M2, @18M2	VW3 A58821	0.350
ATV 58•U29M2, •U41M2, •U18N4, •U29N4, •U41N4	VW3 A58822	0.450
ATV 58•U54M2, •U72M2, •U54N4, •U72N4, •U90N4	VW3 A58823	0.450
ATV 58•U90M2, ๑D12M2, ๑D12N4, セD16N4, ๑D23N4	VW3 A58824	0.500
ATV 58HD16M2X, HD23M2X ATV 58HD28N4, HD33N4, HD46N4 ATV 58HD28N4X, HD33N4X, HD46N4X	VW3 A58825	1.200
ATV 58HD28M2X, HD33M2X, HD46M2X ATV 58HD54N4, HD64N4, HD79N4 ATV 58HD54N4X, HD64N4X, HD79N4X	VW3 A58826	1.200

Separate control circuit supply kit

The separate control circuit supply kit enables the drive control circuit to be supplied when the power is off. For drives connected on a communication bus, this option enables the dialogue and hence the diagnostics to be maintained if the power is interrupted.

This kit is designed for drives with a rating of < 15 kW . It is mounted on the upper part of the drive. The power supplies must be separated by an isolation transformer. The kit must be supplied at 230 V (see isolation transformer characteristics below).

The kit consists of:
■ a power supply subassembly,

- removable screw terminals for 230 V power supply,
- mounting and wiring accessories.

Characteristics of the isolation transformer, to be ordered separately:

- power part 30 VA ,

■ secondary $200 \mathrm{~V}-10 \% . .240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz}$.

For drives	Reference	Weight $\mathbf{k g}$
ATV 58•U18N4, \bullet U29N4, \bullet U41N4	VW3 A58602	0.450
ATV 58•U54N4, $\bullet U 72 N 4, \bullet U 90 N 4 ~$	VW3 A58603	0.450
ATV 58•D12N4, •D16N4, ๑D23N4	VW3 A58604	0.450

Presentation:	Dimensions:
pages $2 / 122$ to 2/126	page 2/162

Variable speed drives for asynchronous motors
Altivar 58
Options: accessories

Kit for removable power terminals

The Altivar 58 "control" terminals are removable. This kit enables the drive's power terminals to be removed for applications which require speedy repairs.

It is only designed for low-power drives (see below).
The kit consists of:
■ removable prewired terminals,

- mounting accessories,
- a set of instructions.

For drives	Reference	Weight $\mathbf{k g}$
ATV 58•U09M2, \bullet U18M2	VW3 A58811	0.300
ATV 58•U29M2, $\bullet U 41 M 2, \bullet U 18 N 4, \bullet U 29 N 4, \bullet U 41 N 4$	VW3 A58812	0.300
ATV 58•U54M2, $\bullet U 72 M 2, \bullet U 54 N 4, \bullet U 72 N 4, \bullet U 90 N 4$	VW3 A58813	0.300

Variable speed drives for asynchronous motors

Altivar 58

Options: dialogue

Operator terminal (this terminal can be supplied with the drive or ordered separately)

VW3-A58101

This plug-in terminal is inserted into a slot provided for this purpose on the front panel of the drive. Its maximum operating temperature is $60^{\circ} \mathrm{C}$.

Description	For drives	Reference (if ordered separately)	Weight kg
Operator terminal	ATV-58 all ratings	VW3-A58101	0.200

Kit for remote location of operator terminal

The plug-in terminal can be used remotely, fixed to the door of the enclosure, using this kit.

Description	For drives	Reference Weight kg
Kit comprising:	ATV-58 all ratings	VW3-A58103 - 1 cable with connectors, length 3 m, - seals and screws for IP 65 mounting on enclosure door,
- manual.		

Variable speed drives for asynchronous motors

Altivar 58
Options: dialogue

PowerSuite advanced dialogue solutions

See pages $3 / 2$ and $3 / 3$.

RS 485 connection kit

This kit is used for RS 485 multidrop serial link connection to PLCs, Human/machine interface terminals, etc. It is connected in place of the operator terminal and cannot therefore be used at the same time.

Description	For drives	Reference	Weight kg
RS 485 connection kit comprising:	Altivar 58	VW3-A58306	0.200
- 1 cable, length 3 m with 1 male	all ratings		
9 -way SUB-D connector and 1 male			
- manual.			

Variable speed drives for asynchronous motors

Altivar 58
 Options: I/O extension cards, customer-specific cards

Presentation

I/O extension cards

The Altivar 58 drive can be specially adapted to suit certain types of application by installing an I/O extension card in the drive. Two models are available:

- Card with analogue input

Includes two =-2 24 V logic inputs, one =- 24 V open collector logic output, one $0 / 20 \mathrm{~mA}$ analogue output and one bipolar $\pm 10 \mathrm{~V}$ analogue input. The analogue input can be used for speed correction with a tachogenerator, for feedback of the PI function, for processing of PTC motor protection probes or for summing the frequency reference.

- Card with encoder inputs

Includes two =-- 24 V logic inputs, one $=-24 \mathrm{~V}$ open collector logic output, one $0 / 20 \mathrm{~mA}$ analogue output and $\mathrm{A}+$, $\mathrm{A}-$, B+, B- inputs which can be used for speed correction with an incremental encoder (Telemecanique XCC-H for example) or with an inductive or photoelectric sensor.

Customer specific cards

To meet the requirements of special applications for which neither the standard product nor I/O extension cards are suitable, we can design and supply cards on request which incorporate:

- hardware functions (I/O),
- software functions, (special cycles and servo controls, etc).

Cards are already available for:
pump switching, multimotor operation, multiparameter entry and positioning.

- Pump switching card

This is used for controlling a complete pumping or compression installation using a single Altivar 58, and provides:

- constant pressure in the supply, regardless of flow rate,
- ease of setup and diagnosis of the installation, using the Altivar 58,
- control of a variable speed pump and up to 4 fixed speed pumps, avoiding systematic wear of the same pumps.

For more information, please consult your Regional Sales Office.

- Multimotor card

Has 2 -- 24 V reassignable logic inputs, $1-24 \mathrm{~V}$ open collector logic output, one $0 / 20 \mathrm{~mA}$ analogue output, and one bipolar $\pm 10 \mathrm{~V}$ analogue input. The analogue input can be used for speed correction with a tachogenerator, for feedback of the PI function, for processing of PTC motor protection probes, or for summing the frequency reference. Two drive configurations can be switched when the motor is stopped.
Functions:
loading two configurations with an Altivar 58 operator dialogue terminal, switching configurations via logic input or with an operator dialogue terminal, automatic auto-tuning possible after switching.

- Multiparameter card

This is used to switch (automatically or via logic input) up to 16 sets of 13 parameters, 6 of which are pre-defined and 7 are user-definable. Only the adjustment functions are taken into account when the motor is running.

- Simple position indexer card

This is used to define a cycle which manages the motion of a moving part along an axis with a limit switch as the end stop preceded by another end stop imposing the change to low speed.
Positioning can be performed in both directions:

- forward,
- reverse.

The card is equipped with:

- 6 logic inputs =- 24 V ,
- 1 logic output =-2 24 V with open collector,
- 1 bipolar analogue input $\pm 10 \mathrm{~V}$,
- 1 analogue output 0-20 mA

The Altivar 58 is designed to take a card mounted in the I/O extension card slot.
These special cards are for use with standard machines. Please consult your Regional Sales Office for a quotation.

Variable speed drives for asynchronous motors

Altivar 58

Options: I/O extension cards, customer-specific cards

Characteristics of I/O extension cards

Internal sources available	Protected against short circuits and overloads - 1 output + $10 \mathrm{~V} \pm 1 \%$, maximum flow rate 10 mA - 1 output - $10 \mathrm{~V} \pm 1 \%$, maximum flow rate 10 mA -1 output +24 V (min. 20 V , max. 30 V), maximum flow rate 200 mA for all 24 V drive outputs			
Ll logic inputs	Assignable logic inputs, impedance $3.5 \mathrm{k} \Omega$, compatible with level 1 PLC, IEC standard 65A-68 Maximum length of shielded cable: 100 m Power supply +24 V (min. 12 V , max. 30 V). Status 0 if $<5 \mathrm{~V}$, status 1 if $>11 \mathrm{~V}$ Sampling time 2 ms max.			
LO logic output	Assignable open collector logic output, compatible with level 1 PLC, IEC standard 65A-68 Power supply + 24 V (min. 12 V , max. 30 V), max. current 20 mA with internal source and 200 mA with external source Sampling time 2 ms max.			
AO analogue output	Assignable logic output $0 / 20 \mathrm{~mA}$, max. load impedance 500Ω (reassignable to $X-Y m A$, by programming X and Y from 0 to 20 with a definition of 0.1 mA) Resolution 0.04 mA (9 bits), linearity $\pm 0.1 \mathrm{~mA}$, precision $\pm 0,2 \mathrm{~mA}$ Sampling time 2 ms max.			
Al analogue input or	1 assignable differential bipolar input $0 \pm 10 \mathrm{~V}$, impedance $30 \mathrm{k} \Omega$. Adjustable gain Frequency reference resolution: 0.1 Hz for 100 Hz (10 bits plus sign) Precision $\pm 0.5 \%$, linearity $\pm 0.2 \%$, of max. output frequency Sampling time 2 ms max. Max. length of shielded cable: 20 m If configured for PTC probe processing, use at 750Ω max. at $20^{\circ} \mathrm{C}(3 \times 250 \Omega$ probes in series $)$			
Logic inputs $A+A-, B+, B-$	For encoders or detectors with NPN-type open collector outputs, nominal voltage $24 \mathrm{~V}=-$ (19.2 at 30 V) Input impedance $785 \Omega \pm 10 \%$ Max. signal frequency 33 kHz at max. speed HSP We recommend the use of an external 24 V source when using the drive with incremental coders			
I/O extension cards				
	Description	For drives	Reference	Weight kg
	Card with analogue input	ATV-58 all ratings	VW3-A58201	0.200
	Card with encoder inputs	ATV-58	VW3-A58202	0.200
	Customer specific cards			
	Description	For drives	Reference	Weight kg
	Pump switching card	ATV-58	VW3-A58210	0.200
VW3-A5820•	Multimotor card	ATV-58	VW3-A58211	0.200
		all ratings		
	Multiparameter card	ATV-58 all ratings	VW3-A58212	0.200
	Simple position indexer card	ATV-58 all ratings	VW3-A58213	0.200

Variable speed drives for asynchronous motors

functions, characteristics

Altivar 58

Communication options

Presentation
The Altivar 38 or Altivar 58 can be connected to the communication networks or buses via communication cards or gateways.
Communication cards are available for the following buses or networks:

- Fipio.
- Modbus Plus.
- Uni-Telway, Modbus ASCII, Modbus RTU/Jbus.
- INTERBUS-S.
- AS-Interface.
- Profibus DP.
- Ethernet.
- CANopen.
- DeviceNet.
- METASYS N2.

Communication gateways are available for the Profibus DP bus and the LonWorks network.
(see pages $4 / 2$ to $4 / 25$)

Functions

Cards for Fipio, Modbus Plus, Uni-Telway/Modbus, INTERBUS-S,

 Profibus DP, Ethernet, CANopen, DeviceNet, METASYS N2 bus or networksUsing these communication cards will enable you to benefit from the entire range of functions offered by the Altivar 38 or Altivar 58:
■ Configuration (accessible in read and write modes): line supply frequency, motor
voltage, ramp profile, I/O assignment, etc.
■ Adjustment (accessible in read and write modes): d.c. injection time and amplitude, thermal protection, speed range, ramp time, current limitation, etc.
■ Control (accessible in read and write modes): run/stop, braking, frequency reference, fault reset, etc.
■ Signalling (accessible in read only mode): drive status register, motor speed, motor current, logic I/O status register, fault register, etc.

- Authorisation of local control (via the terminals)

Card for the AS-Interface bus

Using this communication card will enable you to benefit from the entire range of functions offered by the Altivar 38 or Altivar 58:
■ Control: run/stop, braking, frequency reference (preset values), fault reset, +/speed
■ Signalling: drive status (ready, running, faulty, frequency reference reached, thermal threshold reached, local forcing)
■ Authorisation of control via the terminals (local forcing)

Characteristics Bus or network	Maximum number of drives controlled on the bus	Transmission speed
Fipio	62	1 Mbps
Modbus Plus	64	1 Mbps
Uni-Telway, Modbus ASCII, Modbus RTU/Jbus	31	$4800 \ldots 19,200 \mathrm{bps}$
INTERBUS-S	64	1 Mbps
AS-Interface	31	166 Kbps
Profibus DP	126	$9600 \mathrm{bps} \ldots 12 \mathrm{Mbps}$
With card	With gateway	15 Modbus +126 Profibus DP
Ethernet	-	$9600 \mathrm{bps} \ldots 12 \mathrm{Mbps}$
CANopen	63	$10 / 100 \mathrm{Mbps}$
DeviceNet	63	$125 / 250 / 500 / 1000 \mathrm{Kbps}$
METASYS N2	255	$125 / 250 / 500 \mathrm{Kbps}$
LonWorks	2	-

Variable speed drives for asynchronous motors

Altivar 58
Communication options

VW3 A58302

VW3 A58310

Communication card	Reference	Weight kg
For bus or network		0.300
Fipio: the card is equipped with a male 9-way SUB-D connector,	VW3 A58301	
which will take a TSX FP ACC 12 removable connector with		
TSX FP CCee connecting cable or TSX FP CAee tap cable.		
Configuration and adjustment access to predefined functions in		
the PL7 software screens.		
Card incompatible with the ATV 38 drive.		

Fipio: hardware description identical to reference VW3 A58301. VW3 A58311 $\quad 0.300$ The card is used for read/write access to all functions via the application program of the PLC.

Modbus Plus: the card is equipped with a female 9-way SUB-D VW3 A58302 connector, which can take a Modbus Plus drop cable with connectors, reference 990NAD21110 or 990NAD21130. This cable should be connected to a Modbus Plus tap, reference 990NAD23000, for connection to the Modbus Plus trunk cable, reference 490NAA271•e.

| Uni-Telway/Modbus: the card is equipped with a female 9-way | VW3 A58303 | 0.300 |
| :--- | :--- | :--- | :--- | SUB-D connector and supplied with a 3 m cable fitted with a male 9-way SUB-D connector and a male 15-way SUB-D connector for connection on TSX SCA 62 subscriber sockets.

INTERBUS-S: the card is equipped with one male and one female VW3 A58304E 0.300 9 -way SUB-D connector for connection with cables with
connectors and 2 screw terminals for separate -24 V supplies.
Power supply: =- $24 \mathrm{~V}, 200 \mathrm{~mA}$ min., to be ordered separately.

| AS-Interface: the card is equipped with removable terminals. | VW3 A58305 | 0.300 |
| :--- | :--- | :--- | :--- | Example of connection accessory: use a tap-off for the ASInterface cable, reference XZ-CG0122.

| Profibus DP: the card is equipped with a female 9-way SUB-D | VW3 A58307 | 0.300 |
| :--- | :--- | :--- | :--- | connector for connection to cables with connectors.

Ethernet: the card is equipped with an RJ 45 connector for	VW3 A58310	0.300
connection to cables with connectors, reference 490NTW000॰e.		

CANopen: the card is equipped with removable screw terminals. VW3 A58308 0.300

| DeviceNet: the card is equipped with removable screw terminals. VW3 A58309 0.300 |
| :--- | :--- | :--- | The card supports:

- The ODVA (Open Device Vendor Association) profile.
- The drive profile defined previously.

| METASYS N2: the card is equipped with a female 9-way SUB-D | VW3 A58354U | 0.300 |
| :--- | :--- | :--- | :--- | connector.

Card incompatible with the ATV 58F drive

Communication module and gateway
For bus or network
:---

kg
:---
connector for the network (1).
The LonWorks module is connected either on the Modbus
VW3 A58303 card via a cable supplied with the module, or on the
drive terminal port. If the LonWorks module is connected on the
drive terminal port, it will not be possible to use the operator
terminal.

Module incompatible with the ATV 58F drive.
Profibus DP: the gateway is equipped with an RJ 45 connector for LA9 P307
connection to a cable fitted with connectors, reference
VW3 P07306R10, and a 9-way SUB-D connector for connection to a
stripped cable, reference VW3 A8306D30 (1)
(see pages $4 / 24$ and 4/25).
(1) The module or gateway must be powered with $a=24 V$ supply.

Power supply =. $24 \mathrm{~V}, 140 \mathrm{~mA}$ min., to be ordered separately.
Nota : to order connection cables and accessories, please consult our "Modicon Premium and PL7 software" and "Modicon TSX Micro and PL7 software" specialist catalogues or the manufacturers' catalogues.

Variable speed drives for asynchronous motors

Altivar 58
Options: braking module and resistors

Presentation

	The resistor enables the Altivar 58 speed drive to operate when braking to a standstill or during slowdown braking, by dissipating the braking energy.				
	Presentation				
	There are two types available: - a model in an IP 30 or IP 23 unit designed for EMC, protected by a temperature controlled switch or thermal relay, - an model without protection, for low power ratings only.				
	Applications				
	Machines with high inertia, driving loads, machine with fast cycles. Braking is integrated in the Altivar 58 with the exception of the ATV-58•U09M2 and ATV-58•U18M2 drives, which require an additional braking module.				
Characteristics					
References		VW3-A58732 to VW3-A58735	VW3-A58736 and VW3-A58737	VW3-A58702 to VW3-A58704	VW3-A66704
Ambient air temperature	${ }^{\circ} \mathrm{C}$	40	40	40	40
Degree of protection of the unit		IP 30	IP 30	IP 00	IP 23
Protection of the resistor		By temperature controlled switch (1)	By temperature controlled switch (1)	None	By thermal relay (1) (2)
Temperature controlled switch Tripping temperature	${ }^{\circ} \mathrm{C}$	$130 \pm 5 \%$	$260 \pm 14 \%$		
Max voltage - max current		$\sim 110 \mathrm{~V}-0.3 \mathrm{~A}$	$\sim 220 \mathrm{~V}-6 \mathrm{~A}$	-	-
Min voltage - min current		--24 V-0.01 A	$-24 \mathrm{~V}-0.01 \mathrm{~A}$	-	-
Maximum contact resistance	$\mathrm{m} \Omega$	150	50	-	-
Load factor of resistors		The average value of the power which can be dissipated at $40^{\circ} \mathrm{C}$ by the resistor in the unit is determined for a load factor during braking which corresponds to most common applications: - 2 seconds braking with a torque of 0.6 Tn every 40 seconds, -0.8 seconds braking with a torque of 1.5 Tn every 40 seconds.			

Braking torque with resistor (speed drive limits)

Minimum ohmic value of resistors which can be used with ATV-58 speed drive

ATV-58@ speed drive	U09M2 U18M2	$\begin{aligned} & \text { U29M2 } \\ & \text { U41M2 } \\ & \hline \end{aligned}$	U54M2	U72M2	$\begin{array}{\|l} \text { U90M2 } \\ \text { D12M2 } \\ \hline \end{array}$	D16M2X	D23M2X	D28M2X	D33M2X	D46M2X
Min resistance value in ohms	75	38	31	25	13	8	8	4	2.67	2.67
ATV-58@ speed drive	U18N4 U29N4 U41N4 U54N4	U72N4	U90N4	D12N4	$\begin{array}{\|l\|l\|} \hline \text { D16N4 } \\ \text { D23N4 } \end{array}$	$\begin{aligned} & \text { D28N4, D } \\ & \text { D33N4, D } \\ & \text { D46N4, D } \end{aligned}$	$\begin{aligned} & 8 N 4 X \\ & 6 N \mathrm{~N} 4 \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D54N4 } \\ & \text { D54N4X } \end{aligned}$	D64N4 D64N4X D79N4 D79N4X	
Min resistance value in ohms	85	57	47	53	19	14		8	5	

(1) The switch must be connected in sequence (use for signalling or to control the line contactor).
(2) Please order separately, rating 8 A .
pages 2/146 and 2/147 page 2/161

Variable speed drives for asynchronous motors

Altivar 58

Options: braking module and resistors

Load factor

The average value of power which can be dissipated at $40^{\circ} \mathrm{C}$ by the resistor in the unit is determined for a load factor when braking, which corresponds to most common applications.

This load factor is given in the table on the previous page.

For a specific application (hoisting, materials handling), it is necessary to redefine the nominal power of the resistor, taking into account the new load factor.

Determining the nominal power

Graph no. 1

Average power depending on the braking torque for a load factor

Graph no. 2
Permissible resistor overload depending on time (typical curve)

Nominal power of the resistor (Pn) must be greater than:
$\mathrm{Pn}=\mathrm{Pm} \times \mathrm{K} 1 \times \eta\left(1+\frac{1}{\mathrm{~K} 2 \times \mathrm{fm}}\right)=4.10^{3} \times 0.06 \times 0.85\left(1+\frac{1}{7 \times 0.2}\right)=350 \mathrm{~W}$

Example:

Motor power Pm = 4 kW
Motor efficiency $\eta=0.85$
Braking torque $\mathrm{Tf}=0.6 \mathrm{Tn}$
Braking time $t=10 \mathrm{~s}$
Cycle time $\mathrm{T}=50 \mathrm{~s}$
Load factor $\mathrm{fm}=\frac{\mathrm{t}}{\mathrm{T}}=20 \%$

From graph no. 1 calculate the coefficient K1 corresponding to a braking torque of 0.6 Tn and a load factor of 20 \%.
$\mathrm{K} 1=0.06$

From graph no. 2 calculate the coefficient K2 corresponding to a braking time of 10 seconds.
$\mathrm{K} 2=7$

Variable speed drives for asynchronous motors

Altivar 58
Options: braking module and resistors

Braking module

For speed drives	Reference	Weight kg
ATV-58•U09M2, •U18M2	$\underline{\text { VW3-A58701 }}$	0.250

Unprotected braking resistors

	Ohmic value	Average power available at $40{ }^{\circ} \mathrm{C}(1)$	Reference

(1) Power which can be dissipated by the resistor at a maximum temperature of $115^{\circ} \mathrm{C}$, corresponding to a maximum temperature limit of $75^{\circ} \mathrm{C}$ in an ambient temperature of $40^{\circ} \mathrm{C}$.

Variable speed drives for asynchronous motors

Altivar 58
Options: braking module and resistors

Protected braking resistors

For speed drives	Ohmic value	Average available power at 40 ${ }^{\circ} \mathrm{C}(1)$
W Reference		

(1) Power which can be dissipated by the resistor at a maximum temperature of $115^{\circ} \mathrm{C}$, corresponding to a maximum temperature limit of $75^{\circ} \mathrm{C}$ in an ambient temperature of $40^{\circ} \mathrm{C}$.
(2) The different ohmic values are obtained depending on the connection and are detailed in the resistor manual.

Variable speed drives for asynchronous motors

Altivar 58
Options: line chokes

Presentation

The line chokes provide improved protection against mains overvoltages and reduce the current harmonic distortion produced by the speed drive.

The chokes recommended are used to limit the line current.
The use of line chokes is especially recommended in the following cases:

- severe disturbance of mains supply by other receivers (interference, overvoltages),
- mains supply with voltage imbalance between phases $>1.8 \%$ of the nominal voltage,
- speed drive supplied by a line with very low impedance (close to power transformers 10 times more powerful than the speed drive rating),
- installation of a large number of frequency inverters on the same line (reduction of line current),
- reduction of overload of the $\cos \varphi$ power factor correction capacitors, if the installation has a bank of power factor correction capacitors.

Line chokes must be used for supplying ATV-58•U72M2, •U90M2 and •D12M2 3-phase speed drives via a singlephase 220 V supply.

Certain ATV-58 speed drives are available with an integrated line choke which limits the line current to the nominal motor current value:

- ATV-58HD16M2X to HD46M2X, HD28N4 to HD79N4 and HD28N4X to HD79N4X speed drives,
- ready-assembled ATV-58ED12N4 to ED79N4 speed drives.

Characteristics

Conforming to standards	EN 50178 (VDE 0160 level 1 high-energy overvoltages on the mains supply)								
Voltage drop	Between 3 and 5% inclusive of the supply nominal voltage. Higher values may cause a loss of torque.								
Type of choke	VZ1-L 004M010	VZ1-L 007UM50	VZ1-L 018UM20	VW3- A58501	VW3A58502	VW3A66501	VW3A66502	VW3A66503	VW3A66504
Degree of protection Choke	IP 00								
Terminals	IP 20	IP 20	IP 20	IP 10	IP 10	IP 20	IP 20	IP 20	IP 10
Value of inductance (mH)	10	5	2	2	1	10	4	2	1
Nominal current (A)	4	7	18	25	45	4	10	16	30
Losses (W)	17	20	30	45	50	45	65	75	90

Variable speed drives for asynchronous motors

Altivar 58
Options: line chokes

VW3-A6650•

Altivar 58						Choke	
Prospective	Single phase	Line currentwithout		Line current with		Reference	Weight
line	or						
Isc	3-phase	choke at		choke at			
		U min	U max	U min	U m		
kA		A	A	A	A		kg

Single phase supply voltage: $\mathbf{2 0 0} \ldots \mathbf{2 4 0}$ V (1) $\mathbf{5 0 / 6 0} \mathbf{~ H z}$

2	ATV-58•U09M2	5.6	4.7	3.7	3.1	$\overline{\text { VZ1-L004M010 }}$	0.630
2	ATV-58•U18M2	9.8	8.3	7.1	5.7	$\overline{\text { VZ1-L007UM50 }}$	
5	ATV-58•U29M2	18.5	15.6	13.2	12	$\overline{\text { VZ1-L018UM20 }}$	
5	ATV-58•U41M2	24.8	21.1	18.6	16	$\overline{\text { VZ1-L018UM20 }}$	
5	ATV-58•U72M2	(2)	(2)	24.7	21.3	$\overline{\text { VW3-A58501 }}$	1.990
22	ATV-58•U90M2	(2)	(2)	35	30	$\overline{\text { VW3-A58502 }}$	1.990
22	ATV-58•D12M2	(2)	(2)	46	39.4	$\overline{\text { VW3-A58502 }}$	3.500

3-phase supply voltage: $200 \ldots 240 \mathrm{~V}$ (1) $50 / 60 \mathrm{~Hz}$

5	ATV-58•U29M2	9.7	8.3	6.3	5.3	$\overline{\text { VW3-A66502 }}$	3.000
5	ATV-58•U41M2	13.4	11.4	5.5	5.1	$\overline{\text { VW3-A66503 }}$	
5	ATV-58•U54M2	17.2	15	12	10	$\overline{\text { VW3-A66503 }}$	3.500
5	ATV-58•U72M2	24.4	19.5	16	13.5	$\overline{\text { VW3-A66504 }}$	
22	ATV-58•U90M2	34.7	30	22	18.5	$\overline{\text { VW3-A66504 }}$	3.500
22	ATV-58•D12M2	44.4	38.2	29.5	24.3	$\overline{\text { VW3-A66504 }}$	6.000

3-phase supply voltage: $380 \ldots 500 \mathrm{~V}$ (1) $50 / 60 \mathrm{~Hz}$

5	ATV-58•U18N4	3.4	2.6	1.8	1.5	$\overline{\text { VW3-A66501 }}$	1.500
5	ATV-58•U29N4	6	4.5	3.3	2.5	$\overline{\text { VW3-A66501 }}$	
5	ATV-58•U41N4	7.8	6	4.8	3.8	$\overline{\text { VW3-A66502 }}$	1.500
5	ATV-58•U54N4	10.2	7.8	6.4	5	$\overline{\text { VW3-A66502 }}$	
5	ATV-58•U72N4	13	10.1	8.3	6.4	$\overline{\text { VW3-A66502 }}$	3.000
5	ATV-58•U90N4	17	13.2	11.6	9.3	$\overline{\text { VW3-A66503 }}$	
22	ATV-58•D12N4	26.5	21	15.4	11.9	$\overline{\text { VW3-A66503 }}$	3.000
22	ATV-58•D16N4	35.4	28	22.7	17.9	$\overline{\text { VW3-A66504 }}$	3.000
22	ATV-58•D23N4	44.7	35.6	29.4	22.7	$\overline{\text { VW3-A66504 }}$	3.500
11						3.500	

(1) Nominal supply voltage: U min...U max.
(2) Compulsory line choke.

Variable speed drives for asynchronous motors

Altivar 58
 Options: additional radio interference suppression input filters

Presentation

Function

The Altivar 58 incorporates radio interference suppression input filters to comply with the EMC "products" standards IEC 1800-3 and EN 61800-3 concerning variable speed drives. Compliance with these standards meets the requirements of the European directive on EMC.

Certain ATV-58 speed drives are available without input filters, in situations where EMC conformity is not necessary:

- ATV-58HD28N4 to HD79N4 speed drives are available with or without integrated input filters (in this case, the speed drive reference ends with \mathbf{X}),
- ATV-58HD16M2X to HD46M2X speed drives are not available with integrated input filters.

Certain ATV-58 speed drives cannot be ordered without integrated input filters:

- ATV-58•U09M2 to •D12M2 speed drives,
- ATV-58•U18N4 to •D23N4 speed drives.

The additional filters meet the strictest requirements: these filters are designed to reduce conducted emissions on the mains supply to below the limits of standards EN 55011 class A (1) or EN 55022 class B.

The filters are mounted under the ATV-58H speed drives (with heatsinks). They have tapped holes for fixing to the speed drives which they support. In the case of ATV-58P speed drives (on baseplate), and of ATV-58E (readyassembled) the filters are fixed to the side of the speed drive.
(1) If the cable is longer than 5 m for ATV-58•U09M2 to $\bullet D 12 \mathrm{M} 2$ and $\bullet U 18 \mathrm{~N} 4$ to $\bullet D 23 \mathrm{~N} 4$ speed drives. If the cable is longer than 25 m for ATV-58HD28N4 to HD79N4 speed drives.

Use according to the type of mains supply

These filters can only be used on TN type (connected to neutral) and TT type (neutral to earth) mains supplies. These filters must not be used with IT (impeding or isolated neutral) mains supplies.
Standard IEC 1800-3, appendix D2.1, states that, for this type of supply, filters must not be used as they prevent the earth leakage detectors from working reliably.

In addition, the effectiveness of the filters on this type of supply depends on the type of impedance between neutral and earth and is therefore not recommended.

In the case of a machine which must be installed on an IT supply, the solution is to insert an isolation transformer and operate the machine locally using a TN or TT supply.

Characteristics

Conforming to standards			EN 133200
Degree of protection			IP 21 and IP 41 on upper part
Maximum relative humidity			93 \% with no condensation or dripping water conforming to IEC 68-2-3
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	$-10 \ldots+60$
	Storage	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$
Maximum operating altitude	Without derating	m	1000 (above this derate the current by 1% for each additional 100m)
Maximum nominal voltage	50/60 Hz single phase	V	$240+10 \%$
	50/60 Hz 3-phase	V	$500+10 \%$

Variable speed drives for asynchronous motors

Altivar 58
Options: additional radio interference suppression input filters

For speed drives	Filter				
Reference	Maximum length of shielded cable		In	Reference	Weight
	EN 55011 class A (1)	EN 55022 class B (1)	(2)		
	m	m	A		kg

Single phase supply voltage: $200 \ldots 240 \mathrm{~V}(3)-50 / 60 \mathrm{~Hz}$

ATV-58•U09M2, @U18M2	50	20	10	VW3-A58401	1.700
ATV-58•U29M2, @U41M2	50	20	25	VW3-A58402	3.600
ATV-58•U72M2	50	20	25	VW3-A58403	5.000
ATV-58•U90M2, ©D12M2	50	20	45	VW3-A58404	10.000

3-phase supply voltage: $200 \ldots 240 \mathrm{~V}(3)-50 / 60 \mathrm{~Hz}$

ATV-58•U29M2, ©U41M2	50	20	25	VW3-A58402	3.600
ATV-58•U54M2, @U72M2	50	20	25	VW3-A58403	5.000
ATV-58•U90M2, ©D12M2	50	20	45	VW3-A58404	10.000

3-phase supply voltage: $208 . . .240 \mathrm{~V}(3)-50 / 60 \mathrm{~Hz}$

ATV-58HD16M2X, HD23M2X	50	20	80	VW3-A58407	13.000
ATV-58HD28M2X, HD33M2X ATV-58HD46M2X	50	20	160	VW3-A58408	20.000
3-phase supply voltage: $\mathbf{3 8 0}$... $500 \mathrm{~V}(3)-50 / 60 \mathrm{~Hz}$					
ATV-58•U18N4, •U29N4, ATV-58•U41N4	50	20	25	VW3-A58402	3.600
ATV-58•U54N4, •U72N4, ATV-58•U90N4	50	20	25	VW3-A58403	5.000
ATV-58•D12N4, ©D16N4	50	20	45	VW3-A58404	10.000
ATV-58•D23N4	50	20	45	VW3-A58405	13.000
ATV-58HD28N4	200	100	50	VW3-A58406	13.000
ATV-58HD28N4X	50	20	50		
ATV-58HD33N4, HD46N4	200	100	80	VW3-A58407	13.000
ATV-58HD33N4X, HD46N4X	50	20	80		
ATV-58HD54N4, HD64N4,	200	100	160	VW3-A58408	20.000
HD79N4, ATV-58HD54N4X,	50	20	160		

HD64N4X, HD79N4X
(1) The filter selection tables give the maximum length for the shielded cables which connect the motors to the speed drives, for a switching frequency of 0.5 to 12 kHz . These limits are given for information only as they depend on the interference capacity of the motors and the cables used. For motors connected in parallel, the total of the lengths must be taken into account
(2) In: nominal current of the filter.
(3) Nominal supply voltage : U min...U max.

Variable speed drives for asynchronous motors

Altivar 58
Options: output filters and motor line chokes

Presentation

An output filter inserted between the speed drive and the motor provides:

- limitation of $\frac{\mathrm{dv}}{\mathrm{dt}}$ at motor terminals (500 to $1500 \mathrm{~V} / \mu \mathrm{s}$), for cables over 50 m long,
- filtering of interference caused by the opening of a contactor placed between the filter and the motor,
- reduction of the motor earth leakage current.

Our range offers three types of filter.

Principle

LR filter cell: this cell comprises 3 high frequency line chokes and 3 resistors.

LC filter cell: this cell comprises 3 high frequency line chokes and 3 capacitors.

Line choke + capacitor combination: this assembly comprises 3 capacitors in delta connection mounted in a box connected to a 3-phase line choke VW3-A6650•

Motor line chokes

For standard motor cable lengths over 100 m (50 m for shielded cables), a line choke limits overvoltages at the motor terminals.

Variable speed drives for asynchronous motors

Altivar 58

Options: output filters and motor line chokes

Characteristics (1)

LR filter cells

Speed drive switching frequency	kHz	0.5... 4 max (2)			
Length I of motor cable	m	Shielded wires: 80 ; unshieldes wires: 100			
Degree of protection		IP 20			
LC filter cells					
Types of LC filter		Line chokes: VW3-A6650• + capacitors VW3-A66421		LC filter cell: VW3-A6641•	
Speed drive switching frequency	kHz	2 or 4	12	2 or 4	12
Length I of Shielded wires	m	≤ 40	≤ 20	≤ 100	≤ 50
motor cable Unshielded wires	m	≤ 80	≤ 40	≤ 200	≤ 100

References

LR filter cells				
For speed drives	Losses	Nomina current	Reference	Weight kg
ATV-58•U18M2, ©U29M2,	150 W	10 A	VW3-A58451	7.400
ATV-58•U18N4, •U29N4, •U41N4, •U54N4, ATV-58•U72N4				
ATV-58•U41M2, ©U54M2,	180 W	16 A	VW3-A58452	7.400
ATV-58•U90N4				
ATV-58•D12M2, ©U72M2, ©U90M2,				
ATV-58•D23N4, ๑D12N4, ๑D16N4	220 W	33 A	VW3-A58453	12.500

Line choke $(3)+$ capacitor combinations			
For speed drives	Description	Reference	Weight

ATV-58HD16M2X	Motor line chokes	VW3-A66505	11.000
	Capacitors (4)	VW3-A66421	0.250
ATV-58HD23M2X, HD28M2X, HD33M2X, ATV-58•D28N4, •D33N4, •D46N4, ATV-58HD28N4X, HD33N4X, HD46N4X	Motor line chokes	VW3-A66506	16.000
	Capacitors (4)	VW3-A66421	0.250
ATV-58HD46M2X, ©D54N4, ๑D64N4, ๑D79N4,	Motor line chokes	VW3-A66507	45.000

ATV-58HD54N4X, HD64N4X, HD79N4X Capacitors (4) VW3-A66421 0.250

LC filter cell in high torque applications

ATV-58•D28N4, ๑D33N4, ๑D46N4,	LC filter cell	$\underline{\text { VW3-A66412 }}$
ATV-58HD28N4X, HD33N4X, HD46N4X,		
ATV-58HD16M2X, HD23M2X		
ATV-58•D54N4, •D64N4, •D79N4,	LC filter cell	$\underline{\text { VW3-A66413 }}$
ATV-58HD54N4X, HD64N4X, HD79N4X,		
ATV-58HD28M2X, HD33M2X		

LC filter cell in standard torque applications

ATV-58•D28N4, ๑D33N4, HD28N4X, HD33N4X	LC filter cell	VW3-A66412	35.000
ATV-58•D46N4, ๑D54N4, ๑D64N4,	LC filter cell	VW3-A66413	40.000
ATV-58HD46N4X, HD54N4X, HD64N4X, ATV-58HD16M2X, HD23M2X			

Motor line chokes (5)

ATV-58HD16M2X	Motor line choke	VW3-A66505	11.000
ATV-58HD23M2X, HD28M2X, HD33M2X,	Motor line choke	VW3-A66506	16.000
ATV-58•D23N4, ๑D28N4, ๑D33N4, ๑D46N4			
ATV-58HD28N4X, HD33N4X, HD46N4X			
ATV-58HD46M2X, ๑D54N4, ©D64N4, ๑D79N4	Motor line choke	VW3-A66507	45.000

(1) To ensure the filters perform at optimum level, observe the cable length between the motor and the speed drive given in the table above. For an application using several motors connected in parallel, the cable length must be the total length including all tap-offs. There is a risk of the filters overheating if a cable longer than the recommended length is used.
(2) For frequencies above 4 kHz or cables longer than 100 metres, consult your Regional Sales Office.
(3) It is not advisable to connect option VW3-A66421 to the speed drive terminals without line chokes, as this could cause the speed drive to fail.
(4) Connection to the S1, S2, S3 terminals of the selected line choke using wires of $1.5 \mathrm{~mm}^{2}$ cross-section.
(5) Degree of protection IP 20.

Variable speed drives for asynchronous motors

Altivar 58
with heatsink

Compatibility with integrated EMC filters (see page 2/132)

Supply Supply voltage $50 / 60 \mathrm{~Hz}$	Motor		ATV-58 drives for applications		Options					
	Power indicated on rating plate		with standard torque (120 \% Tn)	with high torque ($170 \% \mathrm{Tn}$)	Line chokes	1 extension or communication card See p. 2/141 See p. 2/143	Remote operator terminal See p. 2/138	PowerSuite advanced dialogue solutions		
			Software workshop					Magelis		
	$\overline{\mathrm{kW}}$	HP			See p. 2/149			See p. 3/2		
$200 . . .240 \mathrm{~V}$ single-phase	0.37	0.5		-	ATV-58HU09M2	VZ1-L004M010 VW3-A5800॰		VW3-A58103	VW3-A81•吅	XBT-HM017010A8
	0.75	1	-	ATV-58HU18M2	VZ1-L007UM50 VW3-A58•0.		VW3-A58103	VW3-A81•0	ХВT-HM017010A8	
	1.5	2	-	ATV-58HU29M2	VZ1-L018UM20 VW3-A5800.		VW3-A58103	VW3-A81•0	XBT-HM017010A8	
	2.2	3	-	ATV-58HU41M2	VZ1-L018UM20 WW3-A5800.		VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8	
	3	-	-	ATV-58HU72M2	VW3-A58501	VW3-A58•00	VW3-A58103	VW3-A81•0	XBT-HM017010A8	
	4	5	-	ATV-58HU90M2	VW3-A58502	VW3-A5800.	VW3-A58103	VW3-A81・セ	ХВТ-HM017010A8	
	5.5	7,5	-	ATV-58HD12M2	VW3-A58502	VW3-A58•0.	VW3-A58103	VW3-A81 ${ }^{\circ}$	ХВT-HM017010A8	
$\begin{aligned} & 200 \ldots . .240 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	1.5	2	-	ATV-58HU29M2	VW3-A66502	VW3-A58•0.	VW3-A58103	VW3-A81•0	XBT-HM017010A8	
	2.2	3	-	ATV-58HU41M2	VW3-A66503	VW3-A58•00	VW3-A58103	VW3-A81	XBT-HM017010A8	
	3	-	-	ATV-58HU54M2	VW3-A66503	VW3-A58•0.	VW3-A58103	VW3-A81•0	XBT-HM017010A8	
	4	5	-	ATV-58HU72M2	VW3-A66504	VW3-A58000	VW3-A58103	VW3-A81•0	XBT-HM017010A8	
	5.5	7.5	-	ATV-58HU90M2	VW3-A66504	VW3-A58•0.	VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8	
	7.5	10	-	ATV-58HD12M2	VW3-A66504	VW3-A58••๐	VW3-A58103	VW3-A81 ${ }^{\bullet}$	ХВT-HM017010A8	
$\begin{aligned} & 380 \ldots 500 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	0.75	1	-	ATV-58HU18N4	VW3-A66501	VW3-A58•0.	VW3-A58103	VW3-A81•๑	XBT-HM017010A8	
	1.5	2	-	ATV-58HU29N4	VW3-A66501	VW3-A58•0.	VW3-A58103	VW3-A81•0	XBT-HM017010A8	
	2.2	3	-	ATV-58HU41N4	VW3-A66502	VW3-A58000	VW3-A58103	VW3-A81•0	XBT-HM017010A8	
	3	-	-	ATV-58HU54N4	VW3-A66502	VW3-A58•00	VW3-A58103	VW3-A81	XBT-HM017010A8	
	4	5	-	ATV-58HU72N4	VW3-A66502	VW3-A58•0.	VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8	
	5.5	7.5	-	ATV-58HU90N4	VW3-A66503	VW3-A58•00	VW3-A58103	VW3-A81•0	ХВT-HM017010A8	
	7.5	10	-	ATV-58HD12N4	VW3-A66503	VW3-A58•00	VW3-A58103	VW3-A81 $\bullet \bullet$	XBT-HM017010A8	
	11	15	-	ATV-58HD16N4	VW3-A66504	VW3-A58•0.	VW3-A58103	VW3-A81 ${ }^{\circ}$	ХВТ-НM017010A8	
	15	20	-	ATV-58HD23N4	VW3-A66504	VW3-A58•0.	VW3-A58103	VW3-A81 ${ }^{\circ}$	ХВТ-НM017010A8	
	18.5	25	-	ATV-58HD28N4	Integrated	VW3-A58•00	VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8	
	22	30	-	ATV-58HD33N4	Integrated	VW3-A58000	VW3-A58103	VW3-A81	XBT-HM017010A8	
			ATV-58HD28N4	-	Integrated	VW3-A58•0.	VW3-A58103	VW3-A81	XBT-HM017010A8	
	30	40	-	ATV-58HD46N4	Integrated	VW3-A58•00	VW3-A58103	VW3-A81 ${ }^{\circ}$	ХВТ-НM017010A8	
			ATV-58HD33N4	-	Integrated	VW3-A58•00	VW3-A58103	VW3-A81 00	ХВT-HM017010A8	
	37	50	-	ATV-58HD54N4	Integrated	VW3-A58•0.	VW3-A58103	VW3-A81	XBT-HM017010A8	
			ATV-58HD46N4	-	Integrated	VW3-A58000	VW3-A58103	VW3-A81 ${ }^{\circ}$	ХВТ-НM017010A8	
	45	60	-	ATV-58HD64N4	Integrated	VW3-A58•0.0	VW3-A58103	VW3-A81 ${ }^{\circ}$	ХВT-HM017010A8	
			ATV-58HD54N4	-	Integrated	VW3-A58000	VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8	
	55	75	-	ATV-58HD79N4	Integrated	VW3-A58000	VW3-A58103	VW3-A81	XBT-HM017010A8	
			ATV-58HD64N4	-	Integrated	VW3-A58•0.	VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8	
	75	100	ATV-58HD79N4	-	Integrated	VW3-A58•0.	VW3-A58103	VW3-A81 ${ }^{\circ}$	ХВТ-НM017010A8	

RS 485 interconnection See p. 2/139	Additional input filter See p. 2/151	Output filter See p. 2/153	Braking module	IP 00 braking resistor See p. 2/146	IP 30 braking resistor See p. 2/147	Kit for mounting IP 23 air exchanger See p. 2/135	Control card fan kit See p. 2/136	Separate control circuit supply kit See p. 2/136	Plug-in power terminal block See p. 2/137
VW3-A58306	VW3-A58401	-	VW3-A58701	VW3-A58702	VW3-A58732	-	VW3-A58821	-	VW3-A58811
VW3-A58306	VW3-A58401	VW3-A58451	VW3-A58701	VW3-A58702	VW3-A58732	-	VW3-A58821	-	VW3-A58811
VW3-A58306	VW3-A58402	VW3-A58451	Integrated	VW3-A58702	VW3-A58732	-	VW3-A58822	-	VW3-A58812
VW3-A58306	VW3-A58402	VW3-A58452	Integrated	VW3-A58704	VW3-A58733	-	VW3-A58822	-	VW3-A58812
VW3-A58306	VW3-A58403	VW3-A58453	Integrated	-	VW3-A58736	-	VW3-A58823	-	VW3-A58813
VW3-A58306	VW3-A58404	VW3-A58453	Integrated	-	VW3-A58737	-	VW3-A58824	-	-
VW3-A58306	VW3-A58404	VW3-A58453	Integrated	-	VW3-A58737	-	VW3-A58824	-	-
VW3-A58306	VW3-A58402	VW3-A58451	Integrated	VW3-A58702	VW3-A58732	-	VW3-A58822	-	VW3-A58812
VW3-A58306	VW3-A58402	VW3-A58452	Integrated	VW3-A58704	VW3-A58733	-	VW3-A58822	-	VW3-A58812
VW3-A58306	VW3-A58403	VW3-A58452	Integrated	VW3-A58704	VW3-A58733	-	VW3-A58823	-	VW3-A58813
VW3-A58306	VW3-A58403	VW3-A58453	Integrated	-	VW3-A58736	-	VW3-A58823	-	VW3-A58813
VW3-A58306	VW3-A58404	VW3-A58453	Integrated	-	VW3-A58737	-	VW3-A58824	-	-
VW3-A58306	VW3-A58404	VW3-A58453	Integrated	-	VW3-A58737	-	VW3-A58824	-	-
VW3-A58306	VW3-A58402	VW3-A58451	Integrated	VW3-A58702	VW3-A58732	-	VW3-A58822	VW3-A58602	VW3-A58812
VW3-A58306	VW3-A58402	VW3-A58451	Integrated	VW3-A58702	VW3-A58732	-	VW3-A58822	VW3-A58602	VW3-A58812
VW3-A58306	VW3-A58402	VW3-A58451	Integrated	VW3-A58702	VW3-A58732	-	VW3-A58822	VW3-A58602	VW3-A58812
VW3-A58306	VW3-A58403	VW3-A58451	Integrated	VW3-A58703	VW3-A58734	-	VW3-A58823	VW3-A58603	VW3-A58813
VW3-A58306	VW3-A58403	VW3-A58451	Integrated	VW3-A58703	VW3-A58734	-	VW3-A58823	VW3-A58603	VW3-A58813
VW3-A58306	VW3-A58403	VW3-A58452	Integrated	-	VW3-A58735	-	VW3-A58823	VW3-A58603	VW3-A58813
VW3-A58306	VW3-A58404	VW3-A58453	Integrated	-	VW3-A58735	-	VW3-A58824	VW3-A58604	-
VW3-A58306	VW3-A58404	VW3-A58453	Integrated	-	VW3-A58736	-	VW3-A58824	VW3-A58604	-
VW3-A58306	VW3-A58405	VW3-A58453	Integrated	-	VW3-A58736	-	VW3-A58824	VW3-A58604	-
VW3-A58306	VW3-A58406	VW3-A66412	Integrated	-	VW3-A58737	VW3-A58806	VW3-A58825	-	-
VW3-A58306	VW3-A58407	VW3-A66412	Integrated	-	VW3-A58737	VW3-A58806	VW3-A58825	-	-
VW3-A58306	VW3-A58406	VW3-A66412	Integrated	-	VW3-A58737	VW3-A58806	VW3-A58825	-	-
VW3-A58306	VW3-A58407	VW3-A66412	Integrated	-	VW3-A58737	VW3-A58806	VW3-A58825	-	-
VW3-A58306	VW3-A58407	VW3-A66412	Integrated	-	VW3-A58737	VW3-A58806	VW3-A58825	-	-
VW3-A58306	VW3-A58408	VW3-A66413	Integrated	-	VW3-A66704	VW3-A58807	VW3-A58826	-	-
VW3-A58306	VW3-A58407	VW3-A66413	Integrated	-	VW3-A58737	VW3-A58806	VW3-A58825	-	-
VW3-A58306	VW3-A58408	VW3-A66413	Integrated	-	VW3-A66704	VW3-A58807	VW3-A58826	-	-
VW3-A58306	VW3-A58408	VW3-A66413	Integrated	-	VW3-A66704	VW3-A58807	VW3-A58826	-	-
VW3-A58306	VW3-A58408	VW3-A66413	Integrated	-	VW3-A66704	VW3-A58807	VW3-A58826	-	-
VW3-A58306	VW3-A58408	VW3-A66413	Integrated	-	VW3-A66704	VW3-A58807	VW3-A58826	-	-
VW3-A58306	VW3-A58408	VW3-A66413	Integrated	-	VW3-A66704	VW3-A58807	VW3-A58826	-	-

Combinations for customer assembly
(continued)

Variable speed drives for asynchronous motors

Altivar 58
with heatsink

Compatibility without integrated EMC filters (see page 2/133)

Supply Supply voltage $50 / 60 \mathrm{~Hz}$	Motor Power indicated on rating plate		ATV-58 drives for applications		Options			
			with standard torque (120 \% Tn)	with high torque (170 \% Tn)	Line choke	1 extension or communication card	Remote operator terminal	PowerSuite advanced dialogue solutions Software workshop
	kW	HP			See p. 2/149	See p. 2/143	See p. 2/138	See p. 3/2
$\begin{aligned} & \text { 208... } 240 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	11	15	-	ATV-58HD16M2X	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
	15	20	-	ATV-58HD23M2X	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
			ATV-58HD16M2X	-	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
	18.5	25	-	ATV-58HD28M2X	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•e
			ATV-58HD23M2X	-	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•0
	22	30	-	ATV-58HD33M2X	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
			ATV-58HD28M2X	-	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•e
	30	40	-	ATV-58HD46M2X	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•e
			ATV-58HD33M2X	-	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•0
	37	50	ATV-58HD46M2X	-	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•e
$\begin{aligned} & 380 \ldots 500 \mathrm{~V} \\ & 3 \text {-phase } \end{aligned}$	18.5	25	-	ATV-58HD28N4X	Integrated	VW3-A58•eセ	VW3-A58103	VW3-A810e
	22	30	-	ATV-58HD33N4X	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•e
			ATV-58HD28N4X	-	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•0
	30	40	-	ATV-58HD46N4X	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
			ATV-58HD33N4X	-	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
	37	50	-	ATV-58HD54N4X	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
			ATV-58HD46N4X	-	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•e
	45	60	-	ATV-58HD64N4X	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•0
			ATV-58HD54N4X	-	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•0
	55	75	-	ATV-58HD79N4X	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
			ATV-58HD64N4X	-	Integrated	VW3-A58•e७	VW3-A58103	VW3-A81•0
	75	100	ATV-58HD79N4X	-	Integrated	VW3-A58•e๑	VW3-A58103	VW3-A81•e

PowerSuite advanced dialogue solutions Magelis display See p. 3/2	RS 485 interconnection See p. 2/139	Additional input filter See p. 2/151	Output filter See p. 2/153	Braking module	IP 30 braking resistor See p. 2/147	Kit for mounting IP 23 air exchanger See p. 2/135	Control card fan kit See p. 2/136
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66412	Integrated	VW3-A66704	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66412	Integrated	VW3-A66704	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66413	Integrated	VW3-A66704	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58408	VW3-A66413	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66413	Integrated	VW3-A66704	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58408	VW3-A66413	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	-	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	-	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	-	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	-	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58406	VW3-A66412	Integrated	VW3-A58737	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66412	Integrated	VW3-A58737	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58406	VW3-A66412	Integrated	VW3-A58737	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66412	Integrated	VW3-A58737	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66412	Integrated	VW3-A58737	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58408	VW3-A66413	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58407	VW3-A66413	Integrated	VW3-A58737	VW3-A58806	VW3-A58825
XBT-HM017010A8	VW3-A58306	VW3-A58408	VW3-A66413	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	VW3-A66413	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	VW3-A66413	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	VW3-A66413	Integrated	VW3-A66704	VW3-A58807	VW3-A58826
XBT-HM017010A8	VW3-A58306	VW3-A58408	-	Integrated	VW3-A66704	VW3-A58807	VW3-A58826

Combinations for customer assembly

Variable speed drives for asynchronous motors

Altivar 58
on baseplate

Compatibility with integrated EMC filters (see page 2/134)

Supply Supply voltage $50 / 60 \mathrm{~Hz}$	Motor Power indicated on rating plate		ATV-58 drive for applications		Options				
			with standard torque (120 \% Tn)	with high torque (170 \% Tn)	Line choke See p. 2/149	1 extension or communication card See p. 2/141 See p. 2/143	Remote operator terminalSee p. 2/138	PowerSuite advanced dialogue solutions Software workshop Magelis display and Pocket PC See p. 3/2	
	kW	HP							
$200 . . .240 \text { V }$single-phase	0.37	0.5	-	ATV-58PU09M2	VZ1-L004M010	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	0.75	1	-	ATV-58PU18M2	VZ1-L007UM50	VW3-A58•e७	VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8
	1.5	2	-	ATV-58PU29M2	VZ1-L018UM20	VW3-A58•0e	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	2.2	3	-	ATV-58PU41M2	VZ1-L018UM20	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	3	-	-	ATV-58PU72M2	VW3-A58501	VW3-A58•eゃ	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	4	5	-	ATV-58PU90M2	VW3-A58502	VW3-A58•0๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	5.5	7.5	-	ATV-58PD12M2	VW3-A58502	VW3-A58•00	VW3-A58103	VW3-A81•0	XBT-HM017010A8
$\begin{aligned} & 200 \ldots 240 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	1.5	2	-	ATV-58PU29M2	VW3-A66502	VW3-A58•0๒	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	2.2	3	-	ATV-58PU41M2	VW3-A66503	VW3-A58•0๒	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	3	-	-	ATV-58PU54M2	VW3-A66503	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	4	5	-	ATV-58PU72M2	VW3-A66504	VW3-A58•00	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	5.5	7.5	-	ATV-58PU90M2	VW3-A66504	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	7.5	10	-	ATV-58PD12M2	VW3-A66504	VW3-A58•eゃ	VW3-A58103	VW3-A81 \bullet	XBT-HM017010A8
$\begin{aligned} & 380 \ldots 500 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	0.75	1	-	ATV-58PU18N4	VW3-A66501	VW3-A58•00	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	1.5	2	-	ATV-58PU29N4	VW3-A66501	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	2.2	3	-	ATV-58PU41N4	VW3-A66502	VW3-A58•00	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	3	-	-	ATV-58PU54N4	VW3-A66502	VW3-A58•0७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	4	5	-	ATV-58PU72N4	VW3-A66502	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	5.5	7.5	-	ATV-58PU90N4	VW3-A66503	VW3-A58•0७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	7.5	10	-	ATV-58PD12N4	VW3-A66503	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	11	15	-	ATV-58PD16N4	VW3-A66504	VW3-A58•e७	VW3-A58103	VW3-A81 ${ }^{\circ}$	XBT-HM017010A8
	15	20	-	ATV-58PD23N4	VW3-A66504	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline RS 485 interconnection
See p. 2/139 \& Additional input filter
\qquad \& Output
filter

See p. 2/153 \& Braking
module \& IP 00 braking resistor
See p. 2/146 \& IP 30 braking resistor
See p. 2/147 \& Kit for mounting in IP 54 enclosure See p. 2/135 \& Control card fan kit

See p. 2/136 \& | Separate control circuit supply kit |
| :--- |
| See p. 2/136 | \& Plug-in power terminal block

See p. 2/137

\hline VW3-A58306 \& VW3-A58401 \& - \& VW3-A58701 \& VW3-A58702 \& VW3-A58732 \& - \& VW3-A58821 \& - \& VW3-A58811

\hline VW3-A58306 \& VW3-A58401 \& VW3-A58451 \& VW3-A58701 \& VW3-A58702 \& VW3-A58732 \& - \& VW3-A58821 \& - \& VW3-A58811

\hline VW3-A58306 \& VW3-A58402 \& VW3-A58451 \& Integrated \& VW3-A58702 \& VW3-A58732 \& VW3-A58802 \& VW3-A58822 \& - \& VW3-A58812

\hline VW3-A58306 \& VW3-A58402 \& VW3-A58452 \& Integrated \& VW3-A58704 \& VW3-A58733 \& VW3-A58802 \& VW3-A58822 \& - \& VW3-A58812

\hline VW3-A58306 \& VW3-A58403 \& VW3-A58453 \& Integrated \& - \& VW3-A58736 \& VW3-A58803 \& VW3-A58823 \& - \& VW3-A58813

\hline VW3-A58306 \& VW3-A58404 \& VW3-A58453 \& Integrated \& - \& VW3-A58737 \& VW3-A58804 \& VW3-A58824 \& - \& -

\hline VW3-A58306 \& VW3-A58404 \& VW3-A58453 \& Integrated \& - \& VW3-A58737 \& VW3-A58804 \& VW3-A58824 \& - \& -

\hline VW3-A58306 \& VW3-A58402 \& VW3-A58451 \& Integrated \& VW3-A58702 \& VW3-A58732 \& VW3-A58802 \& VW3-A58822 \& - \& VW3-A58812

\hline VW3-A58306 \& VW3-A58402 \& VW3-A58452 \& Integrated \& VW3-A58704 \& VW3-A58733 \& VW3-A58802 \& VW3-A58822 \& - \& VW3-A58812

\hline VW3-A58306 \& VW3-A58403 \& VW3-A58452 \& Integrated \& VW3-A58704 \& VW3-A58733 \& VW3-A58803 \& VW3-A58823 \& - \& VW3-A58813

\hline VW3-A58306 \& VW3-A58403 \& VW3-A58453 \& Integrated \& - \& VW3-A58736 \& VW3-A58803 \& VW3-A58823 \& - \& VW3-A58813

\hline VW3-A58306 \& VW3-A58404 \& VW3-A58453 \& Integrated \& - \& VW3-A58737 \& VW3-A58804 \& VW3-A58824 \& - \& -

\hline VW3-A58306 \& VW3-A58404 \& VW3-A58453 \& Integrated \& - \& VW3-A58737 \& VW3-A58804 \& VW3-A58824 \& - \& -

\hline VW3-A58306 \& VW3-A58402 \& VW3-A58451 \& Integrated \& VW3-A58702 \& VW3-A58732 \& VW3-A58802 \& VW3-A58822 \& VW3-A58602 \& VW3-A58812

\hline VW3-A58306 \& VW3-A58402 \& VW3-A58451 \& Integrated \& VW3-A58702 \& VW3-A58732 \& VW3-A58802 \& VW3-A58822 \& VW3-A58602 \& VW3-A58812

\hline VW3-A58306 \& VW3-A58402 \& VW3-A58451 \& Integrated \& VW3-A58702 \& VW3-A58732 \& VW3-A58802 \& VW3-A58822 \& VW3-A58602 \& VW3-A58812

\hline VW3-A58306 \& VW3-A58403 \& VW3-A58451 \& Integrated \& VW3-A58703 \& VW3-A58734 \& VW3-A58803 \& VW3-A58823 \& VW3-A58603 \& VW3-A58813

\hline VW3-A58306 \& VW3-A58403 \& VW3-A58451 \& Integrated \& VW3-A58703 \& VW3-A58734 \& VW3-A58803 \& VW3-A58823 \& VW3-A58603 \& VW3-A58813

\hline VW3-A58306 \& VW3-A58403 \& VW3-A58452 \& Integrated \& - \& VW3-A58735 \& VW3-A58803 \& VW3-A58823 \& VW3-A58603 \& VW3-A58813

\hline VW3-A58306 \& VW3-A58404 \& VW3-A58453 \& Integrated \& - \& VW3-A58735 \& VW3-A58804 \& VW3-A58824 \& VW3-A58604 \& -

\hline VW3-A58306 \& VW3-A58404 \& VW3-A58453 \& Integrated \& - \& VW3-A58736 \& VW3-A58804 \& VW3-A58824 \& VW3-A58604 \& -

\hline VW3-A58306 \& VW3-A58405 \& VW3-A58453 \& Integrated \& - \& VW3-A58736 \& VW3-A58805 \& VW3-A58824 \& VW3-A58604 \& -

\hline
\end{tabular}

Variable speed drives for asynchronous motors

Altivar 58

ATV-58Heee日 (with heatsink)

ATV-58H	a	b	c	G	H
U09M2, U18M2	113	206	167	96	190
U29M2, U41M2, U18N4, U29N4, U41N4	150	230	184	133	210
U54M2, U72M2, U54N4, U72N44, U90N4	175	286	184	155	270
U90M2, D12M2, D12N4, D16N4	230	325	210	200	310
D23N4	230	415	210	200	4.5
D16M2X, D23M2X, D28N4, D33N4, D46N4	240	550	283	205	530
D28N4X, D33N4X, D46N4X	240	550	283	205	530
D28M2X, D33M2X, D46M2X, D54N4, D64N4, D79N4	350	650	304	300	6
D54N4X, D64N4X, D79N4X	350	650	304	30	6

ATV-58Peee๑ (on baseplate)

ATV-58P	a	b	C	G	H	\varnothing
U09M2, U18M2	113	206	132	96	190	5
U29M2, U41M2, U18N4, U29N4, U41N4	150	230	145	133	210	5
U54M2, U72M2, U54N4, U72N4, U90N4	175	286	151	155	270	5.5
U90M2, D12M2, D12N4, D16N4	230	325	159	200	310	5.5
D23N4	230	415	159	200	400	5.5

Variable speed drives for asynchronous motors
Altivar 58

Protected braking resistors VW3-A58732 to A58734

VW3-A58735 to A58737

VW3-	a	b	c	H
A58735	163	340	61	320
A58736, A58737	156	434	167	415

VW3-A66704

Unprotected braking resistors

VW3-A58703

2-wire output, length 0.5 m

36

VW3-A58702 and A58704
2-wire output, length 0.5 m

Braking module VW3-A58701
(mounted on AM1-ED mounting rail)

Kit for mounting in dust and damp proof enclosure VW3-A58802 to A58805

VW3-	a	b	c
A58802	150	226	80
A58803	175	450	80
A58804	225	381	63
A58805	225	460	63

(1) Metal plate of enclosure
(2) VW3-A58802 to VW3-A58805
(3) Drive

Kit for mounting air exchanger
VW3-A58806 and A58807
Example of connecting upper bellows on a side panel

VW3-
A58806
b
A58807 240
(1) VW3-A58806 and VW3-A58807
(2) Drive
(3) 300 mm minimum

Separate control circuit supply kit
VW3-A58602 to A58604

VW3-	$\Delta \mathrm{b}$
A58602	25
A58603	25
A58604	25
(1) VW3-A58602 to A58604	
(2) Drive	

VW3-	bb
A58811	52
A58812	54
A58813	54
(1) VW3-A58811 to VW3-A58813	
(2) Drive	

Variable speed drives for asynchronous motors

Altivar 58

3-phase chokes
VW3-A66501 to A66507

VW3-	a	b	c	c1	G	G1	H	\varnothing
A66501	$\mathbf{1 0 0}$	$\mathbf{1 3 5}$	55	60	40	60	42	6×9
A66502	130	155	85	90	60	80.5	62	6×12
A66503	130	155	85	90	60	80.5	62	6×12
A66504	155	170	115	135	75	107	90	6×12
A66505	180	210	125	165	85	122	105	6×12
A66506	275	210	130	160	105	181	100	11×22
A66507	$\mathbf{3 2 0}$	$\mathbf{2 9 0}$	172	215	190	230	142	-

Radio interference suppression filters (EMC)
VW3-A58401 to A58408

VW3-	a	b	c	G	H	\varnothing
A58401	$\mathbf{1 1 3}$	$\mathbf{2 4 6}$	$\mathbf{3 6}$	94.5	230	5
A58402	150	$\mathbf{2 7 6}$	50	133	260	5
A58403	175	340	60	153	320	6
A58404	230	390	60	200	370	6
A58405	$\mathbf{2 3 0}$	480	60	200	460	6
A58406, $\mathbf{A 5 8 4 0 7}$	$\mathbf{2 4 0}$	690	85	205	650	7
A58408	$\mathbf{3 5 0}$	$\mathbf{7 7 0}$	$\mathbf{9 0}$	300	770	9

	a	b	c	G	H	\varnothing
VZ1-L004M010	60	100	80	50	44	4×9
VZ1-L007UM50	60	100	95	50	60	4×9
VZ1-L018UM20	85	120	105	70	70	5×11
VW3-A58501	128	150	95	70	65	5×11
VW3-A58502	128	150	105	70	77	6×12

Output filters
VW3-A58451 to A58453
1)

Plate for EMC mounting (supplied with the drive)

Mounting on ATV-58•	$\Delta \mathrm{b}$	$\varnothing(3)$
U09M2, U18M2	63	M
U29M2, U41M2, U18N4, U29N4, U41N4	64.5	M 4
U54M2, U72M2, U54N4, U72N4, U90N4	64.5	M 4
U90M2, D12M2, D12N4, D16N4	62	M 4
D23N4	62	M 4
D16M2X, D23M2X, D28N4, D33N4, D46N4	80	M 5
D28M2X, D33M2X, D46M2		

D28M2X, D33M2X, D46M2X, D54N4, D64N4, D79N4
(1) Drive
(2) Plate
(3) Tapped holes for fixing EMC clamps
Presentation: Characteristics:
pages 2/148 to 2/153 pages 2/148 to 2/153 pages 2/149 to 2/153

Variable speed drives for asynchronous motors

Altivar 58

Schemes without contactor, recommended for machines which are not dangerous

(1) Optional line choke
(2) Fault relay contacts; for remote signalling of drive status.
(3) Internal +24 V . If an external +24 V supply is used, connect the 0 V on the external supply to the COM terminal, do not use the +24 of the drive, and connect
the common of the LI inputs to the +24 V of the external supply.
(4) R2 relay can be reassigned.
(5) X and Y can be configured between 0 and 20 mA independently for Al 2 and AO 1.
(6) VW3-A58701 braking module, if a braking resistor is used, for ratings ATV-58•U09M2 and \bullet U18M2 only.

Note:

- all the terminals are located at the bottom of the drive,
- fit suppressors to all the specific circuits close to the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Compatible components (for complete references, consult our catalogue "Motor starter solutions")
Code Description

Q1 GV2-L or Compact NS (see following pages)

Presentation:	Characteristics:	References:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 132$ to $2 / 134$	pages $2 / 190$ to $2 / 205$
$2 / 164$		(年 Telemecanique	

Schemes, compatibility (continued)

Variable speed drives for asynchronous motors

Altivar 58

Schemes with line contactor, recommended for dangerous machines which are switched on or off infrequently

3-phase supply

A1
(1)

(5)

Single phase supply

-KM 1
(1)
(1)

A1
(1)

+

(1) Optional line choke.
(2) Fault relay contacts; for remote signalling of drive status
(3) Internal +24 V . If an external +24 V supply is used, connect the 0 V on the external supply to the COM terminal, do not use the +24 of the drive, and connect the common of the LI inputs to the +24 V of the external supply. (4) R2 relay can be reassigned.
(5) X and Y can be configured between 0 and 20 mA independently for Al 2 and

AO1.
(6) VW3-A58701 braking module, if a braking resistor is used, for ratings ATV-58•U09M2 and \bullet U18M2 only.

Note:

- all the terminals are located at the bottom of the drive,
fit suppressors to all the specific circuits close to the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.
Compatible components (for complete references, consult our catalogue "Motor starter solutions")

Code	Description
Q1	GV2-L or Compact NS (see following pages)
KM1	LC1-Dee + LA4-DA2U (see following pages)
S1, S2	XB2-B or XA2-B pushbuttons
T1	100 VA transformer 220 V secondary
Q2	GV2-L rated at twice the nominal primary current of T1
Q3	GB2-CB05

Presentation:	Characteristics:	References:	Functions:
pages $2 / 122$ to $2 / 126$	pages 2/127 to 2/129	pages $2 / 132$ to 2/134	pages $2 / 190$ to 2/205

Schemes, compatibility (continued)
Drives ATV-58 oU09M2 to oD12M2 and oU18N4 to oD23N4

Variable speed drives for asynchronous motors

Altivar 58

Schemes with downstream contactor, recommended for dangerous machines which are switched on and off frequently

Note:

- all the terminals are located at the bottom of the drive,
- fit suppressors to all the specific circuits close to the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Compatible components (for complete references, consult our catalogue "Motor starter solutions")

Code	Description
Q1	GV2-L or Compact NS (see following pages)
KM2	LP4-e0e (see following pages)

KM2 LP4-0000 (see following pages)

Presentation:	Characteristics:	References:	
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 132$ to $2 / 134$	pages $2 / 190$ to $2 / 205$

Schemes,

compatibility (continued)
Drives ATV-58HD16M2X to HD46M2X and HD28N4 to HD79N4

Variable speed drives for asynchronous motors

Altivar 58

Schemes with downstream contactor, recommended for dangerous machines which are switched on and off frequently
3-phase supply

(1) Fault relay contacts; for remote signalling of drive status.
(2) Internal +24 V . If an external +24 V supply is used, connect the 0 V on the external supply to the COM terminal, do not use the +24 of the drive, and connect the common of the LI inputs to the +24 V of the external supply.
(3) Use the "downstream contactor control" function with relay R2 (or the logic output LO of one of the "I/O extension" cards, by relaying).
(4) X and Y can be configured between 0 and 20 mA independently for Al 2 and AO 1 .

Note:

- all the terminals are located at the bottom of the drive,
- fit suppressors to all the specific circuits close to the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Compatible components (for complete references, consult our catalogue "Motor starter solutions")

Code	Description
Q1	GV2-L or Compact NS (see following pages)
KM2	LC1-Deee with interference suppressor (see following pages)
T1	100 VA transformer 220 V secondary
Q2	GV2-L rated at twice the nominal primary current of T1
Q3	GB2-CB05

Presentation: pages $2 / 122$ to $2 / 126$	Characteristics: pages 2/127 to 2/129	References: pages $2 / 132$ to 2/134	Functions: pages $2 / 190$ to 2/205
		(菓 Telemecanique	

Variable speed drives for asynchronous motors
Altivar 58

24 V external supply for supplying logic inputs and/or the logic output

2-wire control and step by step (JOG) operation

Separate control circuit supply kit
VW3-A58602...A58604

Note: the drive control is supplied in the following cases:

- power on,
- separate control circuit supply on,
- power and separate control circuit supply on.

Presentation:	Characteristics:	References:	Functions:
page 2/140	page 2/140	page 2/141	pages $2 / 190$ to 2/205
$2 / 168$		(隼 Telemecanique	

Variable speed drives for asynchronous motors

Altivar 58

I/O extension card with analogue input

I/O extension card with inputs for encoder

Examples of use with I/O extension cards
VW3-A5820•
Bipolar speed reference

Bipolar speed reference on external $\pm 10 \mathrm{~V}$ supply

Speed regulation with tachometer feedback

(1) See page $2 / 144$ the section on functions to determine the resistances

VW3-A58202 I/O extension card with inputs for encoder used with 3-wire inductive or photoelectric proximity sensor
Speed regulation with reduced precision at low speed and increased response time
1 direction only

Presentation:	Characteristics: page 2/140	References: page 2/140	Functions: pages $2 / 190$ to 2/205
		菓 Telemecanique	

Variable speed drives for asynchronous motors

Altivar 58

Additional input filters, radio interference suppression filters VW3-A5840•
Single phase supply, single phase filter

3-phase supply

Output filters
VW3-A5845•
LR cell

VW3-A6641•
LC cell

Single phase supply, 3-phase filters

VW3-A6650• + VW3-A66421
Motor line chokes + capacitors

Variable speed drives for asynchronous motors

Altivar 58
Electromagnetic compatibility

Principle

- The earths between the drive, motor and cable shielding must have "high frequency" equipotentiality.
- Use shielded cables with shielding connected to earth at 360° at both ends of the motor cable, braking resistor (if fitted) and control-command cables. Tubes or metal ducting can be used for part of the shielding length provided that there is no break in continuity.
- Ensure maximum separation between the power supply cable (mains supply) and the motor cable.

Installation diagram

1 Metal plate supplied with the drive, to be mounted as shown (machine earth).
2 Altivar 58.
3 Non-shielded power supply wires or cable.
4 Non-shielded wires for fault relay contacts output.
5 Fix and earth the shielding of cables 6,7 and 8 as close as possible to the drive: - strip the shielding,

- use the correct size clamps on the stripped part of the shielding to fix to metal plate 1 ; the shielding must be clamped tightly enough to the metal plate to ensure good contact, - clamp types: stainless steel.

6 Shielded cable for motor connection with shielding connected to earth at both ends. The shielding must be continuous and intermediate terminal blocks must be in EMC shielded metal cases.

7 Shielded cable for connecting the control/command system.
For applications requiring several conductors, use small cross-sections ($0.5 \mathrm{~mm}^{2}$).
The shielding must be connected to earth at both ends. The shielding must be continuous and intermediate terminal blocks must be in EMC shielded metal cases

8 Shielded cable for connecting brake resistor (if fitted). The shielding must be connected to earth at both ends. The shielding must be continuous and intermediate terminal blocks must be in EMC shielded metal cases.

Notes:

1 The HF equipotential earth connection between the drive, motor and cable shielding does not remove the need to connect the PE protective conductors (green-yellow) to the appropriate terminals on each unit.

2 If using an additional input filter, it should be mounted under the drive (drive with heatsink) or to one side (drive on a baseplate), and connected directly to the mains supply via an unshielded cable. Link 3 is via the filter cable.

Variable speed drives for asynchronous motors

Altivar 58

Motor starters

GV2 L
$+$
LC1 D
ATV 58

Applications

Circuit-breaker/contactor/drive combinations can be used to ensure continuous service of the installation with optimum safety.
The type of coordination selected between the circuit-breaker and the contactor can reduce maintenance costs in the event of a short-circuit by minimising the time required to make necessary repairs and the cost of replacement equipment. The combinations suggested provide type 2 coordination.
Type 2 coordination: a short-circuit will not damage the device or affect its settings. The motor starter should be able to operate once the electrical fault has been removed. The electrical isolation provided by the circuit-breaker will not be affected by the short-circuit. The risk of welding of the line contactor contacts is permissible if they can be separated easily.

The downstream contactor is not affected by type 2 coordination.
The drive controls the motor, provides protection against short-circuits between the drive and the motor and protects the motor cable against overloads. The overload protection is provided by the drive's motor thermal protection.
If this protection is removed, external thermal protection should be provided.
Before restarting the installation, the cause of the trip must be removed.

Single phase supply voltage: 200 to $\mathbf{2 4 0} \mathrm{V}$

(for motors 0.37 to 5.5 kW or 0.5 to 7.5 HP)
Motor circuit-breaker: NS80HMA product sold under the Merlin Gerin brand.
Composition of contactors:
LC1 D09 to LC1 D115: 3 poles + 1 "N/O" auxiliary contact and 1 " N / C " auxiliary contact.

Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP (2)	Reference (3)	Rating A	Reference (4)	Reference (5)	Reference (6)
$0.37 / 0.5$	GV2 L10	6.3	LC1 D1800	LC1 D09BL	ATV 58@U09M2
0.75/1	GV2 L14	10	LC1 D1800	LC1 D09BL	ATV 58@U18M2
1.5/2	GV2 L20	18	LC1 D2500	LC1 D09BL	ATV 58@U29M2
2.2/3	GV2 L22	25	LC1 D2500	LC1 D09BL	ATV 58@U41M2
3/-	GV2 L22	25	LC1 D2500	LC1 D09BL	ATV 58@U72M2 (7)
$4 / 5$	NS80HMA50	50	LC1 D4000	LC1 D09BL	ATV 58@U90M2 (7)
5.5/7.5	NS80HMA50	50	LC1 D50ャ॰	LC1 D18BL	ATV 58@D12M2 (7)

3-phase supply voltage: $\mathbf{2 0 0}$ to $\mathbf{2 3 0}$ V

(for motors 1.5 to 7.5 kW or 2 to 10 HP)
Motor circuit-breaker: NS80HMA product sold under the Merlin Gerin brand.
Composition of contactors:
LC1 D09 to LC1 D115: 3 poles + 1 "N/O" auxiliary contact and 1 " N / C " auxiliary contact.

Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP (2)	Reference (3)	Rating A	Reference (4)	Reference (5)	Reference (6)
1.5/2	GV2 L14	10	LC1 D180e	LC1 D09BL	ATV 58@U29M2
2.2/3	GV2 L16	14	LC1 D180e	LC1 D09BL	ATV 58@U41M2
3/-	GV2 L20	18	LC1 D250e	LC1 D09BL	ATV 58@U54M2
$4 / 5$	GV2 L22	25	LC1 D2500	LC1 D09BL	ATV 58@U72M2
5.5/7.5	NS80HMA50	50	LC1 D40*0	LC1 D18BL	ATV 58@U90M2
7.5/10	NS80HMA50	50	LC1 D50ee	LC1 D25BL	ATV 58@D12M2

(1) Standard power ratings for 4-pole motors $50 / 60 \mathrm{~Hz} 230 \mathrm{~V}$.
(2) The HP values given are NEC-compliant (National Electrical Code).
(3) Breaking capacity:

200/240 V	Icu (kA)				
GV2 L	50				
NS80HMA50	100				
(4) Replace 0 with the control circuit voltage reference indicated in the table below.					
a.c. control circuit					
Volts ~	24	48	110	220	240
$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	U7

For other voltages between 24 and 660 V, or d.c. control circuit, please consult your Regional Sales Office.
(5) LC1 D•oBL contactors have 24 V d.c. Iow consumption coils (100 mA). Up to 15 kW , they are powered by the internal drive power supply. For power ratings above this level, use an external supply and complete the contactor coil voltage according to footnote (4).
(6) Replace the \bullet in the reference according to the type of drive required (see pages 2/132 to 2/134).
(7) A line choke must be added.

Variable speed drives for asynchronous motors

Altivar 58
Motor starters

[^22]
3-phase supply voltage: 208 to 240 V

(for motors 11 to 37 kW or 15 to 50 HP)
Motor circuit-breaker: NSeeeeMA product sold under the Merlin Gerin brand.
Composition of contactors:
LC1 D32 to LC1 D115: 3 poles + 1 "N/O" auxiliary contact and 1 "N/C" auxiliary contact.
High torque application

Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP (2)	Reference (3)	Rating A	Reference (4)	Reference (4)	Reference
11/15	NS80HMA50	80	LC1 D40•e	LC1 D3200	ATV 58HD16M2X
15/20	NS100HMA80	80	LC1 D650e	LC1 D40•e	ATV 58HD23M2X
18.5/25	NS100NMA100		LC1 D80¢0	LC1 D50¢0	ATV 58HD28M2X
22/30	NS100NMA100		LC1 D80ee	LC1 D80*e	ATV 58HD33M2X
30/40	NS160NMA150		LC1 D11500	LC1 D80•e	ATV 58HD46M2X
Standard torque application					
Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP (2)	Reference (3)	Rating A	Reference (4)	Reference (4)	Reference
15/20	NS80HMA80	80	LC1 D65ee	LC1 D40•e	ATV 58HD16M2X
18.5/25	NS100NMA100		LC1 D80*e	LC1 D50ャe	ATV 58HD23M2X
22/30	NS100NMA100	100	LC1 D80•e	LC1 D80•e	ATV 58HD28M2X
30/40	NS160NMA150	150	LC1 D11500	LC1 D80•e	ATV 58HD33M2X
37/50	NS160NMA150	150	LC1 D11500	LC1 D115ee	ATV 58HD46M2X

(1) Standard power ratings for 4-pole motors $50 / 60 \mathrm{~Hz} 230 \mathrm{~V}$.
(2) The HP values given are NEC-compliant (National Electrical Code).
(3) Breaking capacity of circuit-breaker according to standard IEC60947-2.
(4) Replace \bullet with the control circuit voltage reference indicated in the table below.
a.c. control circuit

Volts \sim	24	48	110	220	240
	B7	E7	F7	M7	U7

For other voltages between 24 and 660 V, or d.c. control circuit, please consult your Regional Sales Office.

Combinations for customer assembly
(continued)

Variable speed drives for asynchronous motors

Altivar 58
Motor starters

3-phase supply voltage: 380 to 415 V

(for motors 0.75 to 75 kW or 1 to 100 HP)
Motor circuit-breaker: NSeee@MA product sold under the Merlin Gerin brand.
Composition of contactors:
LC1 D09 to LC1 D115: 3 poles + 1 "N/O" auxiliary contact and 1 "N/C" auxiliary contact.
High torque application

Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP (2)	Reference (3)	Rating A	Reference (4)	Reference (4) (5)	Reference (6)
0.75/1	GV2 L08	4	LC1 D180e	LC1 D09BL	ATV 58@U18N4
1.5/2	GV2 L10	6.3	LC1 D1800	LC1 D09BL	ATV 58@U29N4
2.2/3	GV2 L14	10	LC1 D180๑	LC1 D09BL	ATV 58@U41N4
3/-	GV2 L16	14	LC1 D18e๑	LC1 D09BL	ATV 58@U54N4
4/5	GV2 L16	14	LC1 D18e๑	LC1 D09BL	ATV 58@U72N4
5.5/7.5	GV2 L22	25	LC1 D25ee	LC1 D09BL	ATV 58@U90N4
7.5/10	NS80^MA50	50	LC1 D40ee (7)	LC1 D09BL	ATV 58@D12N4
11/15	NS80@MA50	50	LC1 D40ee (7)	LC1 D25BL	ATV 58@D16N4
15/20	NS80@MA50	50	LC1 D50ee (7)	LC1 D25BL	ATV 58eD23N4
18.5/25	NS80^MA50	50	LC1 D40ee	LC1 D25ee	ATV 58HD28N4
22/30	NS800MA80	80	LC1 D6500	LC1 D3200	ATV 58HD33N4
30/40	NS800MA80	80	LC1 D6500	LC1 D500॰	ATV 58HD46N4
37/50	NS1000MA100		LC1 D80®e	LC1 D50ee	ATV 58HD54N4
45/60	NS160@MA150		LC1 D115ee	LC1 D80•e	ATV 58HD64N4
55/75	NS160@MA150		LC1 D1150e	LC1 D80••	ATV 58HD79N4
Standard torque application					
Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP (2)	Reference (3)	Rating A	Reference (4)	Reference (4) (5)	Reference (6)
0.75/1	GV2 L08	4	LC1 D18ee	LC1 D09BL	ATV 58@U18N4
1.5/2	GV2 L10	6.3	LC1 D180e	LC1 D09BL	ATV 58@U29N4
2.2/3	GV2 L14	10	LC1 D18eө	LC1 D09BL	ATV 58@U41N4
3/-	GV2 L16	14	LC1 D180e	LC1 D09BL	ATV 58@U54N4
$4 / 5$	GV2 L16	14	LC1 D1800	LC1 D09BL	ATV 58@U72N4
5.5/7.5	GV2 L22	25	LC1 D25ee	LC1 D09BL	ATV 58@U90N4
7.5/10	NS800MA50	50	LC1 D40ee (7)	LC1 D09BL	ATV 58@D12N4
11/15	NS800MA50	50	LC1 D40ee (7)	LC1 D25BL	ATV 58@D16N4
15/20	NS80@MA50	50	LC1 D50e0 (7)	LC1 D25BL	ATV 58@D23N4
18.5/25	NS80^MA50	50	LC1 D40ee	LC1 D25e•	ATV 58HD28N4
22/30	NS80@MA50	50	LC1 D400e	LC1 D3200	ATV 58HD28N4
30/40	NS80@MA80	80	LC1 D650e	LC1 D40•e	ATV 58HD33N4
37/50	NS80^MA80	80	LC1 D650e	LC1 D50•e	ATV 58HD46N4
45/60	NS100^MA100	100	LC1 D80.e	LC1 D80•e	ATV 58HD54N4
55/75	NS1600MA150		LC1 D1150e	LC1 D80•e	ATV 58HD64N4
75/100	NS160@MA150	150	LC1 D115ee	LC1 D115e॰	ATV 58HD79N4

(1) Standard power ratings for 4-pole motors $50 / 60 \mathrm{~Hz} 400 \mathrm{~V}$.
(2) The HP values given are NEC-compliant (National Electrical Code).
(3) Replace \bullet with N, H or L, according to the breaking capacity, in the table below.

Breaking capacity of circuit-breakers according to standard IEC60947-2

380/415 V	Icu (kA)				
GV2 L	50				
380/415 V	N		H		
NS80^MA50	-		25		
NS80^MA80	-		35		
NS100@MA	25		-		
NS160@MA	35		-		
(4) Replace 0 with the control circuit voltage reference indicated in the table below.					
a.c. control circuit					
Volts ~	24	48	110	220/230	240
$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	U7

For other voltages between 24 and 660 V, or d.c. control circuit, please consult your Regional Sales Office.
(5) LC1 D $\bullet \bullet B L$ contactors have 24 V d.c. Iow consumption coils (100 mA). Up to 15 kW , they are powered by the internal drive power supply. For power ratings above this level, use an external supply and complete the contactor coil voltage according to footnote (4).
(6) Replace the \bullet in the reference according to the type of drive required (see pages $2 / 132$ to 2/134). (7) LC1 D25ゃ0 for ready-assembled ATV 58 drives with a built-in line choke.

Variable speed drives for asynchronous motors

Altivar 58

Motor starters

NS8OHMA
$\stackrel{+}{\text { LC1 D }}$
$\stackrel{+}{A T V} 58$

3-phase supply voltage: $\mathbf{4 4 0}$ to 500 V

(for motors 0.75 to 75 kW or 1 to 100 HP)
Motor circuit-breaker: NSeeeeMA product sold under the Merlin Gerin brand.
Composition of contactors:
LC1 D09 to LC1 D115: 3 poles + 1 "N/O" auxiliary contact and 1 "N/C" auxiliary contact. High torque application

Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP	Reference (3)	Rating A	Reference (4)	Reference (4) (5)	Reference (6)
0.75/1	GV2 L08	4	LC1 D180e	LC1 D09BL	ATV 580U18N4
1.5/2	GV2 L10	6.3	LC1 D18e¢	LC1 D09BL	ATV 580U29N4
2.2/3	GV2 L10	6.3	LC1 D18•e	LC1 D09BL	ATV 580U41N4
3/-	GV2 L14	10	LC1 D18•e	LC1 D09BL	ATV 58@U54N4
$4 / 5$	GV2 L14	10	LC1 D18•e	LC1 D09BL	ATV 580U72N4
5.5/7.5	NS80@MA50	50	LC1 D25ee	LC1 D09BL	ATV 580U90N4
7.5/10	NS80@MA50	50	LC1 D40e0 (6)	LC1 D09BL	ATV 580D12N4
11/15	NS80^MA50	50	LC1 D40ee (6)	LC1 D25BL	ATV 580D16N4
15/20	NS80^MA50	50	LC1 D50ee (6)	LC1 D25BL	ATV 58eD23N4
18.5/25	NS100^MA50	50	LC1 D40•e	LC1 D25ee	ATV 58HD28N4
22/30	NS100•MA50	50	LC1 D65•e	LC1 D32•e	ATV 58HD33N4
30/40	NS100॰MA100	100	LC1 D6500	LC1 D50•e	ATV 58HD46N4
37/50	NS100@MA100	100	LC1 D80¢0	LC1 D50ee	ATV 58HD54N4
45/60	NS160@MA100	100	LC1 D115*0	LC1 D80॰๑	ATV 58HD64N4
55/75	NS160@MA150		LC1 D115*0	LC1 D80^e	ATV 58HD79N4
Standard torque application					
Motor (1)	Circuit-breaker		Line contactor	Downstream contactor	Variable speed drive
Power kW/HP (2)	Reference (3)	Rating A	Reference (4)	Reference (4) (5)	Reference (6)
0.75/1	GV2 L08	4	LC1 D180e	LC1 D09BL	ATV 580U18N4
1.5/2	GV2 L10	6.3	LC1 D25ee	LC1 D09BL	ATV 580U29N4
2.2/3	GV2 L10	6.3	LC1 D25ee	LC1 D09BL	ATV 580U41N4
3/-	GV2 L14	10	LC1 D25ee	LC1 D09BL	ATV 58@U54N4
$4 / 5$	GV2 L14	10	LC1 D25ee	LC1 D09BL	ATV 58@U72N4
5.5/7.5	NS80@MA50	50	LC1 D40ee	LC1 D09BL	ATV 580U90N4
7.5/10	NS80@MA50	50	LC1 D40e9 (7)	LC1 D09BL	ATV 580D12N4
11/15	NS80@MA50	50	LC1 D40ee (7)	LC1 D25BL	ATV 580D16N4
15/20	NS80^MA50	50	LC1 D40ee (7)	LC1 D25BL	ATV 58eD23N4
18.5/25	NS100^MA50	50	LC1 D80•e	LC1 D25ee	ATV 58HD28N4
22/30	NS100^MA50	50	LC1 D80•e	LC1 D32•e	ATV 58HD28N4
30/40	NS100॰MA50	50	LC1 D80•0	LC1 D40ee	ATV 58HD33N4
37/50	NS100MA100	100	LC1 D80•0	LC1 D50ee	ATV 58HD46N4
45/60	NS160@MA100	100	LC1 D80•e	LC1 D80ee	ATV 58HD54N4
55/75	NS160@MA100		LC1 D11500	LC1 D800e	ATV 58HD64N4
75/100	NS160@MA150	150	LC1 D11500	LC1 D115e•	ATV 58HD79N4

(1) Standard power ratings for 4-pole motors $50 / 60 \mathrm{~Hz} 400 \mathrm{~V}$.
(2) The HP values given are NEC-compliant (National Electrical Code).
(3) Replace \bullet with N, H or L, according to the breaking capacity, in the table below.

Breaking capacity of circuit-breakers according to standard IEC60947-2

440/500 V	Icu (kA)
GV2 L08, GV2 L10	50
GV2 L14	10
$440 / 500$ V	L
NS80@MA	25
NS100@MA, NS160@MA	100

(4) Replace \bullet with the control circuit voltage reference indicated in the table below.
a.c. control circuit

Volts ~	24	48	110	$220 / 230$	240
$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	U7

For other voltages between 24 and 660 V, or d.c. control circuit, please consult your Regional
Sales Office.
(5) LC1 DeoBL contactors have 24 V d.c. Iow consumption coils (100 mA). Up to 15 kW , they are powered by the internal drive power supply. For power ratings above this level, use an
external supply and complete the contactor coil voltage according to footnote (4).
(6) Replace the \bullet in the reference according to the type of drive required (see pages 2/132 to 2/134).
(7) LC1 D2500 for ready-assembled ATV 58 drives with a built-in line choke.

Variable speed drives for asynchronous motors

Altivar 58
Mounting options

Depending on the conditions in which the speed drive is to be used, setup will require certain installation precautions as well as the appropriate accessories.

Install the unit vertically at $\pm 10^{\circ}$.

- Do not place it close to heating elements.
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Mounting recommendations

Speed drive with heatsink

ATV-58 speed drives	Temperature		
HU09M2 to HU72M2 and HU18N4 to HU90N4 $\begin{aligned} & e=10 \mathrm{~mm} \\ & \mathrm{~h}=50 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & -10 \ldots+40^{\circ} \mathrm{C} \\ & \mathbf{d} \geq \mathbf{5 0} \mathbf{~ m m} \end{aligned}$ No special precautions $d=0 \mathrm{~mm}$ Remove the protective blanking cover from the top of the speed drive (degree of protection is then IP 20)	$+40 \ldots+50^{\circ} \mathrm{C}$ d $\geq 50 \mathrm{~mm}$ Remove the protective blanking cover from the top of the speed drive (degree of protection is then IP 20) $\mathrm{d}=0 \mathrm{~mm}$ Add control card fan kit VW3-A5882• (see previous pages)	$+50 \ldots+60^{\circ} \mathrm{C}$ $\mathrm{d} \geq \mathbf{5 0} \mathbf{~ m m}$ Add control card fan kit VW3-A5882• (see previous pages) Derate the rated operating current by 2.2% for each ${ }^{\circ} \mathrm{C}$ over $50^{\circ} \mathrm{C}$
HU90M2 to HD12M2 and HD12N4 to HD23N4 $\begin{aligned} & \mathrm{e}=10 \mathrm{~mm} \\ & \mathrm{~h}=50 \mathrm{~mm} \end{aligned}$	$-10 \ldots+40^{\circ} \mathrm{C}$ $d \geq 50 \mathrm{~mm}$ No special precautions $\mathrm{d}=0 \mathrm{~mm}$ Remove the protective blanking cover from the top of the speed drive (degree of protection is then IP 20)	$+40 \ldots+50^{\circ} \mathrm{C}$ $\mathrm{d} \geq 50 \mathrm{~mm}$ Remove the protective blanking cover from the top of the speed drive (degree of protection is then IP 20) Derate the rated operating current by 2.2% for each ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$ $\mathrm{d}=\mathbf{0} \mathrm{mm}$ Add control card fan kit VW3-A5882• (see previous pages) Derate the rated operating current by 2.2% for each ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$	-
HD16M2X to HD46M2X, HD28N4 to HD79N4 and HD28N4X to HD79N4X $\begin{aligned} & e=50 \mathrm{~mm} \\ & \mathrm{~h}=100 \mathrm{~mm} \end{aligned}$	$-10 \ldots+40^{\circ} \mathrm{C}$ $\mathrm{d} \geq 50 \mathrm{~mm}$ No special precautions	$+40 \ldots+60^{\circ} \mathrm{C}$ $d \geq 50 \mathrm{~mm}$ Add control fan card kit VW3 pages) Derate the rated ope for each ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$	-A5882• (see previous rating current by 2.2 \%

Presentation:	Characteristics:	Dimensions, schemes:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 160$ to $2 / 170$	pages $2 / 190$ to $2 / 205$

Variable speed drives for asynchronous motors

Altivar 58

Mounting options

Mounting recommendations (continued)

Speed drive on a baseplate (use the VW3-A5880 kit, see the following pages)

- Mounting in a wall-fixing or floor standing enclosure
- External ambient temperature (heatsink side VW3-A5880•): - $10 \ldots+40^{\circ} \mathrm{C}$.
- Temperature inside the wall-fixing or floor-standing enclosure: this has the same limits, mounting conditions and derating (if any) as for speed drives with heatsinks, see opposite.

- Mounting on machine frame

Ambient temperature: $-10 \ldots+40^{\circ} \mathrm{C}$.

Recommendations for mounting in a wall-fixing or floor-standing enclosure

Risk of condensation

If the device is left switched off for long periods, a heater must be used (0.2 to 0.5 W per $10 \mathrm{~cm}^{3}$ of the enclosure) which switches on automatically as soon as the device stops.

This keeps the interior of the enclosure at a temperature slightly above the external temperature, and avoids any risk of condensation or dripping water while the device is switched off.

Alternative solution: keep the device powered up when it is stopped (the heat of the device itself when powered up is generally sufficient to cause this temperature difference).

Dust and damp proof casing

Calculating the size of the enclosure

Usable heat dissipation area of casing (if wall-mounted): $S=\frac{K}{R t h}$
Where:
$S\left(m^{2}\right)=$ area of sides + area of top + area of front panel
K: thermal resistance per m^{2} of casing
For metal casing: $\mathrm{K}=0.12$ with internal fan, $\mathrm{K}=0.15$ without fan.
Rth: maximum thermal resistance in ${ }^{\circ} \mathrm{C} / \mathrm{W}$:
Rth $=\frac{\theta-\theta \mathrm{e}}{\mathrm{P}}$ where: $\theta=$ maximum temperature inside enclosure in ${ }^{\circ} \mathrm{C}$, $\theta \mathrm{e}=$ maximum external temperature in ${ }^{\circ} \mathrm{C}$,
$\mathrm{P}=$ total power dissipated in the enclosure in W .
The total power dissipated in the enclosure consists of: the power dissipated by the speed drive (see reference tables) plus the power dissipated by the other components of the unit.

Attention: Do not use insulated enclosures as they have a poor level of conductivity.
Using the speed drive on a baseplate reduces the power dissipated in the enclosure, which makes the IP 54 degree of protection easier to achieve.

To avoid hot spots, add the control card fan kit to circulate the air inside the speed drive.

Presentation:	Characteristics:	Dimensions, schemes:	Functions:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 160$ to $2 / 170$	pages $2 / 190$ to $2 / 205$

Variable speed drives for asynchronous motors

Altivar 58
Mounting options

Recommendations for mounting in a wall-fixing or floor-standing enclosure (continued)

Ventilated casing

The apertures and/or optional fans must permit a flow rate at least equal to that provided by the speed drive fans.

Fan flow rate according to speed drive rating		
Type of speed drive	Fan flow rate	
With heatsink	ATV-58HU09M2, HU18M2, ATV-58HU18N4	Non-ventilated

ATV-58HU29M2, HU54M2, $\quad 36 \mathrm{~m} 3 / \mathrm{hr}$
ATV-58HU29N4, HU41N4, HU54N4
ATV-58HU41M2 $47 \mathrm{~m} 3 / \mathrm{hr}$
ATV-58HU72M2, HU90M2, HD12M2, 72 m³/hr ATV-58HU72N4, HU90N4, HD12N4, HD16N4, HD23N4
ATV-58HD16M2X, HD23M2X,
ATV-58HD28N4 to HD46N4,
ATV-58HD28N4X to HD46N4X (1)
ATV-58HD28M2X to HD46M2X,
ATV-58HD54N4 to HD79N4,
ATV-58HD54N4X to HD79N4X (1)
Control card fan kit $36 \mathrm{~m} 3 / \mathrm{hr}$

All ratings except ATV-58PU41M2
Non-ventilated
ATV-58PU41M2 $11 \mathrm{~m} 3 / \mathrm{hr}$

[^23]| Presentation: | Characteristics: | Dimensions, schemes: | Functions:
 pages $2 / 122$ to $2 / 126$ |
| :--- | :--- | :--- | :--- |
| pages $2 / 127$ to $2 / 129$ | pages $2 / 160$ to $2 / 170$ | pages $2 / 190$ to $2 / 205$ | |
| $2 / 178$ | | (菓 Telemecanique | |

Variable speed drives for asynchronous motors

Altivar 58
 Mounting options

Recommendations for mounting on machine frame (speed drives on baseplate)

Speed drives on baseplates with the following ratings can be mounted on (or in) a cast iron or aluminium machine frame as long as the following conditions are observed:

- maximum ambient temperature: $40^{\circ} \mathrm{C}$,
- mating surface (A) on frame machined to provide $100 \mu \mathrm{~m}$ max smoothness and $3.2 \mu \mathrm{~m}$ max roughness,
- the speed drive must be mounted in the centre of a support (frame) with minimum thickness (e) and minimum square area of cooling surface (s) exposed to the open air.

This usage should be checked first by a test when the operating conditions are close to the maximum limits (power, cycle and temperature).

(s) Minimal surface of support
(A) Minimum machined surface
(e) Thickness of support

| Speed drives | Minimum
 $\mathrm{surface}^{2}(\mathrm{~s})$ | Minimum
 thickness (e) | a | b | G | H | \varnothing | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ATV-58PU09M2, PU18M2 | 0.25 | 20 | 10 | 120 | 220 | 96 | 189 | M4 |

Variable speed drives for asynchronous motors
 Ready-assembled Altivar 58

Presentation

There are two types of ready-assembled drive for the Altivar 58:
■ Altivar 58 COMPACT power rating between 0.37 and 5.5 kW :
this ready-to-use IP 55 enclosure is equipped with a drive on a base plate with an external heatsink, a circuit-breaker to provide type 2 coordination and protection, and a downstream contactor.
This enclosure can be installed as close as possible to the drive.
■ Altivar 58 ENERGY power rating between 3 and 75 kW :
the IP 55 enclosure is equipped with a drive with a cooling system and a Vario switch disconnector. A slot is provided for an additional contactor. The drives are supplied with a built-in line choke.
This enclosure can be installed next to the motor.

Description

Altivar 58 COMPACT (ready-assembled drives with power ratings from 0.37 to 5.5 kW)

The ready-assembled drives are housed inside a dust and damp proof enclosure 1 which contains:

- an ATV 58 drive,
- a protective circuit-breaker with padlockable front external control 3,
- a "downstream" contactor,
- a transparent cover 2 which can be opened and sealed and through which the indicator lights can be seen and the operator terminal display viewed and accessed for the purposes of configuration.
The cover can only be opened if the circuit-breaker has been tripped manually using 3.

The metal gland plate 4 comprises:

- On the front panel:
\square a 3-position switch for selecting the directon of operation (factory-set for one direction only),
- a "frequency" reference potentiometer (which can be replaced with a blanking plug supplied with the drive if remote control is to be applied),
- 2 slots designed for diameter 16 control units.

■ On the bottom panel:

- 2 holes fitted with cable glands 5 :
- one EMC PG13 metal gland for the shielded motor cable,
- one PG13 plastic gland for the unshielded power supply cable,
- 2 holes fitted with plastic blanking plugs, designed for PG11 cable glands 6,
- 3 recesses for additional cables 8,
- 3 open cut-outs 7 fitted with blanking plugs, through which cables fitted with connectors (PC link, remote terminal, communication buses) can be routed without having to be disconnected.

As the connections between the gland plate and the devices inside the enclosure are removable, all active components in the assembly can be replaced quickly and easily.
The assembly is supplied ready for use with the "Forward" command is prewired internally.

Altivar 58 ENERGY (ready-assembled drives with power ratings from 3 to 75 kW)

The ready-assembled drives are housed inside a dust and damp proof enclosure 1 which contains:

- an ATV 58 drive,
- a line choke,
- a Vario switch disconnector with padlockable front external control 3,
- a "frequency" reference potentiometer,
- a 3-position switch for selecting the direction of operation,
- an operator terminal 4.

A slot is provided for installing an additional contactor.
The front panel has a hinged cover 2. For safety reasons, it can only be opened when the switch disconnector is in the "OFF" position. The underside of the enclosure should be fitted with cable glands 5 via which the cables can be routed. When a ready-assembled drive with a power rating $\geq 7.5 \mathrm{~kW}$ is delivered, the additional contactor must be wired as a "line" or "downstream" contactor according to the specifications provided.

References:	Dimensions:
pages 2/182 and 2/183	page 2/186

Options

- Common options: the ready-assembled Altivar 58 supports the same options as the drives in the ATV 58 range:
- extension cards (see pages $2 / 140$ and $2 / 141$),

ㅁ communication cards (see pages $2 / 142$ and $2 / 143$),
\square advanced PowerSuite dialogue solutions (see pages $3 / 2$ and $3 / 3$),
\square braking module and resistors to be mounted externally (see pages $2 / 144$ to $2 / 147$).
■ Specific options for the COMPACT range (power ratings between 0.37 and 5.5 kW):
\square an IP 65 enclosure for the remote operator terminal,
\square a prewired removable connector for the AS-Interface bus (to be mounted on 7), a prewired removable connector for connecting a sensor (to be mounted on 7),
a an additional internal removable connector for remote control,
\square a line choke to be assembled externally.

- Specific options for the ENERGY range (power ratings between 3 and 75 kW):
- an IP 65 enclosure for the remote operator terminal,
\square a line or downstream contactor,
\square a SUB-D cable gland.

Characteristics

The ready-assembled Altivar 58 has the same:

- environmental,
- drive,
- electrical.

Degree of protection		IP 55	
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	$-25 \ldots+65$
	Operation	${ }^{\circ} \mathrm{C}$	$-10 \ldots+40$
Shock resistance	Conforming to IEC $60068-2-27$		10 gn for 11 ms

Variable speed drives for asynchronous motors

Ready-assembled Altivar 58 for asynchronous motors from 0.37 to 75 kW or 0.5 to 100 HP

ATV 58EU09M2

ATV 58ED12N4

Altivar 58 ENERGY (ready-assembled drives with power ratings from 3 to 75 kW)

Standard torque applications ($120 \% \mathrm{Tn}$)
3-phase supply voltage: $\mathbf{3 8 0} . . .500 \mathrm{~V}$ (5) $\mathbf{5 0 / 6 0 ~ H z}$

22	30	51	41	22	65	44	55	ATV 58ED28N4	70.000
30	40	67	53	22	65	60	66	ATV 58ED33N4	70.000
37	50	82	66	22	65	72	90	ATV 58ED46N4	70.000
45	60	99	79	22	65	85	108	ATV 58ED54N4	110.000
55	75	121	97	22	65	105	127	ATV 58ED64N4	110.000
75	100	160	130	22	65	138	157	ATV 58ED79N4	110.000

(1) These power ratings are given for a maximum permissible switching frequency of 4 kHz in continuous operation without derating. For higher switching frequencies, the drive must be in intermittent operation or it must be set one rating lower (see special uses on the page 2/131).
(2) Typical value without additional choke.
(3) For 60 seconds.
(4) Drive supplied with operator terminal.

To obtain a drive without an operator terminal, add the letter \boldsymbol{Z} at the end of the reference.
Example: ATV 58EU09M2 without operator terminal becomes ATV 58EU09M2Z.
(5) Nominal supply voltages, U min...U max.

Note: please refer to the table summarising the possible combinations for drives, options and accessories on pages 2/184 and 2/185.

Variable speed drives
for asynchronous motors
Ready-assembled Altivar 58
Special options

IP 65 enclosure for the remote operator terminal

The plug-in operator terminal can be used remotely, hand-held or fixed to the machine, using this IP 65 dust and damp proof kit.

Description	For drives	Reference	Weight kg
Kit comprising: - 1 cable fitted with connectors, length 3 m - IP 65 enclosure with flexible, transparent membrane - manual	ATV 58E all ratings	VW3 A58864	0.300
M12 prewired plug-in connectors for the COMPACT range			
Description	For drives	Reference	Weight kg
4-way straight male M12 connector for AS-Interface bus	ATV 58EU power ratings between 0.37 and 5.5 kW	VW3 A58862	0.100
5-way female M12 connector for sensor	ATV 58EU power ratings between 0.37 and 5.5 kW	VW3 A58863	0.100

Additional plug-in control terminal block for remote control Description	For drives		
Reference		\quad	Weight
:---:			
kg			

Line choke

The line choke must be mounted externally for ready-assembled ATV 58E COMPACT range drives with power ratings between 0.37 and 5.5 kW .

It is built into ready-assembled ATV 58E ENERGY range drives with power ratings between 3 and 75 kW .

To select a line choke, see 2/149.
"Line" or "downstream" contactor
A slot is provided for mounting a contactor on ATV 58E ENERGY range drives with power ratings between 3 and 75 kW . The contactor is wired as a line or downstream contactor by the user, depending on requirements.

To select a contactor, see pages $2 / 172$ to $2 / 175$.

Potentiometer Description	For drives	Reference	Weight kg
IP 65 potentiometer	ATV 58E		
$2.2 \mathrm{k} \Omega$	all ratings	VW3 A58866	0.100
SUB-D cable gland Description	For drives	Reference	Weight
SUB-D cable gland, plug-in, 10 terminals	ATV 58E ENERGY range power ratings between 3 kW and 75 kW	VW3 A58865	0.300

$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Presentation, characteristics: } \\ \text { pages 2/180 to 2/181 }\end{array} & \begin{array}{l}\text { Dimensions: } \\ \text { page 2/186 }\end{array} & \begin{array}{l}\text { Schemes: } \\ \text { page 2/187 }\end{array}\end{array} \begin{array}{l}\text { Functions: } \\ \text { pages 2/190 to 2/205 }\end{array}\right]$

Variable speed drives for asynchronous motors
 Altivar 58 ready－assembled

Combinations（see pages $2 / 182$ and 2／183）									
Altivar 58 COMPACT									
Supply	Motor Power indi－ cated on rating plate		ATV 58 drive for application		Options				
Supply voltage $50 / 60 \mathrm{~Hz}$			With standard torque （120 \％Tn）	With hight torque $\text { (} 170 \text { \% Tn })$	Line choke	1 extension or communica－ tion card	IP 65 enclosure or remote operator terminal	PowerSuite advanced dialogue solutions	ced dialogue Magelis display
$\begin{aligned} & 200 . . .240 \mathrm{~V} \\ & \text { single-phase } \end{aligned}$	0.37	0.5	－	ATV 58EU09M2	VZ1 L004M010	VW3 A58•eゃ	VW3 A58864	VW3 A81•e	XBT HM017010A8
	0.75	1	－	ATV 58EU18M2	VZ1 L007UM50	VW3 A58•eセ	VW3 A58864	VW3 A81••	XBT HM017010A8
	1.5	2	－	ATV 58EU29M2	VZ1 L018UM20	VW3 A58•e๑	VW3 A58864	VW3 A81•0	XBT HM017010A8
	2.2	3	－	ATV 58EU41M2	VZ1 L018UM20	VW3 A58•e๑	VW3 A58864	VW3 A81••	XBT HM017010A8
$200 \ldots 240 \mathrm{~V}$ 3－phase	1.5	2	－	ATV 58EU29M2	VW3 A66502	VW3 A58•e๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	2.2	3	－	ATV 58EU41M2	VW3 A66503	VW3 A58•eセ	VW3 A58864	VW3 A81••	XBT HM017010A8
$\begin{aligned} & 380 \ldots 500 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	0.75	1	－	ATV 58EU18N4	VW3 A66501	VW3 A58•e๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	1.5	2	－	ATV 58EU29N4	VW3 A66501	VW3 A58•e๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	2.2	3	－	ATV 58EU41N4	VW3 A66502	VW3 A58•0๑	VW3 A58864	VW3 A8100	XBT HM017010A8
	3	－	－	ATV 58EU54N4	VW3 A66502	VW3 A58•e๑	VW3 A58864	VW3 A8100	XBT HM017010A8
	4	5	－	ATV 58EU72N4	VW3 A66502	VW3 A58・セセ	VW3 A58864	VW3 A81••	XBT HM017010A8
	5.5	7.5	－	ATV 58EU90N4	VW3 A66503	VW3 A58・セ๑	VW3 A58864	VW3 A81•๑	XBT HM017010A8

Altivar 58 ENERGY

Supply Supply voltage $50 / 60 \mathrm{~Hz}$	Motor Power indi－ cated on rating plate		ATV 58 drive for application		Options				
			With standard torque （ 120 \％Tn）	With hight torque $\text { (} 170 \text { \% Tn) }$	Line choke	1 extension or communica－ tion card	IP 65 enclosure or remote operator terminal	PowerSuite advan solutions Software workshop and Pocket PC	ced dialogue Magelis display
$\begin{aligned} & 380 . . .500 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	3	－	－	ATV 58ED05N4	VW3 A66502	VW3 A58eゃ๑	VW3 A58864	VW3 A81•0	XBT HM017010A8
	4	5	－	ATV 58ED07N4	VW3 A66502	VW3 A58•e๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	5.5	7.5	－	ATV 58ED09N4	VW3 A66503	VW3 A58•e७	VW3 A58864	VW3 A81••	XBT HM017010A8
	7.5	10	－	ATV 58ED12N4	Integrated	VW3 A58•e७	VW3 A58864	VW3 A81••	XBT HM017010A8
	11	15	－	ATV 58ED16N4	Integrated	VW3 A58ee๑	VW3 A58864	VW3 A81•0	XBT HM017010A8
	15	20	－	ATV 58ED23N4	Integrated	VW3 A58eゃ๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	18.5	25	－	ATV 58ED28N4	Integrated	VW3 A58•e७	VW3 A58864	VW3 A81••	XBT HM017010A8
	22	30	－	ATV 58ED33N4	Integrated	VW3 A58•0๑	VW3 A58864	VW3 A8100	XBT HM017010A8
			ATV 58ED28N4	－	Integrated	VW3 A58•e๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	30	40	－	ATV 58ED46N4	Integrated	VW3 A58•＊๑	VW3 A58864	VW3 A81••	XBT HM017010A8
			ATV 58ED33N4	－	Integrated	VW3 A58e＊๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	37	50	－	ATV 58ED54N4	Integrated	VW3 A58•e७	VW3 A58864	VW3 A81••	XBT HM017010A8
			ATV 58ED46N4	－	Integrated	VW3 A58eゃ๑	VW3 A58864	VW3 A81••	XBT HM017010A8
	45	60	－	ATV 58ED64N4	Integrated	VW3 A58•e๑	VW3 A58864	VW3 A81••	XBT HM017010A8
			ATV 58ED54N4	－	Integrated	VW3 A58・セ๑	VW3 A58864	VW3 A81•๑	XBT HM017010A8
	55	75	－	ATV 58ED79N4	Integrated	VW3 A58•e๑	VW3 A58864	VW3 A81•๑	XBT HM017010A8
			ATV 58ED64N4	－	Integrated	VW3 A58•e๑	VW3 A58864	VW3 A8100	XBT HM017010A8
	75	100	ATV 58ED79N4	－	Integrated	VW3 A58•0๑	VW3 A58864	VW3 A81••	XBT HM017010A8

（1）In most cases this filter is of no advantage，as the ready－assembled drive can be placed very close to the motor．

Options (continued)								
RS 485 Interconnection	Additional input filter (1)	Output filter (1)	Braking module	IP 00 braking resistor	IP 30 braking resistor	Plug-in connector for AS-Interface bus	Plug-in connector for sensor	Plug-in control terminal block for remote control
VW3 A58306	VW3 A58401	-	VW3 A58701	VW3 A58702	VW3 A58732	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58401	VW3 A58451	VW3 A58701	VW3 A58702	VW3 A58732	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58402	VW3 A58451	Integrated	VW3 A58702	VW3 A58732	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58402	VW3 A58452	Integrated	VW3 A58704	VW3 A58733	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58402	VW3 A58451	Integrated	VW3 A58702	VW3 A58732	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58402	VW3 A58452	Integrated	VW3 A58704	VW3 A58733	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58402	VW3 A58451	Integrated	VW3 A58702	VW3 A58732	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58402	VW3 A58451	Integrated	VW3 A58702	VW3 A58732	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58402	VW3 A58451	Integrated	VW3 A58702	VW3 A58732	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58403	VW3 A58451	Integrated	VW3 A58703	VW3 A58734	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58403	VW3 A58451	Intégré	VW3 A58703	VW3 A58734	VW3 A58862	VW3 A58863	VW3 A58861
VW3 A58306	VW3 A58403	VW3 A58452	Integrated	-	VW3 A58735	VW3 A58862	VW3 A58863	VW3 A58861

Options (continued)								
RS 485 Interconnection	Additional input filter (1)	Output filter (1)	Braking module	IP 00 braking resistor	IP 30 braking resistor	Plug-in connector for AS-Interface bus	Plug-in connector for sensor	Plug-in control terminal block for remote control
VW3 A58306	VW3 A58403	VW3 A58451	Integrated	VW3 A58703	VW3 A58734	-	-	-
VW3 A58306	VW3 A58403	VW3 A58451	Integrated	VW3 A58703	VW3 A58734	-	-	-
VW3 A58306	VW3 A58403	VW3 A58452	Integrated	-	VW3 A58735	-	-	-
VW3 A58306	VW3 A58404	VW3 A58453	Integrated	-	VW3 A58735	-	-	-
VW3 A58306	VW3 A58404	VW3 A58453	Integrated	-	VW3 A58736	-	-	-
VW3 A58306	VW3 A58405	VW3 A58453	Integrated	-	VW3 A58736	-	-	-
VW3 A58306	-	VW3 A66412	Integrated	-	VW3 A58737	-	-	-
VW3 A58306	-	VW3 A66412	Integrated	-	VW3 A58737	-	-	-
VW3 A58306	-	VW3 A66412	Integrated	-	VW3 A58737	-	-	-
VW3 A58306	-	VW3 A66412	Integrated	-	VW3 A58737	-	-	-
VW3 A58306	-	VW3 A66412	Integrated	-	VW3 A58737	-	-	-
VW3 A58306	-	VW3 A66413	Integrated	-	VW3 A66704	-	-	-
VW3 A58306	-	VW3 A66413	Integrated	-	VW3 A58737	-	-	-
VW3 A58306	-	VW3 A66413	Integrated	-	VW3 A66704	-	-	-
VW3 A58306	-	VW3 A66413	Integrated	-	VW3 A66704	-	-	-
VW3 A58306	-	VW3 A66413	Integrated	-	VW3 A66704	-	-	-
VW3 A58306	-	VW3 A66413	Integrated	-	VW3 A66704	-	-	-
VW3 A58306	-	-	Integrated	-	VW3 A66704	-	-	-

Dimensions，
setup recommendations

Variable speed drives for asynchronous motors

Ready－assembled Altivar 58

Dimensions

ATV 58EUeeゃゃ

ATV 58E	a	b	c	G	H	\varnothing
U09M2，U18M2	230	316	215	210	300	5,5
U29M2， $18 N 4, ~$ U29N4，U41N4	270					
U41M2，U54N4，U72N4，U90N4	300	406	280	250	322	280

ATV 58E	a	b	c	d	G1	G2	H 1	H 2

D05N4，D07N4，D09N4， $500700300,5 \quad 250437,5550$ D12N4，D16N4，D23N4 \begin{tabular}{llllllll}
\hline D12NN4，D33N4，D46N4 \& 460 \& 850 \& 365,5 \& 315 \& 397,5 \& 510 \& 787,5900

\hline D54N，D3NA

\hline D54N4，D64N4，D79N4 \& 570 \& 1050 \& 405,5 \& 340 \& 507,5 \& 620 \& 987,51100

\hline
\end{tabular}

Setup recommendations

ATV 58EUeee•

ATV 58EDeee•

Do not place the device near heating elements．
Leave sufficient clearance to allow air circulation．The speed drive is cooled by an air flow from the bottom to the top．

Description，characteristics：	References： pages $2 / 182$ and $2 / 183$	Schemes： page $2 / 187$	Functions： pages $2 / 180$ to $2 / 181$
$2 / 186$		（菓 Telemecanique	

Variable speed drives for asynchronous motors

Ready-assembled Altivar 58

Schemes

ATV 58EU29M2, EU41M2, EU18N4, EU29N4, EU41N4, EU54N4, ATV 58EU72N4, EU90N4

ATV 58ED05N4, ED07N4, ED09N4, ED12N4, ED16N4, ED23N4, ED28N4, ED33N4, ED46N4, ED54N4, ED64N4, ED79N4

Description, characteristics:	References:	Dimensions:	Functions:
pages $2 / 180$ to $2 / 181$	pages $2 / 182$ and $2 / 183$	page $2 / 186$	pages $2 / 190$ to 2/205

Variable speed drives for asynchronous motors

Altivar 58
Combination of functions and applications

Applications

"Drive" functions
Maximum frequency 500 Hz (special motor)
Switching frequency
Noise reduction (random freq.)
Skip frequency
Energy saving
Automatic injection on stop
Resistance braking

Application functions
Automatic adaption of the
deceleration ramp
Automatic catching a spinning load (flying restart)
Automatic restart
Controlled stop on loss of AC supply
Lim. of the operating time at low speed
S-shaped ramps
U-shaped ramps
Adaptation of current limit
Analogue inputs

- Summing
- Torque limit

PI regulator

- PTC probe
- Tachogenerator speed feedback Encoder input (speed regulation) Logic inputs
- 2 operating directions
- d.c. injection

Fast stop

- Freewheel stop
- Step by step (JOG)
- Preset speeds
- Ramp switching
- +/ - speed
- Reference switching

Motor switching

- 2nd torque limit

Logic outputs and relays

- Brake sequence
- Downstream contactor control
- Frequency threshold reached
- HSP reached
- Reference reached
- Current threshold reached
- Thermal motor threshold reached Drive running
Analogue output (torque, speed,
current, ramp)
- Frequent or essential use

םOccasional use

Packing/packaging

Hoop casing machines Bagging machines Labelling machines

Palletizers Depalletizers

Functions:
pages 2/190 to 2/205

Materials handling/hoisting

Continuous	Cycle conveyors conveyors,	Hoisting conveyers,
transfer tables,	manches	
chain conveyors		

Elevators

Pumping/ventilation

| Centrifugal pumps | Fans (driers,
 drying ovens, tunnels,
 extractor hoods, air
 conditioning) |
| :--- | :--- | :--- |

■	■
-	\square
■	\square
\square	\square
\square	
	\square
\square	\square
\square	\square
	\square
	\square
\square	\square
\square	\square
\square	\square
ㅁ	
ㅁ	
-	\square
\square	\square
\square	
-	
\square	
\square	\square

Variable speed drives for asynchronous motors
 Altivar 58

Summary of functions	
Principle of access to menus	page 2/191
Macro-configuration programming	page 2/192
Operating power range	page 2/192
Operating speed range	page 2/193
Acceleration and deceleration ramp times	page 2/193
Acceleration and deceleration ramp profile	page 2/193
Alternate ramp switching	page 2/194
Automatic adaptation of deceleration ramp	page 2/194
Reduction of torque limit by logic input	page 2/194
Reduction of torque limit by analogue input	page 2/194
Reverse operation	page 2/194
Disabling reverse direction	page 2/194
Step by step (JOG)	page 2/194
2-wire control	page 2/195
3 -wire control	page 2/195
+/-speed	page 2/195
Save reference	page 2/195
Brake sequence	page 2/196
Motor switching	page 2/196
Downstream contactor control	page 2/196
Preset speeds	page 2/197
Adjusting analogue input Al2	page 2/197
Summing inputs	page 2/197
Reference switching	page 2/197
PI regulator	page 2/198
Speed feedback with tachogenerator	page 2/199
Incremental speed feedback	page 2/199
Incremental speed reference	page 2/199
Controlled stop	page 2/199
Controlled stop on mains power break	page 2/200
Automatic catching a spinning load with speed detection	page 2/200
Automatic restart	page 2/200
Maintaining the speed following loss of the 4-20 mA reference	page 2/200
Limiting low speed operating time	page 2/200
Fault reset	page 2/201
General reset (inhibits all faults)	page 2/201
Forced local mode	page 2/201
External fault	page 2/201
Fault relay, unlocking	page 2/201
Motor thermal protection	page 2/201
PTC probe protection	page 2/202
Thermal protection of drive	page 2/202
Switching frequency, noise reduction	page 2/202
Energy saving	page 2/202
Adaptation of the current limit	page 2/203
Auto-tuning	page 2/203
Skip frequencies	page 2/203
Reassignable logic outputs	page 2/203
Analogue outputs AO1 and AO	page 2/203
Adjusting analogue outputs AO1 and AO	page 2/203
Compatibility table for configurable I/O functions	page 2/204
Summary table of the configurable I/O assignments	page 2/205

| Presentation:
 pages $2 / 122$ to $2 / 126$ | Characteristics:
 pages $2 / 127$ to $2 / 129$ | References:
 pages $2 / 132$ to $2 / 134$ |
| :--- | :--- | :--- | | Dimensions, schemes: |
| :--- |
| pages 2/160 to 2/170 |

Variable speed drives for asynchronous motors
 Altivar 58

Description of functions

Power-
Initial power-up
up

- Principle of access in the main menu with the operator terminal
- With the terminal switch in position 0 , the user can:
- select the dialogue language,
- display the macro-configuration,
- identify the drive,
- display the state of the drive, the electrical values and the fault register.
\square With the terminal switch in position 1 , it is possible to:
- perform operations possible in position 0,
- modify the settings.
- With the terminal switch in position 2, the user can:
- perform the operations possible in positions 0 and 1 ,
- change the macro-configuration,
- modify the motor power,
- modify all the configuration parameters,
- enable control of the drive via the terminal,
- store, load or protect the parameter files.
- Principle of access in the main menu with the PowerSuite Pocket PC or with the PowerSuite software workshop
There are no access restrictions, unless an access code has already been created.

Variable speed drives for asynchronous motors
 Altivar 58

- Macro-configuration programming

A simplified menu can be used for preprogramming the drive to facilitate configuration and setup.
There are 3 options available, which correspond to the various functions and applications:

- handling,
- general use,
- variable torque.

Selection of one of these macro-configurations will automatically assign the functions, parameters and I/O, even for any option cards which may be used. This menu also includes a guide to the most appropriate selection in each case. Preconfiguration carried out in this way can be modified at any time if necessary.

In the "factory" configuration, the selection is set to the "Handling" macro-configuration.
The preconfigured functions for each macro-configuration are:

Type of macro- configuration Basic I/O	Handling	General use	Variable torque
Logic input LI1	Forward	Forward	Forward
Logic input LI2	Reverse	Reverse	Reverse
Logic input LI3	2 preset speeds	Jog operation	Reference switching
Logic input LI4	preset speeds	Freewheel stop	Injection braking
Analogue input Al1	Summing speed reference	Summing speed reference	Speed reference 1
Analogue input Al2	Summing speed reference	Summing speed reference	Speed reference 2
Relay R1	Drive fault	Drive fault	Drive fault
Relay R2	Downstream contactor control	Motor thermal state reached	Frequency reference reached
Analogue output A01	Motor frequency	Motor frequency	Motor frequency
Extension card I/O	B preset	Clearing faults	Freewheel stop
Logic input LI5	8 speeds	Clear fault	Summing speed reference
Logic input LI6	PI regulator		
Analogue input Al3 or Encoder inputs Seference speed	Speed regulation	Speed regulation	Speed regulation
Logic output LO	Current threshold reached	Downstream contactor control	High speed reached
Analogue output AO	Motor frequency	Motor frequency	Motor frequency

- Operating power range

Enables use of the drive at optimum power, according to whether the application requires normal overtorque (standard torque applications, 1.2 Tn) or significant overtorque (high torque applications).
Function suitable for drives with power ratings above 7.5 kW at 208 to 240 V and 15 kW at 380 to 500 V , where this type of optimisation offers significant cost reductions.

Presentation: pages 2/122 to $2 / 126$	Characteristics: pages 2/127 to $2 / 129$	References: pages $2 / 132$ to $2 / 134$	Dimensions, schemes: pages 2/160 to 2/170

Variable speed drives for asynchronous motors
 Altivar 58

Linear acceleration ramp

- S-shape ramps

HSP: high speed
The curve coefficient is fixed, with $\mathrm{t} 2=0.6 \times \mathrm{t} 1$.
where t1 = set ramp time

Operating speed range
Used to determine the 2 frequency limits which define the speed range permitted by the machine under actual operating conditions.
For all applications with or without overspeed.
Three operating modes are possible:

- Pedestal mode
- Deadband mode

LSP: low speed, from 0 to HSP, factory setting 0
HSP: high speed, from LSP to f max., factory setting $50 / 60 \mathrm{~Hz}$
x : configurable between 0 and 20 mA , factory setting 4 mA
y : configurable between 0 and 20 mA , factory setting 20 mA

Acceleration and deceleration ramp times

Used to define acceleration and deceleration ramp times according to the application and the machine dynamics.
For all applications.

Setting for t 1 and t 2 between 0.05 and 999.9 s , factory setting 3 s .

Linear deceleration ramp
■ Acceleration and deceleration ramp profile
Used to gradually increase the output frequency starting from a speed reference, following a linear ratio or a preset ratio which enables the ramp to be given an S or a U profile.

- for applications such as materials handling, packaging, transportation of people: the use of S ramps takes up mechanical play and eliminates jolts, and limits "non-following" of speed during rapid transient operation of high inertia machines,
- for pumping applications (installation with centrifugal pump and non-return valve) valve closing can be controlled more accurately if U ramps are used.

Selecting "linear" or "S", or "U" profiles will affect both the deceleration and acceleration ramps.

ㅁ U-shape ramps

HSP: high speed
The curve coefficient is fixed, with $\mathrm{t} 2=0.5 \mathrm{xt1}$.
where $t 1$ = set ramp time

Variable speed drives for asynchronous motors

 Altivar 58

 Altivar 58}

Acceleration 1 (Acc 1) and deceleration 1 (Dec 1): adjustment 0.05 to 999.9 s
factory setting 3 s
Acceleration 2 (Acc 2) and deceleration 2 (Dec 2):
adjustment 0.05 to 999.9 s
factory setting 5 s
HSP: high speed
Acceleration and deceleration
Example of switching using logic input LI4

Torque limiting by analogue input

JOG

Minimum time tm between 2 pulses adjustment 0 to 2 s

- factory setting 0.5 s
- Alternate ramp switching

Used to switch 2 acceleration or deceleration ramp times, which can be adjusted separately.
The function is enabled by reassigning 1 logic input or by defining 1 frequency threshold.
Function suitable for:

- materials handling with smooth starting and approach,
- machines with fast steady state speed correction,
- high speed lathes with limitation of acceleration and deceleration times above certain speeds.

- Automatic adaptation of deceleration ramp

Used to automatically adapt the deceleration ramp if the initial setting is too low when the load inertia is taken into account. This function avoids the drive locking in the event of an excessive braking fault.
Function suitable for all applications not requiring precise stopping and not using braking resistors.
Adjustment: yes or no.
The factory setting depends on the macro-configuration.
Automatic adaptation must be cancelled if the machine has position control with stopping on a ramp and a braking resistor installed. This function is automatically disabled if the brake sequence is configured.

- Reduction of torque limit by logic input

Used to reduce the maximum motor torque, via a logic input LI to be assigned to this function. Adjustment: 0 to 200% of the nominal motor torque for high torque applications.
Function suitable for machines at risk of frequent jamming: transporters, grinders, extruders.
Cutting to length with stopping and maintaining motor torque over a mechanical travel limit.
Use with motor with lower power rating than the drive rating (switching motors).

Reduction of torque limit by analogue input

Used to reduce the maximum motor torque via analogue input Al2 or Al3 to be assigned to this function.
The I/O extension card with analogue input must be used.
Function suitable for correction of torque or traction.

Reverse operation

Used to reverse the direction of operation via logic input LI2, which is assigned to this function in the factory set-up.
This function can be suppressed in non-reversing motor applications by reassigning input LI2 to a different function.
This function is suitable for all non-reversing and reversing applications.

- Disabling reverse direction

Used to:

- inhibit operation in the opposite direction to that controlled by the logic inputs, even if this reversal is required by a summing or feedback control function,
a inhibit reverse operation if it is requested using the REV key on the terminal.
To be used if the direction of operation should not be reversed
(example: fan).

■ Step by step (JOG)
Used for pulse operation at minimum ramp times (0.1 s), limited speed reference and minimum time between 2 pulses.
Enabled by means of an adjustable logic input LI, assigned to this function, and pulses given by the operating direction command.
This function is suitable for machines with product insertion in manual mode
(example: gradual movement of the mechanism during maintenance operations).

Presentation:	Characteristics:	References:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 132$ to $2 / 134$

Variable speed drives for asynchronous motors
 Altivar 58

3-wire control

ㅁ With saving of the last reference and 2 logic inputs

Example of "+/-speed" with 2 logic inputs

- 2-wire control

Used to control the direction of operation by means of a maintained contact.
Enabled by means of 1 or 2 logic inputs (one or two directions).
This function is suitable for all non-reversing and reversing applications.
3 operating modes are possible:

- detection of the state of the logic inputs,
- detection of a change in state of the logic inputs,
a detection of the state of the logic inputs with forward operation always having priority over reverse.

- 3-wire control

Used to control the operating direction and stopping by means of pulsed contacts.
Enabled by means of 2 or 3 logic inputs (non-reversing or reversing).
This function is suitable for all non-reversing and reversing applications.

Wiring diagram for 3-wire control

- +/- speed

Used to increase or decrease a speed reference by means of 1 or 2 logic commands, with or without the last reference being saved (motorised potentiometer function). The maximum speed is given by the reference applied to the analogue inputs. For example, connect Al 1 to the +10 V . Enabled by assigning 1 or 2 logic inputs.
This function is suitable for centralised control of a machine with several sections operating in one direction or for control by a pendant control station of a handling crane in two operating directions.
\square Without saving of the last reference and a single logic input ("+ speed")

LSP: low speed
Example with double action buttons

Note: this type of "+/- speed" control is incompatible with 3-wire control.

- Save reference

This function is associated with "+/- speed" control. Select yes or no.
Enables the new speed reference to be applied if the run command or line supply is lost. The save is applied the next time a run command is received.

Variable speed drives for asynchronous motors

 Altivar 58

 Altivar 58}

t1: adjustable time delay on brake release time.
t 2 : adjustable time delay depending on the brake engage time. T: non-adjustable time delay.

Brake sequence
Used to manage control of a safety brakes in synchronisation with the starting and stopping of the motor to avoid jolts and load veering.
Brake control sequence managed by the drive.
Values that can be adjusted for brake release: frequency and current threshold, time delay
Values that can be adjusted for brake engage: frequency, time delay.
Validation: R2 relay logic output must be assigned to brake control.
Function suitable for materials handling applications with movements equipped with safety
brakes (hoisting) and machines requiring a parking brake (unbalanced machines).

Note:
to ensure the safety of the machine and personnel, it is advisable to use the speed feedback function with the addition of an option card, or an external safety device. Make sure that the braking resistor is sized for the maximum load conditions of the machine. Make sure that the drive/motor connections cannot be interrupted by accident.

- Motor switching

Allows two motors with different powers to be supplied successively by the same drive. Switching must take place with the drive stopped and locked, using an appropriate sequence at the drive output.
The function can be used to adapt the motor parameters. The following parameters are switched automatically:

- nominal motor current,
- injection current,
- brake release current threshold.

Motor thermal protection is disabled by this function.
Enabled by assigning logic input LI to this function.
The associated parameter is the coefficient giving the relationship between the power of the smallest motor and the power of the drive: 0.2 to 1 .
With hoisting applications, this function enables a single drive to be used for vertical and horizontal movements.

- Downstream contactor control

Allows the drive to control a contactor located between the drive and the motor.
The request to close the contactor is made when a run command appears.
The request to open the contactor is made when there is neither a run command nor a current present in the motor (freewheel stop, drive locked or braking terminated).
Enabled by means of logic output LO or relay R2.

- This function avoids the need for frequency switching on the power circuit upstream of the drive (otherwise premature aging of the filtering capacitors will occur) and requires a specific connection diagram (see page 2/166).
ㅁ This function must be used for cycles < $\mathbf{6 0} \mathbf{s}$ with motor isolation on stopping.
Otherwise, the excessive frequency of operation of the line contactor may destroy the load resistor in the drive.
- On machines where operation requires power to the motor to be removed when there is a stop, this function prevents any possibility of an untimely restart (example: materials handling carousel where items are put down and picked up manually).

This function can also be used to implement backup operation by direct supply of the motor via the mains supply (for machines requiring an emergency release function). The output can then be used both to control a downstream contactor and to authorise emergency operation ("bypass" function).

Presentation:	Characteristics:	References:
pages $2 / 122$ to 2/126	pages 2/127 to $2 / 129$	pages $2 / 132$ to $2 / 134$

Variable speed drives for asynchronous motors
 Altivar 58

- Preset speeds

Used to switch preset speed references.
2, 4, or 8 preset speeds can be selected.
Enabled by means of 1,2 or 3 logic inputs.
The preset speeds can be adjusted in increments of 0.1 Hz to 0 Hz up to the maximum speed.
Function suitable for materials handling and machines with several operating speeds.

The speed obtained with inputs LI 3 and LI4 at state 0 is LSP or the speed reference, depending on the level of analogue inputs Al1 and AI2.

Factory settings:
$1^{\text {st }}$ speed: LSP (low speed or reference)
$2^{\text {th }}$ speed: 5 Hz
$3^{\text {th }}$ speed: 10 Hz
$4^{\text {th }}$ speed: HSP (high speed)

Example of operation with 4 preset speeds.

- Setting analogue input Al2

It is possible to modify the specification of analogue current input Al2.
Factory setting: $4-20 \mathrm{~mA}$.
Other values: $0-20 \mathrm{~mA}, 20-4 \mathrm{~mA}$ or $\mathrm{X}-\mathrm{Y} \mathrm{mA}$ by programming X and Y with a precision of 0.1 mA .

- Summing inputs

Analogue input AI2 (and/or analogue input AI3 with extension card) can be assigned as a summing input with Al1 corresponding to speed HSP.
This function is suitable for machines on which the speed is controlled by a process controller signal on input AI2.

$10 \mathrm{v}^{\mathrm{Al}}$
 _t

References summed

- Reference switching

Allows 2 analogue references to be switched by means of a logic command. This function avoids having to switch low level signals and makes the 2 reference inputs Al1 and AI2 independent. Enabled by means of 1 reassignable logic input LI.
This function is suitable for all machines with automatic/manual operation.
Automatic control via a sensor on input Al2, enabled by setting the logic input to 0 .

Connection diagram for reference switching

Manual control by means of potentiometer on input Al1 (local control).

Example of reference switching

Variable speed drives for asynchronous motors

 Altivar 58

 Altivar 58}

- PI regulator

Used for simple control of a flow rate or a pressure with a sensor which supplies a feedback signa adapted to the drive
This function is suitable for pumping and ventilation applications.

ACC: acceleration
AC2: acceleration 2
DEC: deceleration
DE2: deceleration 2
FBS: PI feedback multiplication coefficient

PIC: reversal of the direction of correction of the PI regulator
PSP: used to adjust the filter time constant on the PI feedback
RIG: PI regulator integral gain
RPG: proportional gain of the PI regulator

- PI reference:
- line reference (serial link),
- or 2 or 4 preset references by logic inputs,
- or analogue input Al1 ($\pm \mathrm{Al} 2, \pm \mathrm{Al} 3$).
- Pl feedback:
- analogue input Al2 or Al3.
- Manual reference (speed regulation operation)
- analogue input Al3.
- Auto/man:
- logic input LI for switching operation to speed regulation (man) or PI regulation (auto).

During automatic operation, it is possible to adapt the process feedback, to correct inverse PI, to adjust the proportional and integral gain and Ki , to allocate an analogue output for the PI reference, feedback and error, to apply a ramp (time $=\mathrm{AC} 2-\mathrm{DE} 2$) to establish the PI action on starting and stopping.
The motor speed is limited to between LSP and HSP.
Preset PI references:
2 or 4 preset references require the use of 1 or 2 logic inputs respectively.

2 preset references Assign: LIx to Pr2	4 preset references Assign: LIx to Pr2, Lly to Pr4	Llx	Reference	
Lix	Reference	Lly	0	Analogue reference
0	Analogue reference	0	1	PI2 (adjustable)
1	Process max $(=10 \mathrm{~V})$	0	0	PI3 (adjustable)
	1	1	Process max $(=10 \mathrm{~V})$	

Note:

the PI function is incompatible with the "preset speeds" and "step-by-step" (JOG) functions, the PI reference can also be transmitted on line via the RS 485 serial link or via one of the communication cards.

Presentation:	Characteristics:	References:	Dimensions, schemes:
pages 2/122 to 2/126	pages 2/127 to 2/129	pages 2/132 to 2/134	pages 2/160 to 2/170

Variable speed drives for asynchronous motors

Altivar 58

Connection diagram for speed feedback via tachogenerator

- Use in 1 operating direction

Connection diagram with inductive sensor or photoelectric detector: simple regulation (less accurate at low speed)

1 Fast stop
2 d.c. injection stop
3 Normal stop on deceleration ramp
4 "Freewheel" stop
Examples of controlled stops

- Speed feedback with tachogenerator

Used for precise speed control, irrespective of the state of the motor load.
Assigned to logic input AI3, with extension card/analogue input
The maximum tachogenerator voltage must be between 5 and 9 V . If necessary, use an external divider bridge to set this value (1).
An accurate setting for adjusting this value can be found in the "adjust" menu. The coherence between motor frequency and speed feedback is monitored in the drive's fault menu.
This function is suitable for all applications requiring exact speed irrespective of the load.
(1) Example: motor 1500 rpm at 50 Hz , tachogenerator $0.06 \mathrm{~V} / \mathrm{rpm}$, max. speed set to 75 Hz (speed 2250 rpm)
maximum voltage $0.06 \times 2250=135 \mathrm{~V}$
recommended tachogenerator current 10 mA , therefore $R 1+R 2=135 / 10=13.5 \mathrm{k} \Omega$
average voltage on the input $=7 \mathrm{~V}$, therefore $R 1=7 / 10=0.7 \mathrm{k} \Omega$ or 680Ω, nearest standard value. R2 = 13.5-R1, or $12 \mathrm{k} \Omega$, nearest standard value
exact voltage on $A 13=135 \times R 1 /(R 1+R 2)=135 \times 0.68 / 12.68=7.24 \mathrm{~V}$
Use appropriate power resistors (min. 2 W).
The speed feedback should be scaled exactly by programming (when the device is set up).

- Incremental speed feedback

Used for precise speed control, irrespective of the state of the motor load.
Assigned to logic inputs A, A-, B, B- on the extension card/encoder inputs.
NPN type open collector output, nominal voltage $24 \mathrm{~V}=-$
Max. reading frequency 33 kHz at max. speed HSP
For use in 1 operating direction with an inductive sensor or photoelectric detector: simple regulation (less accurate at low speed).

- Use in 1 or 2 operating directions

Connection diagram with incremental encoder for accurate regulation at low speed
Consistency between the motor frequency and the speed feedback is monitored in the drive fault management system.
This function is suitable for applications requiring accurate speed control irrespective of the load and a high level of immunity to interference.

- Incremental speed reference

Enables validation by assigning the logic inputs on the above extension card/encoder inputs to the "summing inputs" function.
Synchronization of the speed of a number of drives.
Nominal voltage $24 \mathrm{~V}=-$
Max. reading frequency 33 kHz at max. speed HSP

- Controlled stop

Used to define stop modes in addition to the standard drive stops. These stop requests always have priority.

Choice of three stopping methods:

- freewheel stop: the drive locks and the motor stops in accordance with the inertia and the resistive torque,
fast stop: the motor brakes to a stop with the deceleration ramp time divided by a coefficient which can be set between 1 and 10 ,
- d.c. injection braking: adjustment of the time (0 to 30 s , factory setting 0.5 s) and current (10% to 136% of the nominal drive current in high torque applications, factory setting 70%).
Continuous braking is possible but is limited automatically to another adjustable value (10% to 100% of the nominal motor current, factory setting 50%) after 30 s .

Enable modes:

a by means of 1 reassignable logic input LI: active at 0 for freewheel stop and fast stop, active at 1 for injection stop,

- automatic when stopping (frequency less than 0.1 Hz) for injection braking, as this function can be combined with the others. In this case, only the current after 30 s of injection can be adjusted.
Applications:
- "freewheel" stop for applications with locking using electrical safety devices,
- fast stop for materials handling applications with emergency stop electrical braking,
- d.c. injection braking for fans, for which this stopping mode does not generally require the addition of a braking resistor.

Variable speed drives for asynchronous motors
 Altivar 58

■ Controlled stop on mains power break
Used to control motor stopping on a mains power break, following a ramp which is self-adapting according to the restored kinetic energy.
Function suitable for materials handling, machines with high inertia, continuous product
processing machines.
Factory setting: inactive

- Automatic catching a spinning load with speed detection ("catch on the fly")

Used to restart the motor smoothly after one of the following events:

- mains power break or simple switch off,
- fault reset or automatic restart,
- freewheel stop or injection stop with logic input,
- uncontrolled loss of power downstream of the drive.

On restarting, the effective speed of the motor is detected in order to restart on the ramp at this speed and return to the reference speed. The speed detection time can be up to 1 s depending on the initial deviation.
Factory setting: active
This function is automatically disabled if the brake sequence is configured.
This function is suitable for machines for which the loss of motor speed is negligible during the supply loss time (machines with high inertia), fans and pumps driven by a residual flux, etc.

- Automatic restart

Enables the drive to be restarted automatically after locking following a fault if this fault has disappeared and if the other operating conditions permit a restart.
This restart is performed by a series of automatic attempts at 30 s intervals.
If the drive has not restarted after 6 attempts, it will lock and the procedure is abandoned until it has been switched off and on again.
Factory setting: inactive.
The faults permitting this restart are:

- excessive braking,
- mains overvoltage,
- motor thermal overload,
- drive thermal overload,
- loss of 4-20 mA reference,
- d.c. bus overvoltage,
- external fault,
- motor phase loss,
- serial link fault,
- mains voltage too low. For this fault, the function is always active, even if it is not configured For this type of fault, the drive fault relay remains activated if the function is configured. The speed reference and the direction of operation must be maintained for this function.
This function is suitable for machines or installations operating continuously or without supervision, which, when restarted, pose no danger to either equipment or personnel (pumps, fans, etc).
- Maintaining the speed following loss of the 4-20 mA reference

Enables the motor speed to be maintained following loss of the 4-20 mA reference.
This function is suitable for applications which must not be interrupted.

- Limiting low speed operating time (LSP)

The motor is stopped automatically after an operating period at low speed (LSP) with zero reference and run command present.
This time can be set between 0.1 and 999.9 s or no limit. Factory setting 5 s . The motor restarts automatically on the ramp when the reference reappears or if the run command is broken and then re-established.
This function is suitable for automatic stopping/starting on pressure-regulated pumps.

Presentation:	Characteristics:	References:	Dimensions, schemes:
pages 2/122 to 2/126	pages 2/127 to 2/129	pages 2/132 to 2/134	pages 2/160 to 2/170:

Variable speed drives for asynchronous motors

Altivar 58

Thermal protection characteristics (warm and cold)

- Fault reset

Enables faults to be reset by means of a logic input LI which can be reassigned to this function. The restart conditions after a reset to zero are the same as those of a normal power-up. Fault reset: overvoltage, overspeed, external fault, drive overheating, loss of motor phase, d.c. bus overvoltage, loss of $4-20 \mathrm{~mA}$ reference, load veering, motor overload if the thermal state is less than 100 \%, serial link fault.
"Mains undervoltage" and "mains phase loss" faults are reset automatically when the mains supply is restored.
Function suitable for applications where the drives are difficult to access, for example on moving parts in materials handling systems.

- General reset (inhibits all faults)

This function can be used to inhibit all faults, including thermal protection (forced operation) except short-circuit faults, to ensure operation unless irreparable damage has been caused in extreme operating conditions.
Function suitable for applications where a restart can be vital (conveyor in a furnace, smoke extraction station, machine with hardening products which need to be removed).

- Forced local mode

Forced local mode switches the drive from serial link control to terminal control. A logic input LI can be reassigned to this function.

- External fault

When the input assigned to this function changes to 1 , the motor stops in accordance with the parameter configuration and the drive locks in an "EPF external fault" fault.

■ Fault relay, unlocking

The fault relay is energised when the drive is powered up and is not faulty. It contains a " C / O " common point contact.
The drive can be unlocked after a fault in one of the following ways:

- by powering down until the "ON" LED extinguishes then switching the power back on,
- by assigning a logic input to the "reset faults" function,
a by the "automatic restart" function, if it has been configured.

- Motor thermal protection

Indirect motor thermal protection is implemented via continuous calculation of its theoretical temperature rise.
The drive is locked on a fault if this temperature rise exceeds 118% of the nominal temperature rise.

- This function is suitable for applications with self-cooled or force-cooled motors.

The microprocessor calculates the theoretical temperature rise of the motor based on various elements:

- the operating frequency,
the current taken by the motor,
- the operating time,
- the maximum ambient temperature around the motor $\left(40^{\circ} \mathrm{C}\right)$.

Adjustment:
0.25 to 1.36 times the nominal current of the drive in high torque applications, factory setting 0.9 times the nominal current indicated on the motor rating plate.

- Special applications

Adaptation of thermal protection in the fault configuration menu:

- applications with force-cooled motor: in this case, the tripping curves are those shown opposite for the nominal frequency $50 / 60 \mathrm{~Hz}$,
- suppression of thermal protection in harsh environments: temperature greater than $40^{\circ} \mathrm{C}$ around the motor, which may cause the cooling fins to become clogged (provide direct thermal protection via thermistor probes integrated into the motor),
- motor thermal protection using PTC probes: see "PTC probe protection" function with option card,
- if several motors are connected in parallel on the same drive, fit each motor starter with a thermal relay to reduce the risk of the load being distributed unevenly.

Note: when the drive is switched off, calculation I2t is saved and the amount by which it has decreased is calculated.

Presentation:	Characteristics:	References:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 132$ to $2 / 134$

Variable speed drives for asynchronous motors
 Altivar 58

- PTC probe protection

Used for motor thermal protection (if the motor is fitted with PTC probes)
Assigned to logic input Al3, with extension card/analogue input
Maximum resistance of probe circuit at $20^{\circ} \mathrm{C}: 750 \Omega(3 \times 250 \Omega$ probes connected in series) Probe break and short-circuit faults are monitored.

- Thermal protection of drive

Enables the drive to be protected directly via a thermistor fitted on the heatsink, ensuring that components are protected in the event of poor ventilation or excessive ambient temperatures. Locks the drive in the event of a fault.

- Switching frequency, noise reduction

High frequency switching of the intermediate d.c. voltage can be used to supply the motor with a current wave with low harmonic distortion.
The switching frequency can be adjusted to reduce the noise generated by the motor.
In addition, the switching frequency is random in order to avoid resonance. This function can be disabled if it causes instability.
This function is suitable for all applications which require low motor noise.

- Without derating, for continuous or intermittent duty (0.5 and 1 kHz frequencies should be used for long cable lengths).

Drives	Configurable switching frequencies $\mathbf{k H z}$
ATV-58•U09M2 to •D12M2	$0.5-1-2-4$
ATV-58HD16M2X and HD23M2X	
ATV-58•U18N4 to •D46N4	
ATV-58HD28N4X to HD46N4X	$0.5-1-2$
ATV-58HD28M2X to HD46M2X	
ATV-58@D54N4 to •D79N4	
ATV-58HD54N4X to HD79N4X	

- Without derating, with intermittent operating cycle or with derating by one rating in continuous duty (1).

Drives	Configurable switching frequencies $\mathbf{k H z}$
ATV-58•U09M2 to •D12M2	$8-12-16$
ATV-58•U18N4 to \bullet D23N4	$8-12$
ATV-58HD16M2X and HD23M2X	
ATV-58@D28N4 to •D46N4	$4-8$
ATV-58HD28N4X to HD46N4X	
ATV-58HD28M2X to HD46M2X	
ATV-58•D54N4 to ॰D79N4	
ATV-58HD54N4X to HD79N4X	

(1) In intermittent duty, automatic frequency reduction in the case of overheating.

■ Energy saving

Enables the power consumption to be adapted according to the load, improving efficiency. Function suitable for variable or reduced torque applications.

Presentation:	Characteristics:	References:
pages $2 / 122$ to $2 / 126$	pages $2 / 127$ to $2 / 129$	pages $2 / 132$ to $2 / 134$

Variable speed drives for asynchronous motors

Altivar 58

Adaptation of the current limit

Reference

Motor speed change depending on the reference with a skip frequency

CLI: internal current limit HSP: high speed

- Adaptation of the current limit

The current limit can be adapted automatically according to the speed in order to avoid a motor overload fault.
This function is suitable for ventilation applications in which the load curve changes according to the air density.

- Auto-tuning

Auto-tuning can only be performed by user intervention via the dialogue tools and by an assignable logic input. It is used to optimise performance.
This function is suitable for use in all applications.

- Skip frequencies

Skip frequencies can be used to suppress up to three critical speeds which may be the cause of mechanical resonance.
It is possible to prohibit the prolonged operation of the motor within a frequency band of 5 Hz over 1 to 3 frequency bands adjustable over the speed range.
Function suitable for lightweight machines, bulk product conveyors with unbalanced motor, fans and centrifugal pumps.

- Reassignable logic outputs

Relay R2 (or LO solid state output with I/O extension card):

- Remote signalling of the following information as required:
- drive operating (running or braking),
- frequency threshold reached (higher than or equal to an adjustable threshold),
- $2^{\text {nd }}$ frequency threshold reached,
- frequency reference reached (motor frequency equal to the reference),
- current threshold reached (higher than or equal to an adjustable threshold),
- motor thermal threshold reached (higher than or equal to an adjustable threshold),
- drive thermal threshold reached (higher than or equal to an adjustable threshold),
- high speed reached,
- loss of 4-20 mA reference.
- Remote control of a downstream contactor.
- Brake sequence (R2 relay only).
- Analogue outputs AO1 (or AO with I/O extension card)

Analogue outputs AO1 and AO ($x-y m A$) can be assigned to the following parameters:

- motor current ($\mathrm{y} \mathrm{mA}=$ twice the nominal current of the drive),
- motor frequency (y mA = maximum frequency),
- ramp output (y mA = maximum frequency),
- motor torque (y mA = twice the nominal motor torque),
- signed motor torque ($\mathrm{xmA}=-$ twice the nominal motor torque, ie. braking operation,
- signed ramp (x mA = maximum reversing frequency, y mA = maximum forward frequency),
- Pl reference ($x \mathrm{~mA}=$ minimum reference, y $\mathrm{mA}=$ maximum reference),
- PI feedback ($x \mathrm{~mA}=$ minimum feedback, y $\mathrm{mA}=$ maximum feedback),
- Pl error ($\times \mathrm{mA}=$ maximum error <0, y $\mathrm{mA}=$ minimum error >0),
- Pl integral (y mA = integral saturated),
- motor power (x mA $=0 \%$ of the nominal motor power, y mA $=200 \%$ of the nominal motor power),
- motor thermal state calculated: ($\mathrm{x} \mathrm{mA}=0 \%, \mathrm{y} \mathrm{mA}=200 \%$),
- drive thermal state: ($\mathrm{xmA}=0 \%$, y $\mathrm{mA}=200 \%$).

Note: x and y can be set between 0 and 20 mA

- Adjustment of analogue outputs AO1 (or AO with I/O extension card)

Used to modify the characteristics of analogue current outputs AO1 and AO.
Factory setting: 0-20 mA
Other values: $4-20 \mathrm{~mA}, 20-4 \mathrm{~mA}$ or $\mathrm{x}-\mathrm{y} \mathrm{mA}$ by programming x and y with a definition of 0.1 mA .
This function is suitable for use in applications with a signal other than $0-20 \mathrm{~mA}$.

Variable speed drives for asynchronous motors
 \author{ Altivar 58

}Compatibility table for configurable I/O functions
■ Configurable I/O
Functions which are not listed in this table are fully compatible.

- Stop functions have priority over run commands.
- Speed references via logic command have priority over analogue references.

The choice of functions is limited:

- by the number of drive I/O which can be reassigned: if necessary, add an I/O extension card,
- by the incompatibility of certain functions with one another.

Functions	d.c. injection braking	$\begin{aligned} & \text { Summing } \\ & \text { inputs } \end{aligned}$	regulator	+/-speed	Reference switching	Free- wheel stop	Fast stop	Run Jog operation	Preset speeds	Speed regulatio with tachogenerator encoder	Torque limitation by Al3	Torque limitation by LI
d.c. injection braking						\uparrow	†					
Summing inputs					-							
PI regulator								-	-	-		
+/- speed					θ			t	e			
Reference switching		-		θ					-			
Freewheel stop	-						\leftarrow					
Fast stop	\leftarrow					\uparrow						
Jog operation			-	\leftarrow					\leftarrow			
Preset speeds			-	-	θ			\uparrow				
Speed regulation with tachogenerator or encoder			-									
Torque limitation by Al3												-
Torque limiting via LI											-	

Incompatible functions
Compatible functions
Not applicable

Priority functions (functions which cannot be active at the same time)

[^24]
Variable speed drives for asynchronous motors
 Altivar 58

Summary table of the configurable I/O assignments

	Drive I/O								
	Without option card				With I/O extension cards				
	Relay R2	Analogue input AI2	Analogue output AO1	3 logic inputs LI2-LI3-LI4	2 logic inputs LI5-LI6	Analogue input Al3	Logic output LO	Analogue output AO	Encoder inputs A-, A+, B-, B+
Functions									
Auto-tuning									
Reverse operation									
Alternate ramp switching									
Step by step (JOG)									
+/-speed									
Preset speeds									
Reference switching									
External fault									
Freewheel stop									
d.c. injection stop									
Fast stop									
Motor switching									
Forced local mode									
Pl auto/man									
Fault reset									
General reset (inhibits all faults)									
Summing reference									
Pl regulator									
$2^{\text {nd }}$ speed reference									
Speed feedback									
PTC probes									
Torque limit reduction									
Downstream contactor control									
Frequency threshold reached									
High speed reached									
Frequency reference reached									
Current threshold reached									
Motor thermal threshold reached									
Drive thermal threshold reached									
Drive running									
Loss of 4-20 mA reference									
Brake sequence									
Motor current									
Motor frequency									
Ramp output (signed)									
Motor torque									
Pl function outputs									
Motor power									
Motor thermal state									
Drive thermal state									
				Possible as	gnments				

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Variable speed drives for asynchronous motors
 \author{ Altivar 58F Flux Vector Control with sensor

}

Applications

Frequency converter for 3-phase squirrel cage asynchronous motors, the Altivar 58 F flux vector control (FVC) with sensor complements the standard Altivar 58 range without sensor. It comprises functions which respond to applications requiring torque and accuracy at very low speed and increased dynamics, such as:

- horizontal and vertical materials handling,
- modular machines.

Functions

The main functions are as follows:

- starting, closed loop speed control, dynamic braking and braking to a standstill,
- possible open loop operation,
- possibility of holding motor torque at a standstill,
- energy saving, PID control,
- brake logic,
- +/- speed, S ramps, U ramps, preset speeds, jog operation (JOG),
- automatic catching a spinning load with speed search (catch on the fly),
- automatic limiting of low speed operating time, motor and drive protection, etc.

Manufacturing variations

The Altivar 58F is presented in the form of a drive (item 1) with heatsink for normal environments and ventilated enclosures. The offer is also available with the drive mounted on a baseplate for ratings 0.75 to 15 kW .

Fast programming using macro-configurations

The Altivar 58F offers simple, fast programming using macro-configurations which correspond to various applications: materials handling, general use.
Each of these configurations is fully adjustable.

Dialogue functions

The Altivar 58F has an RS 485 multidrop serial link with simplified Modbus protocol as part of the standard product. This serial link is used to connect PLCs (item 6), a PC or one of the available dialogue tools. There are 3 advanced dialogue solutions, with plain text display in 5 languages (English, French, German, Spanish, Italian) and storage of configurations:

- Operator terminal, on the drive or enclosure door (item 2)
- PowerSuite Pocket PC (item 3):
the Pocket PC is a tool which can be used during preparation, programming, setup and maintenance. The kit comprises a Pocket PC and connection accessories.
- PowerSuite software workshop for PC (item 4):
the PowerSuite software workshop is used to set up an Altivar drive from a PC in a Microsoft Windows 95, 98, NT4 or 2000 environment.
- Magelis display unit with matrix screen (item 5):
this display unit can be used to monitor, diagnose and adjust up to 8 Altivar 58F drives.

Customising the application

It is possible to extend the functions by adding an extension card or communication bus (item 7).

- I/O extension cards:
$-I / O$ and speed loop with analogue input or speed reference from encoder input.
- Communication bus:
-Fipio, Uni-Telway/Modbus, INTERBUS-S, Modbus Plus, AS-Interface, Profibus DP, Ethernet, CANopen, DeviceNet communication bus.

Electromagnetic compatibility

- Integrated EMC filters:

ATV-58F drives are available with integrated EMC filters. Incorporating filters into the drives simplifies installation and provides an economical means of ensuring machine conformity for $\subset \in$ marking purposes.
They are sized to conform to the following standards: IEC/EN 61800-3 for domestic and industrial environments.

- Line chokes:

ATV-58F drives with power rating $\geq 18.5 \mathrm{~kW}$ at $380 \ldots 500 \mathrm{~V}$ are available with integrated line chokes which limit the line current to the motor nominal current value.
Separate line chokes are available as an option for the other power ratings.

Characteristics:	References:	Dimensions, schemes:	Functions:
pages $2 / 208$ to $2 / 213$	pages $2 / 214$ and $2 / 215$	pages $2 / 218$ to $2 / 221$	pages $2 / 224$ to $2 / 233$

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Environment characteristics

Conforming to standards			Altivar 58F drives have been developed to conform to National and International standards and the recommendations for electrical industrial control devices (IEC, EN, NFC, VDE), notably: - Low Voltage EN 50178 - EMC immunity: - IEC/EN 61000-4-2 level 3 - IEC/EN 61000-4-3 level 3 - IEC/EN 61000-4-4 level 4 - IEC/EN 61000-4-5 level 3 - IEC/EN 61800-3, environments 1 and 2 - EMC, conducted and radiated emissions: - IEC/EN 61800-3, environments 2 (industrial sector) and 1 (public sector) with restricted distribution - EN 55011 class A (drives with radio interference filters included) - EN 55022 class B, with additional filters.
C \in marking			The drives have been developed according to the European low voltage (73/23/EECand 93/68/EEC) and EMC (89/336/EEC) directives. For this reason, Altivar 58F drives are marked with the CE European Community mark.
Product certifications			UL and CSA
Degree of protection			IP 21 and IP 41 on upper part (conforming to EN 50178)
Vibration resistance			Conforming to IEC 60068-2-6: - 1.5 mm peak from 2 to 13 Hz - 1 gn from 13 to 200 Hz
Shock resistance			Conforming to IEC 60068-2-27: 15 gn for 11 ms
Maximum ambient pollution			Degree 2 conforming to IEC 60664-1 and EN 50178
Maximum relative humidity			93 \% with no condensation or dripping water, conforming to IEC 60068-2-3
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	$-25 \ldots+65$
	Operation	${ }^{\circ} \mathrm{C}$	ATV-58FHU18N4 to HU90N4 drives: - $-10 \ldots+50$ with no derating - Up to +60 derating the current by 2.2% per ${ }^{\circ} \mathrm{C}$ over $50^{\circ} \mathrm{C}$ ATV-58FHD12N4 to HD23N4 drives: - $-10 \ldots+40$ with no derating - Up to +50 derating the current by 2.2% per ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$ ATV-58FHD28N4 to HD79N4 drives: - $-10 \ldots+40$ with no derating - Up to +60 with fan kit derating the current by 2.2% per ${ }^{\circ} \mathrm{C}$ over $40^{\circ} \mathrm{C}$
Maximum operating altitude		m	1000 with no derating (above this, derate the current by 1% per additional 100 m)
Operating position			Vertical

Presentation: pages $2 / 206$ and $2 / 207$	References: pages $2 / 214$ and $2 / 215$	Dimensions, schemes pages $2 / 218$ to $2 / 221$	Functions: pages $2 / 224$ to $2 / 233$
$2 / 208$		审 Telemecanique	

Variable speed drives for asynchronous motors
 \author{ Altivar 58F Flux Vector Control with sensor

}
Drive characteristics

Output frequency range	Hz	0... 450
Configurable switching frequency	kHz	No derating, in continuous operation: - 0.5-1-2-4 for ATV-58FHU18N4 to HD46N4 drives - 0.5-1-2 for ATV-58FHD54N4 to HD79N4 drives No derating with intermittent operating cycle or with derating by one power rating in continuous operation: - 8-12-16 for ATV-58FHU18N4 to HD23N4 drives - 8-12 for ATV-58FHD28N4 to HD46N4 drives - 4-8 for ATV-58FHD54N4 to HD79N4 drives
Speed range		1... 1000 closed loop with encoder feedback $1 . . .100$ open loop or with tachogenerator speed feedback
Speed precision For a torque variation from 0.2 Tn to Tn		$\begin{aligned} & \pm 1 \% \text { of the nominal speed, without speed feedback } \\ & \pm 0.1 \% \text { of the nominal speed, with tachogenerator speed feedback (option card) } \\ & \pm 0.01 \% \text { of the nominal speed, with encoder feedback (closed loop) } \end{aligned}$
Transient overtorque		200 \% of the nominal motor torque (typical value at $\pm 10 \%$) for 2 s 170% of the nominal motor torque (typical value at $\pm 10 \%$) for 60 s
Braking torque		30% of the nominal motor torque with no braking resistor (typical value). Up to 150% with braking resistor as option

Electrical characteristics

Power supply	a.c. voltage	V	ATV-58Fe๑e๑N4 drives: $380-10 \%$ to $500+10 \%$
	Frequency	Hz	$50 \pm 5 \%$ or $60 \pm 5 \%$
	d.c. voltage	V	ATV-58Feセe๑N4290 drives: 540-10 \% to 700 + 10 \%
Output voltage			Maximum voltage equal to mains voltage
Electrical isolation			Electrical isolation between power and control (inputs, outputs, supplies)
Available internal supplies			Protected against short-circuits and overloads $1+10 \mathrm{~V}$ supply $-0+10 \%$ for the reference potentiometer ($1 \ldots 10 \mathrm{k} \Omega$), maximum current 10 mA $1+24 \mathrm{~V}$ supply ($\min 18 \mathrm{~V}$, max 30 V) for control inputs, maximum current 120 mA
AI analogue inputs			Al1A, Al1B: differential bipolar voltage analogue input: - $\pm 10 \mathrm{~V}$, impedance $40 \mathrm{k} \Omega$ in differential mode, $20 \mathrm{k} \Omega$ in common mode - max permissible voltage $\pm 30 \mathrm{~V}$ - 11 bit resolution + sign - accuracy $\pm 0.5 \%$ of maximum value - linearity $\pm 0.2 \%$ of maximum value - sampling time 2 ms $\mathrm{Al2:}$ analogue current input: - 0-20 mA input, reassignable to $X-Y m A$ by programming X and $Y(0$ to 20) - max permissible current 50 mA - resolution 0.02 mA - precision $\pm 1 \%$ of maximum value - linearity $\pm 0.5 \%$ of maximum value - sampling time 2 ms - impedance 100Ω
Logic inputs LI1 to LI4			4 assignable logic inputs with impedance 3.5 k Ω, compatible with PLC level 1, standard IEC 60065A-68 Maximum length of shielded cable: 100 m Power supply $+24 \mathrm{~V}(\min 11 \mathrm{~V}$, $\max 30 \mathrm{~V})$ State 0 if $<5 \mathrm{~V}$, state 1 if $\geq 11 \mathrm{~V}$ Sampling time: 2 ms max
Other inputs			See option cards

Presentation:	References:	Dimensions, schemes	Functions:
pages $2 / 206$ and $2 / 207$	pages $2 / 214$ and $2 / 215$	pages $2 / 218$ to $2 / 221$	pages $2 / 224$ to $2 / 233$

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Electrical characteristics (continued)

A01 current analogue output		0-20 mA output reassignable to $X-Y \mathrm{~mA}$, with X and Y configuration (0 to 20), load impedance 500Ω maximum Resolution 0.02 mA Precision $\pm 1 \%$ of maximum value Linearity ± 0.5 \% of maximum value Sampling time 2 ms maximum
Logic outputs		2 relay logic outputs: R1 (fault relay) and R2 (assignable) $1 \mathrm{C} / \mathrm{O}$ contact protected against overvoltages (relay R1) $1 \mathrm{~N} / \mathrm{O}$ contact protected against overvoltages (relay R2) Minimum switching capacity: 10 mA for $=-24 \mathrm{~V}$ Maximum switching capacity: - on a resistive load ($\cos \varphi=1$): 5 A for $\sim 250 \mathrm{~V}$ or $=30 \mathrm{~V}$ - on an inductive load ($\cos \varphi=0.4$ and $L / R=7 \mathrm{~ms}$): 1.5 A for $\sim 250 \mathrm{~V}$ or $-\mathrm{-} 30 \mathrm{~V}$
Other outputs		See option cards
Communication		RS 485 multidrop serial link with simplified Modbus protocol as part of the standard product. Transmission speed: 19,200 bps no parity. Use: - connecting a terminal (option) or - connecting a microprocessor card or - connecting a PC (option) or - connecting one or more PLCs
Acceleration and deceleration ramps		Shape of ramps can be selected: linear or S or U or totally customizable. Factory-preset to 3 s . Possibility of 2 ranges of ramps which can be switched by frequency threshold or logic input Can be adjusted separately from 0.01 to 999.9 s (definition 0.1 s or 0.01 s) Automatic adaptation of the deceleration times if the braking capacity is exceeded (configurable option)
Braking to standstill		By d.c. injection: - by a signal on an assignable logic input - automatically on stopping as soon as the frequency drops below 0.1 Hz , for a time adjustable from 0 to 30 s or continuous
Main protection and safety features of the drive		Short-circuit protection: - between output phases - between output phases and earth - on the outputs of internal supplies Thermal protection against excessive overheating and overcurrents Mains undervoltage and overvoltage Mains supply phase loss of phase (prevents single phase operation of 3-phase drives)
Motor protection		Thermal protection integrated in the drive by continuous calculation of I t taking the speed into account: - saving of motor thermal state when drive is powered down - function can be modified using the terminal depending on type of motor cooling, force-cooled or self-cooled Protection against motor loss of phase Protection via PTC probes with option card
Insulation resistance to earth	M Ω	> 500 (electrical insulation)

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Torque characteristics (typical curves)

The curves below show the permanent torque and the transient overtorque available on a self-cooled motor or forcecooled motor. The only difference lies in the ability of the motor to provide high permanent torque at less than half nominal speed.

Open loop applications

1 Self-cooled motor: permanent useful torque
2 Force-cooled motor: permanent useful torque 3 ransient overtorque for 60 s max.

4 Overspeed torque at constant power
Available overtorque: 200% of the nominal motor torque for 2 s and 170% for 60 s .

Closed loop applications

1 Self-cooled motor: permanent useful torque
2 Force-cooled motor: permanent useful torque
3 Transient overtorque for 60 s max.
4 Overspeed torque at constant power
Available overtorque: 200% of the nominal motor torque for 2 s and 170% for 60 s .

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Special uses

Power of the motor lower than the power of the drive

The Altivar 58F drive can supply any motor with a power level lower than that for which it is designed. This solves the problem of applications requiring intermittent high overtorque. Examples: machine with very high starting torque.

Note: in this case we recommend oversizing the drive to one size above that of the motor. Example: connecting an 11 kW motor to a 15 kW drive.

Power of the motor higher than the power of the drive

A motor with a power level higher than that of the drive can be used as long as the current drawn by the motor is lower than or equal to the nominal current of the drive. This gives a self-cooled motor a greater speed range in continuous operation.

Note: limit the power of the motor to one size above that of the drive.

Example: connecting a 2.2 kW drive to a 3 kW motor (the 3 kW motor is to be used as a 2.2 kW motor with a speed range of 10 to 50 Hz).

1 Continuous motor torque Example: 2.2 kW
Motor power = drive power
2 Continuous motor torque
Example: 3 kW
Motor power > drive power
32.2 kW drive: nominal current

Using a motor at overspeed

The maximum output frequency of the drive can be adjusted from 40 to 450 Hz . Before using a standard asynchronous motor at overspeed, ask the manufacturer for the mechanical overspeed capabilities of the selected motor.

Above its nominal speed corresponding to a frequency of $50 / 60 \mathrm{~Hz}$, the motor runs with decreasing flux and its torque decreases considerably (see curve opposite). The application must allow reduced torque operation at very high speed.

1 Machine torque (decreasing torque)
2 Machine torque (low motor torque)
3 Continuous motor torque

Typical applications: woodworking machines, increasing the operational speed range of lightly loaded motors.

Presentation:	References:		
pages $2 / 206$ and $2 / 207$	pages $2 / 214$ and $2 / 215$	pagensions, schemes: $2 / 218$ to $2 / 221$	Functions:

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Special uses (continued)

Using a motor at constant torque up to $87 / 104 \mathrm{~Hz}$
A 230/400 V motor can be used at constant torque up to 87 Hz with a Δ connection with 400 V supply.
In this special case, the initial power of the motor and the power of the connected drive are multiplied by $\sqrt{3}$ (a drive of suitable power must therefore be selected).

Example: a $2.2 \mathrm{~kW}, 50 \mathrm{~Hz}$ motor with a 人 connection supplies a power of 3.8 kW at 87 Hz with a Δ connection (establish the overspeed capabilities of the motor).

Operation with intermittent cycle and high switching frequency
It is possible to operate with a high switching frequency (1) with no derating of power if the operating conditions are intermittent and within the following limits:
Cumulative running time 36 s max per 60 s cycle (load factor 60%).

Variable speed drives
for asynchronous motors
Altivar 58F Flux vector control with sensor

3-phase supply voltage: $380 . .500 \mathrm{~V}$ (1) $50 / 60 \mathrm{~Hz}$

Motor	Line supply (3)				Altivar 58F				
Power indicated on rating plate (2)	Line cu	rrent	Max. prospective line Isc		Max. drive nominal current	Max. transient current (4)	Power dissipated at nominal	Reference	Weight
	at U min.	at U max.	at U min	at U max.			load (5)		
kW HP	A	A	kA	kA	A	A	W		kg
Drive with heatsink									
0.751	3.4	2.6	5	5	2.	3.1	55	ATV 58FHU18N4 (6)	3.800
1.52	6	4.5	5	5	4.1	5.6	65	ATV 58FHU29N4 (6)	3.800
2.23	7.8	6	5	5	5.8	7.9	105	ATV 58FHU41N4 (6)	3.800
3	10.2	7.8	5	5	7.8	10.6	145	ATV 58FHU54N4 (6)	6.900
5	13	10.1	5	5	10.5	14.3	180	ATV 58FHU72N4 (6)	6.900
5.5 7.5 7.5 10	17	13.2	5	5	13	17.7	220	ATV 58FHU90N4 (6)	6.900
7.510	26.5	21	22	22	17.6	24	230	ATV 58FHD12N4 (6)	13.000
$11 \quad 15$	35.4	28	22	22	24.2	32.9	340	ATV 58FHD16N4 (6)	13.000
$15 \quad 20$	44.7	35.6	22	22	33	44.9	410	ATV 58FHD23N4 (6)	15.000
18.525	43	35	22	65	41	55	670	ATV 58FHD28N4	34.000
2230	51	41	22	65	48	66	780	ATV 58FHD33N4	34.000
$30 \quad 40$	68	55	22	65	66	90	940	ATV 58FHD46N4	57.000
$37 \quad 50$	82	66	22	65	79	108	940	ATV 58FHD54N4	57.000
$45 \quad 60$	101	82	22	65	94	127	1100	ATV 58FHD64N4	57.000
5575	121	98	22	65	116	157	1475	ATV 58FHD79N4	57.000
Drive on base plate									
$0.75 \quad 1$	3.4	2.6	5	5	2.3	3.1	55	ATV 58FPU18N4 (6)	2.900
$1.5 \quad 2$	6	4.5	5	5	4.1	5.6	65	ATV 58FPU29N4 (6)	2.900
2.23	7.8	6	5	5	5.8	7.9	105	ATV 58FPU41N4 (6)	2.900
3	10.2	7.8	5	5	7.8	10.6	145	ATV 58FPU54N4 (6)	4.800
$4 \quad 5$	13	10.1	5	5	10.5	14.3	180	ATV 58FPU72N4 (6)	4.800
$5.5 \quad 7.5$	17	13.2	5	5	13	17.7	220	ATV 58FPU90N4 (6)	4.800
$7.5 \quad 10$	26.5	21	22	22	17.6	24	230	ATV 58FPD12N4 (6)	11.500
$11 \quad 15$	35.4	28	22	22	24.2	32.9	340	ATV 58FPD16N4 (6)	11.500
$15 \quad 20$	44.7	35.6	22	22	33	44.9	410	ATV 58FPD23N4 (6)	13.500

(1) Nominal supply voltage, U min...U max.
(2) These power levels are given for the maximum switching frequency permitted by the drive in continuous operation without derating (2 or 4 kHz depending on the rating).
For higher switching frequencies:

- derate the power by one rating in continuous operation, for example ATV-58FHD12N4 for 5.5 kW ,
- if no power derating is applied, do not exceed the following operating conditions:

Cumulative running time 36 s maximum per 60 s cycle (load factor 60%).
(3) Typical value for a 4-pole motor with no additional choke.
(4) For 60 seconds.
(5) These power levels are given for the maximum switching frequency permitted by the drive in continuous operation (2 or 4 kHz depending on the rating).
(6) These drives are available with power supplied via the d.c. bus. To order these drives, add 290 at the end of the reference. Example: ATV-58FHU18N4 becomes ATV-58FHU18N4290 with power supply via the d.c. bus.
Nota : please refer to the table summarising the possible combinations for drives, options and accessories on pages 2/216 and 2/217.

Presentation: pages 2/206 and 2/207	Characteristics:	pages 2/207 to $2 / 211$

Variable speed drives for asynchronous motors
 Altivar 58F Flux vector control with sensor Options

Presentation

The Altivar 58F Flux Vector Control with sensor supports the same options as the drives in the ATV 58 range:

- I/O extension card.
- Communication cards:
- Fipio,
- Uni-Telway, Modbus ASCII, Modbus RTU/Jbus,
- INTERBUS-S,
- Modbus Plus,
- AS-Interface,
- Profibus DP,
- Ethernet TCP/IP,
- CANopen,
- DeviceNet.

■ Kit for remote operator terminal.
■ Advanced PowerSuite dialogue solutions (see pages $3 / 2$ and $3 / 3$).

- RS 485 connection kit.
- Chokes.
- Input filters.
- Output filters.
- Braking resistors.
- Kit for mounting IP 23 air exchanger.
- Control card fan kit.

■ Separate control circuit supply kit .

- Removable power terminals.

For more information about all of these options, see pages 2/135 to 2/153.
Nota : the communication cards are fitted with terminals or connectors which are compatible with the corresponding communication buses or networks. Connect them using the appropriate PLC accessories.

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Supply	Motor		ATV-58F drive	Options			
Supply voltage	Power indicated on rating plate			1 extension or communication card (1) See p. 2/141 See p. 2/143	Remote operator terminal See p. 2/138	PowerSuite advanced dialogue solutions workshop and Pocket PC See p. 3/2	
$50 / 60 \mathrm{~Hz}$							
	kW	HP					
$\begin{aligned} & 380 \ldots 500 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	0,75	1	ATV-58FoU18N4	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	1,5	2	ATV-58FoU29N4	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	2,2	3	ATV-58FoU41N4	VW3-A58•e७	VW3-A58103	VW3-A8100	XBT-HM017010A8
	3	-	ATV-58FoU54N4	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	4	5	ATV-58FoU72N4	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	5,5	7,5	ATV-58FoU90N4	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	7,5	10	ATV-58FoD12N4	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	11	15	ATV-58FoD16N4	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	15	20	ATV-58FoD23N4	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	18,5	25	ATV-58FHD28N4	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	22	30	ATV-58FHD33N4	VW3-A58•0๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	30	40	ATV-58FHD46N4	VW3-A58•e७	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	37	50	ATV-58FHD54N4	VW3-A58•e๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	45	60	ATV-58FHD64N4	VW3-A58•0๑	VW3-A58103	VW3-A81•0	XBT-HM017010A8
	55	75	ATV-58FHD79N4	VW3-A58•e๑	VW3-A58103	VW3-A81•e	XBT-HM017010A8

[^25]| RS 485 Interconnection | Line choke | Additional input filter | Output filter | IP 00 braking resistor | IP 30 braking resistor | Kit for mounting IP 23 air exchanger | Control card fan kit | Separate control circuit supply kit | Plug-in power terminal block |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| See
 p. 2/139 | $\begin{aligned} & \text { See } \\ & \text { p. 2/149 } \end{aligned}$ | $\begin{aligned} & \text { See } \\ & \text { p. 2/151 } \end{aligned}$ | See p. 2/153 | $\begin{aligned} & \text { See } \\ & \text { p. 2/146 } \end{aligned}$ | See $\text { p. } 2 / 147$ | $\begin{aligned} & \text { See } \\ & \text { p. 2/135 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { See } \\ & \text { p. 2/136 } \end{aligned}$ | $\begin{aligned} & \text { See } \\ & \text { p. 2/136 } \end{aligned}$ | $\begin{aligned} & \text { See } \\ & \text { p. 2/137 } \end{aligned}$ |
| VW3-A58306 | VW3-A66501 | VW3-A58402 | VW3-A58451 | VW3-A58702 | VW3-A58732 | - | VW3-A58822 | VW3-A58602 | VW3-A58812 |
| VW3-A58306 | VW3-A66501 | VW3-A58402 | VW3-A58451 | VW3-A58702 | VW3-A58732 | - | VW3-A58822 | VW3-A58602 | VW3-A58812 |
| VW3-A58306 | VW3-A66502 | VW3-A58402 | VW3-A58451 | VW3-A58702 | VW3-A58732 | - | VW3-A58822 | VW3-A58602 | VW3-A58812 |
| VW3-A58306 | VW3-A66502 | VW3-A58403 | VW3-A58451 | VW3-A58703 | VW3-A58734 | - | VW3-A58823 | VW3-A58603 | VW3-A58813 |
| VW3-A58306 | VW3-A66502 | VW3-A58403 | VW3-A58451 | VW3-A58703 | VW3-A58734 | - | VW3-A58823 | VW3-A58603 | VW3-A58813 |
| VW3-A58306 | VW3-A66503 | VW3-A58403 | VW3-A58452 | - | VW3-A58735 | - | VW3-A58823 | VW3-A58603 | VW3-A58813 |
| VW3-A58306 | VW3-A66503 | VW3-A58404 | VW3-A58453 | - | VW3-A58735 | - | VW3-A58824 | VW3-A58604 | - |
| VW3-A58306 | VW3-A66504 | VW3-A58404 | VW3-A58453 | - | VW3-A58736 | - | VW3-A58824 | VW3-A58604 | - |
| VW3-A58306 | VW3-A66504 | VW3-A58405 | VW3-A58453 | - | VW3-A58736 | - | VW3-A58824 | VW3-A58604 | - |
| VW3-A58306 | Integrated | VW3-A58406 | VW3-A66412 | - | VW3-A58737 | VW3-A58806 | VW3-A58825 | - | - |
| VW3-A58306 | Integrated | VW3-A58407 | VW3-A66412 | - | VW3-A58737 | VW3-A58806 | VW3-A58825 | - | - |
| VW3-A58306 | Integrated | VW3-A58407 | VW3-A66412 | - | VW3-A58737 | VW3-A58806 | VW3-A58825 | - | - |
| VW3-A58306 | Integrated | VW3-A58408 | VW3-A66413 | - | VW3-A66704 | VW3-A58807 | VW3-A58826 | - | - |
| VW3-A58306 | Integrated | VW3-A58408 | VW3-A66413 | - | VW3-A66704 | VW3-A58807 | VW3-A58826 | - | - |
| VW3-A58306 | Integrated | VW3-A58408 | VW3-A66413 | - | VW3-A66704 | VW3-A58807 | VW3-A58826 | - | - |

ATV-58FH	a	b	c	G	H	\varnothing
	mm	mm	mm	mm	mm	mm
U18N4, U29N4, U41N4	150	230	184	133	210	5
U54N4, U72N4, U90N4	175	286	184	155	270	5,5
D12N4, D16N4	230	325	210	200	310	5,5
D23N4	230	415	210	200	400	5,5
D28N4, D33N4, D46N4	240	550	283	205	530	7
D54N4, D64N4, D79N4	350	650	304	300	619	9

Options: see pages 2/161 and 2/163

Mounting recommendations

Same as ATV-58HeeeN4: see pages 2/176 and 2/177.

ATV-58FH	Ventilation rate
U18N4	not cooled
U29N4, U41N4, U54N4	$36 \mathrm{~m}^{3} / \mathrm{hour}$
U72N4, U90N4, D12N4, D16N4, D23N4	$72 \mathrm{~m} 3 / \mathrm{hour}$
D28N4, D33N4, D46N4	$292 \mathrm{~m} 3 / \mathrm{hour}$
D54N4, D64N4, D79N4	$492 \mathrm{~m} 3 / \mathrm{hour}$

Presentation: Characteristics: \quad References: Functions:

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

The connection diagrams for Altivar 58F Flux Vector Control drives with sensor and for their options are the same as those for the ATV-58HeeeN4 drives (see pages $2 / 164$ to $2 / 170$) except for speed setpoints and encoder feedback if fitted.

Single pole speed setpoint

2-pole speed setpoint

Speed setpoint using axis control

Closed loop control
Encoder wiring

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

Example of connection with TSX CAYee axis control module

1 Incremental encoder (3)
8 TSX CXP 213/613 cable equipped with connectors
9 TSX CDP 611 rolled ribbon cable equipped with connectors
10 TSX CDP $\bullet 3$ cable equipped with connectors
16 Cable equipped with connectors and VY1-X411CA15 adaptor
(1) To connect auxiliary I/O (for example: Emergency stop, reference point, etc), please refer to the axis control module catalogue.
(2) The drive should be programmed as "General Use Macro Configuration".
(3) For more detailed information on Telemecanique encoders, please contact your Regional Sales Office.

Presentation:	Characteristics:	References:	
pages $2 / 206$ and $2 / 207$	pages $2 / 208$ to $2 / 211$	pages $2 / 214$ and $2 / 215$	pages $2 / 224$ to $2 / 233$

Variable speed drives

Principle

- Earth connections between drive, motor and cable shielding must have "high frequency" equipotentiality.
- Use shielded cables with shielding connected to earth for a complete 360° at both ends of the motor cable, braking resistor cable (if used) and control-command cables. Conduit or metal ducting can be used for part of the shielding provided that there is no break in continuity.
- Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Mounting: installation diagram

1 Sheet steel plate (supplied) to be fitted to the drive (earthed casing).
2 Altivar 58F.
3 Non-shielded power supply wires or cables.
4 Non-shielded wires for the output of the fault relay contacts.
5 Attachment and connection to earth of the shielding of cables $6,7,8$ and 9 as close as possible to the drive: -strip the shielding,
-use cable clamps of an appropriate size to clamp the shielding to the mounting plate 1 , tight enough to ensure good contact,
-type of clamp: stainless steel.
6 Shielded cable for connecting the motor, shielding connected to earth at both ends. This shielding must be unbroken and, if there are intermediate terminals, they must be in EMC shielded metal boxes.

7 Shielded cable for connecting the encoder.
The shielding must be connected to earth at both ends. This shielding must be unbroken and, if there are intermediate terminals, they must be in EMC shielded metal boxes.

8 Shielded cable for connecting the braking resistor, if used. The shielding must be connected to earth at both ends. This shielding must be unbroken and, if there are intermediate terminals, they must be in EMC shielded metal boxes.

9 Shielded cable for connecting the control/command.
For applications which require a large number of conductors, small cross-sections must be used ($0.5 \mathrm{~mm}^{2}$). The shielding must be connected to earth at both ends. This shielding must be unbroken and, if there are intermediate terminals, they must be in EMC shielded metal boxes.

Notes:

1 Although there is a high frequency equipotential earth connection between the drive, the motor and the cable shielding, it is still necessary to connect the PE protective conductors (green-yellow) to the appropriate terminals on each of the devices.

2 If an additional input filter is used, it should be mounted behind the drive and connected directly to the line supply by an unshielded cable. Connection 3 is then made using the filter cable.

Presentation:	Characteristics:	References:	Functions:
pages $2 / 206$ and $2 / 207$	pages $2 / 208$ to $2 / 211$	pages $2 / 214$ and $2 / 215$	pages $2 / 224$ to $2 / 233$

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor Combination of functions and applications

Applications

Machines which require torque and precision at very low speed as well as a raised dynamic

\square Occasional use

Analogue outputs (torque, speed,
current, ramp, etc.)

- Necessary or frequent use

Functions:
 pages 2/224 to 2/233

Variable speed drives for asynchronous motors

Altivar 58F Flux Vector Control with sensor

The majority of functions for the Altivar 58F Flux Vector Control with sensor (FVC) are common to those of the Altivar 58.

However, certain Altivar 58 functions are not available in the Altivar 58F, namely:

- operating power range (use in high torque only),
- motor switching,
- incremental speed feedback with option card,
- energy saving,
- current limit adaptation.

Other functions are specific to the Altivar 58F. These are described on the following pages. All the assignable I/O functions are listed on pages 2/232 and 2/233.

Common functions of the Altivar 58 and the Altivar 58F

Principle of access to menus	page 2/191
Operating speed range	page 2/193
Alternate ramp switching	page 2/194
Automatic adaptation of deceleration ramp	page 2/194
Reduction of torque limit by logic input	page 2/194
Reduction of torque limit by analogue input	page 2/194
Reverse operation	page 2/194
Disabling reverse direction	page 2/194
Step by step (JOG)	page 2/194
2-wire control	page 2/195
3-wire control	page 2/195
Downstream contactor control	page 2/196
Preset speeds	page 2/197
Adjusting analogue input Al2	page 2/197
Reference switching	page 2/197
Speed feedback with tachogenerator	page 2/199
Incremental speed reference	page 2/199
Controlled stop	page 2/199
Controlled stop on mains power break	page 2/200
Automatic catching a spinning load with speed detection	page 2/200
Automatic restart	page 2/200
Limiting low speed operating time	page 2/200
Fault reset	page 2/201
Forced local mode	page 2/201
Fault relay, unlocking	page 2/201
Motor thermal protection	page 2/201
PTC probe protection	page 2/202
Thermal protection of drive	page 2/202
Switching frequency, noise reduction	page 2/202
Auto tune	page 2/203
Skip frequencies	page 2/203

Specific functions of the Altivar 58F

Macro-configuration programming	page $2 / 225$
Acceleration and deceleration ramp times	page $2 / 226$
Acceleration and deceleration ramp profile	page $2 / 226$
+ - speed	pages $2 / 227$ and $2 / 228$
Save reference	page $2 / 228$
Motor fluxing	page $2 / 228$
Open/closed loop switching	page $2 / 228$
Summing inputs	page $2 / 228$
PID regulator	page $2 / 229$
Speed reference summing by encoder input	page $2 / 229$
Closed loop	page $2 / 230$
Brake sequence	page $2 / 230$
Reassignable logic outputs	page $2 / 231$
Analogue outputs AO and AO1	page $2 / 231$
Adjustment of analogue outputs AO and AO1	page $2 / 231$
Configurable I/O	pages $2 / 232$ and $2 / 233$

Presentation:	Characteristics:	References:
pages $2 / 206$ and $2 / 207$	pages $2 / 208$ to $2 / 211$	pages $2 / 214$ and $2 / 215$

- Macro-configuration programming

A simplified menu can be used for preprogramming the drive to facilitate configuration and set-up. There are 2 options available, which correspond to the various functions and applications:

- handling,
- general use.

Selection of one of these macro-configurations will automatically assign the functions, parameters and I/O, even for any option cards which may be used. This menu also includes a guide to the most appropriate selection in each case. Preconfiguration carried out in this way can be modified at any time if necessary.

In the "factory" configuration, the selection is set to the "Handling" macro-configuration.
The preconfigured functions for each macro-configuration are:

Type of macro-configuration Basic I/O Logic input LI1 Handling	General use	
Logic input LI2	Reverse	Rorward
Logic input LI3	2 preset speeds	Jog operation
Logic input LI4	4 preset speeds	Freewheel stop
Analogue input Al1	Summing speed reference	Summing speed reference
Analogue input Al2	Drive fault	Not assigned
Relay R1	Motor frequency	Motor frequency
Relay R2	8 preset speeds	Clearing faults
Analogue output AO1 Extension card I/O Logic input LI5	Clearing faults	Current limit
Logic input LI6	Summing speed reference	Summing speed reference
Analogue input Al3 or Encoder inputs	Current threshold reached	Downstream contactor control
Logic output LO Analogue output AO	Motor current	Motor current

■ Acceleration and deceleration ramp times

Used to determine acceleration and deceleration ramp times according to the application and the machine dynamics, with intervals of 0.1 s or 0.01 s .
For all applications.

Acceleration ramp

Deceleration ramp

- Acceleration and deceleration ramp profile

Used to gradually increase the output frequency starting from a speed reference, following a linear ratio or a preset ratio which enables the ramp to be given an S or a U profile or to be customized.
For applications such as materials handling, packaging, transportation of people, the use of S or U ramps takes up mechanical play and eliminates jolts, and limits "non-following" of the speed during rapid transient operation of high inertia machines.

Selecting "linear" or " S ", or " U " profiles will affect both the deceleration and acceleration ramps.

- S-shape ramps

HSP: high speed.
The curve coefficient is fixed,
with $\mathrm{t} 2=0.6 \times \mathrm{t} 1$ and
t 1 : set ramp time.

- U-shape ramps

HSP: high speed.
The curve coefficient is fixed,
with $\mathrm{t} 2=0.5 \times \mathrm{t} 1$ and
t 1 : set ramp time.

- Customized ramps

t 1 : set ramp time.
tA1: adjustment from 0 to 100% (of t 1). tA2: adjustment from 0 to (100% - tA1) (of t1) tA3: adjustment from 0 to 100% (of t1). tA4: adjustment from 0 to ($100 \%-\mathrm{tA} 3$) (of t1).

Variable speed drives for asynchronous motors
 Altivar 58F Flux Vector Control with sensor

Example of operation using double action pushbuttons

Example of operation using single action pushbuttons without reference saving (Str = No).

■ +/- speed
Used to increase or decrease a speed reference by means of 1 or 2 logic commands, with or without the last reference being saved (motorised potentiometer function).
Enabled by assigning 1 or 2 logic inputs.
Function dedicated to:

- centralized control of a non-reversing machine which has several sections, - control, from a pendant control station, of a materials handling crane, in two operating directions.

ㅁ Use of double action pushbuttons.
Only one logic input assigned to + speed is required.
Description: 1 button pressed twice for each direction of rotation. Each action closes a contact.

	Released (-speed)	Press 1 (speed maintained)	Press 2 (+ speed)
Forward button	-	Contact a	Contacts a and b
Reverse button	-	Contact c	Contacts c and d

Wiring example:

LI1: forward
LIx: reverse
Lly : + speed

This type of $+/$ - speed is incompatible with 3 -wire control. In this case, the - speed function is automatically assigned to the logic input with a higher index (for example: LI3 $=+$ speed, LI4 $=-$ speed).

In this case, the maximum speed is given by the references applied to the analogue inputs: for example, connect Al1 to the +10 V .

- Use of single action pushbuttons.

Two logic inputs are required in addition to the operating direction(s).
The input assigned to the "+ speed" command increases the speed, the input assigned to the "speed" command decreases the speed.
This function accesses the "STr" save reference parameter in the Control menu.

- The minimum rotation speed is limited to low speed (LSP).
- - speed has priority over + speed.
- If $\mathrm{Str}=\mathrm{No}, \mathrm{RAM}$ or EEP, the maximum rotation speed is fixed by the analogue references (for example, connect Al1 to the +10 V). If the reference decreases and drops below the rotation speed, the rotation speed follows the reference. The rate of increase is given by the valid acceleration parameter (acceleration, deceleration, acceleration 2 or deceleration 2).

Wiring examples:

[^26]
Variable speed drives for asynchronous motors
 Altivar 58F Flux Vector Control with sensor

Example of operation using single action pushbuttons with reference saving.

Example of operation using single action pushbuttons without reference saving.

------ Analogue reference

Example of operation using reference saving.

Example of operation using summing inputs.

■ +speed/- speed (continued)
ㅁ Use of single action pushbuttons (continued).
Example using single action pushbuttons with reference saving:
Str = RAM (saved in RAM): the reference is saved on each + speed / - speed falling edge. Thus, after a stop without the drive being powered down, when a run command appears, the frequency increases to the saved value if the + speed/- speed commands are not active. + speed / - speed still have priority.

Str = EEP (saved in EEPROM): the reference is saved on each + speed / - speed falling edge. Thus, after a stop with or without the drive being powered down, when a run command appears, the frequency increases to the saved value if the + speed/- speed commands are not active. The + speed / - speed commands still have priority.

Example using single action pushbuttons without reference saving:

Str = SRE: the maximum rotation speed is fixed by the high speed (HSP). When the run command is issued, the drive changes to the setpoint reference following the acceleration and deceleration ramps. Pressing + speed/- speed varies the speed around this setpoint following the acceleration 2 and deceleration 2 ramps.

+ or - speed adjustment around the setpoint is limited by parameter SRP, which is a percentage of HSP.
If the reference changes, the ratio between the reference and the setpoint resulting from the + speed/- speed correction is fixed.

- Save reference

ㅁ Used to take into account and save the speed reference value of the analogue input using a logic input when the command lasts longer than 0.1 s .

- Used to control the speed of several drives alternately via a single analogue setpoint and a logic input for each drive.
- It is also used to confirm a line reference (serial link) via a logic input on several drives. This allows movements to be synchronized by getting rid of variations when the reference is sent.
- The setpoint is acquired 100 ms after the rising edge of the request. A new reference is not then acquired until a new request is made.

- Motor fluxing

Used to obtain rapid high torque on start-up, the magnetic flux needs to be already established in the motor.

- This function can be selected in open loop or closed loop operation.
- In continuous mode, the drive automatically builds up flux when it is powered up.
- In non-continuous mode:
- if an Ll is assigned to the motor fluxing command, flux is built up when the command is confirmed.
- if no LI has been assigned or if it is not active when a run command is given, the motor is fluxed when it starts up.
\square The flux current is equal to the drive limit current ((lim) when the flux is established and is then adjusted to the motor no-load current.

■ Open/closed loop switching

Used to switch between open loop and closed loop mode. Switching must be carried out when the motor is stopped, and the drive locked.

- Summing inputs

Analogue input Al 2 (and/or analogue input Al 3 with extension card) can be assigned as a summing input of Al1 with deadband corresponding to speed HSP.
The frequency setpoints given by $\mathrm{Al2}$ and/or Al 3 can be summed and/or subtracted with Al 1 : Al 1 $\pm \mathrm{Al} 2 \pm \mathrm{Al} 3$.
This function is dedicated to machines on which the speed is governed by a corrector signal on input Al2.

| Presentation: | Characteristics: | References: |
| :--- | :--- | :--- |\quad Dimensions, schemes:

- PID regulator

Used to regulate a process with a reference and a feedback given by a sensor. A speed input gives an initial (or predictive) setpoint for start-up.
Function dedicated to traction regulation on a winder.

ACC: acceleration, AC2: acceleration 2, DEC: deceleration, DE2: deceleration 2

- Speed input: line reference (serial link).
- PID reference: reference via the line (serial link), 2 or 4 references preset via logic inputs or analogue input Al1 ($\pm \mathrm{Al} 2, \pm \mathrm{Al} 3$)
- PI feedback: analogue input AI2 or Al3
- Integral shunting: logic input LI.
- Manual reference (speed regulation mode): analogue input Al3.
- Auto/man: logic input LI for switching operation to speed regulation (man) or PI regulation (auto).
In automatic mode, it is possible to:
- adapt the reference input to the process feedback: GAIN (PrG) and OFFSET (rEO),
- correct PID inversion,
- adjust the proportional, integral and derivative gain (Kp, Ki and Kd),
- use the "alarm" on the logic output if a threshold is exceeded (Max. feedback, Min. feedback and PID error),
allocate an analogue output for the PID reference, PID feedback and PID error, limit the PID action in relation to the speed, with an adjustable base and ratio (see drawing below). Speed

- apply a ramp (time = AC2 - DE2) to establish the PID action when starting and stopping. The motor speed is limited to between LSP and HSP.
It is displayed as a percentage.
- Preset PI references:

2 or 4 PID preset references require the use of 1 or 2 logic inputs respectively.

2 preset references Assign: Llx to Pr2	4 preset references Assign: Llx to Pr2, Lly to Pr4 Llx	Reference	Lly	Llx

Speed reference summing by encoder input (I/O extension card encoder input)
The reference provided by the encoder input is summed with analogue input Al1.
Function dedicated to synchronization of the speed of several drives. Parameter PLS in the "drive" menu is used to adjust the speed ratio of one motor relative to another. Reference by pulse generator.

Presentation:	Characteristics:	References:
pages 2/206 and 2/207	pages 2/208 to 2/211	pages 2/214 and 2/215

- FVC closed loop (control card encoder input)

Operation using flux vector control with sensor (inputs A, A-, B, B-).
This concerns the control card encoder. The encoder is used for precise speed regulation, independent of the load state, as well as optimized control (flux vector control mode in closed loop: FVC).

- Consistency between the motor frequency and the speed feedback is monitored in the drive fault management system.
- In the event of a missing encoder feedback signal (FVC mode) or inconsistency, the drive locks with a speed loss fault.
- During operation, if the difference between the motor frequency and the speed feedback is greater than 5 Hz , the drive locks in speed loss fault mode.
- If the brake sequence is active, the speed loss fault can only occur when the brake is released.
If the speed feedback is greater than $1.2 \times$ "max. frequency", the drive locks with an overspeed fault.
- Brake sequence: can only be assigned to relay R2

Used to control an electromagnetic brake by the drive, for horizontal and vertical lifting applications, and for unbalanced machines (parking brake).
Principle of the function dedicated to vertical hoisting movement:
maintains motor torque in the upward direction during brake opening and closing, in order to hold the load, and start smoothly when the brake is released.
Principle of the function dedicated to horizontal hoisting movement:
synchronizes brake opening with the build-up torque on starting and brake closing at zero speed on stopping, in order to prevent jerking.

Example of brake sequence in open loop mode (see diagram opposite)

Settings which can be accessed in the adjust menu:

- brake release delay (brt),
- brake release current (lbr),
- brake engage frequency (bEn),
- brake engage delay (bEt),
- d.c. injection braking time on stopping (tdC),
- brake pulse (bIP):
- when set to "YES", it always gives a motor torque in the "up" direction (vertical lifting), - when set to "NO" the torque direction corresponds to the requested operating direction (horizontal lifting).

Example of brake sequence in closed loop mode (see diagram opposite)

Settings which can be accessed in the adjust menu:

- brake release delay (brt),
- brake release current (lbr),
- zero speed maintenance time in stop mode (tdC),
\square brake engage delay (bEt),
- brake pulse (bIP):
- when set to "YES", it always gives a motor torque in the "up" direction (vertical lifting),
- when set to "NO" the torque direction corresponds to the requested operating direction (horizontal lifting).

| Presentation:
 pages 2/206 and 2/207 | Characteristics:
 pages 2/208 to 2/211 | References:
 pages 2/214 and 2/215 |
| :--- | :--- | :--- | | Dimensions, schemes: |
| :--- |
| pages 2/218 to 2/221 |

Variable speed drives for asynchronous motors
 Altivar 58F Flux Vector Control with sensor

- Reassignable logic outputs

Relay R2 or output LO are used for:

- Remote indication of the following information as required:
- drive operating (running or braking),
- frequency threshold reached (higher than or equal to an adjustable threshold),
- 2nd frequency threshold reached,
- frequency reference reached (motor frequency equal to the reference),
- current threshold reached (higher than or equal to an adjustable threshold),
- thermal threshold reached (higher than or equal to an adjustable threshold),
- high speed reached,
- PID error,
- PID feedback alarm,
- loss of 4-20 mA reference,
- Remote control of a downstream contactor:
- brake sequence (relay R2 only).

- Analogue outputs AO and AO1

Output AO1 on the control card and output AO on one of the I/O extension cards are used to assign the analogue outputs $x-y \mathrm{~mA}$ to the following parameters, as required:

- motor current (y $\mathrm{mA}=$ twice the nominal current of the drive),
- motor frequency (y mA = maximum frequency),
- ramp output (y mA = maximum frequency),
- signed ramp output ($\mathrm{x} \mathrm{mA}=$ negative maximum frequency, y $\mathrm{mA}=$ positive maximum
frequency),
- motor torque ($\mathrm{y} \mathrm{mA}=$ twice the nominal motor torque),
- signed motor torque ($\mathrm{x} \mathrm{mA}=-$ twice the nominal motor torque, ie. braking operation, $\mathrm{y} \mathrm{mA}=+$ twice the nominal motor torque,
- PID reference ($x \mathrm{~mA}=\mathrm{min}$. reference, y $\mathrm{mA}=\max$. reference),
- PID feedback ($x \mathrm{~mA}=\mathrm{min}$. feedback, y $\mathrm{mA}=$ max. feedback),
- PID error ($x \mathrm{~mA}=-5 \%$, y mA $=+5 \%$),
- PID integral,
- motor power: ($\mathrm{x} \mathrm{mA}=0 \%$ of the nominal motor power, $\mathrm{y} \mathrm{mA}=200 \%$ of the nominal motor power),
- motor thermal state: ($\mathrm{x} \mathrm{mA}=0 \%$, y mA $=200 \%$),
- drive thermal state: ($\mathrm{x} \mathrm{mA}=0 \%$, y mA = 200%).

Note:

x adjustable from 0 to 20 .
y adjustable from 0 to 20

- Adjustment of the analogue outputs AO and AO1

The characteristics of analogue current outputs AO and AO1 can be modified. Factory setting: $0-20 \mathrm{~mA}$
Other values: $4-20 \mathrm{~mA}, 20-4 \mathrm{~mA}$ or $\mathrm{x}-\mathrm{y} \mathrm{mA}$ by programming x and y with a definition of 0.1 mA This function is dedicated to all applications with a signal other than 0-20 mA.

Presentation:	Characteristics:	References:	Dimensions, schemes
pages $2 / 206$ and $2 / 207$	pages $2 / 208$ to $2 / 211$	pages $2 / 214$ and $2 / 215$	pages $2 / 218$ to $2 / 221$

Variable speed drives for asynchronous motors
 Altivar 58F Flux Vector Control with sensor

Compatibility table for configurable I/O functions

- Configurable I/O

Functions which are not listed in this table are fully compatible.

- Stop functions have priority over run commands.
- Speed references via logic command have priority over analogue references.

The selection of functions is limited by the incompatibility of certain functions with one another

Priority functions (functions which cannot be active at the same time)

The arrow indicates which function has priority.

Example: the "Freewheel stop" function has priority over the "d.c. injection braking" function.

Variable speed drives
for asynchronous motors
Altivar 58F Flux Vector Control with sensor

Summary table of the configurable I/O assignments

	Drive I/O									
	Without option card					With I/O extension cards				
	Relay R2	Analogue input Al2	Analogue output AO1	3 logic inputs LI2-LI3-LI4	Encoder inputs A -, A+, B-, B+	2 logic inputs LI5-LI6	Analogue input Al3	Logic output LO	Analogue output AO	Encoder inputs A-, $\mathrm{A}+, \mathrm{B}-, \mathrm{B}+$
Functions										
Auto-tuning										
Reverse operation										
Alternate ramp switching										
Step by step (JOG)										
+/- speed										
Save reference										
Motor fluxing										
Preset speeds										
Reference switching										
Freewheel stop										
d.c. injection stop										
Fast stop										
Open/closed loop switching										
Second torque limit										
Forced local mode										
Auto/man PID										
PID integral shunting										
Preset PID references:										
Fault reset										
$2^{\text {nd }}$ speed reference										
Summing reference										
PID regulator feedback										
Subtracting reference										
Manual PID reference										
PID speed reference										
Torque limit reduction										
PTC probes										
Speed feedback										
Downstream contactor control										
Frequency threshold reached										
High speed reached										
Frequency reference reached										
Current threshold reached										
Thermal threshold reached										
Drive running										
Brake sequence										
PID error										
PID feedback alarm										
Loss of 4-20 mA reference										
Motor current										
Motor speed										
Ramp output										
Motor torque										
Signed motor torque										
Signed ramp output										
PID reference output										
PID feedback output										
PID error output										
PID integral output										
Motor power										
Motor thermal state										
Drive thermal state										

Variable speed drives for asynchronous motors
 Altivar 38, 58, 58F
 Option: "Controller Inside" - programmable card

VW3 A581131

Presentation

The "Controller Inside" programmable card is used to adapt variable speed drives to specific customer applications, quickly and in an open-ended manner, by decentralizing the control system functions.
It fits into Altivar 38, 58 and 58F variable speed drives.

The programmable card contains:

- 8 I/O to be defined according to the application, including:
$\square 2$ inputs which can be used as counter inputs
- 2 inputs which can be used as incremental encoder inputs

■ a communication interface for the CANopen bus which can be Master or Slave
■ a serial link to a PC
The card must have a separate power supply.
The PS 1131 software workshop (see pages 2/236 to 2/239) is used for card programming and setup.
The CANopen bus configurator is integrated in the software workshop.
This software workshop is already used for other Schneider Electric products (LEXIUM, TWINline). It conforms to international standard IEC 61131-3.

- 6 programming languages are available:
\square Ladder language (LD)
- Structured Text language (ST)
\square Grafcet language (SFC)
- Instruction List language (IL)
- Function blocks (DFB)
- Continuous Flow Chart (CFC)

■ To assist programming, there are:

- logic functions (AND, OR, etc)
- mathematical functions (Cos, Sin, Exp, etc)
\square function blocks dedicated to drives, thus simplifying data exchanges between the drive and the programmable card (example: sending the speed reference).

The application program is rebuilt and loaded into the "Flash" memory. The non-volatile memory (NVRAM) is used to save the application data when the card is not supplied with power.

The various functions, such as displaying changes in variables, forced writing of variables, the possibility of placing breakpoints and executing the program step by step, are used to debug the application program.

Description

The programmable card has 3 external connectors and 5 signalling LEDs.
1 Connector with 10-way removable spring terminals, including:

- 8 contacts which can be used as either inputs or outputs, 2 of which can be used as counter or incremental encoder inputs.
- Choices of input, output, or type of logic input are made by the program loaded in the card.
-2 contacts are reserved for the $24 \mathrm{~V}=-(\min 20 \mathrm{~V}=-$, max $28 \mathrm{~V}=-), 2$ A external power supply. The external power supply must be ordered separately (1).

2 9-way male SUB-D connector for connection to the CANopen bus.
3 8-way RJ45 type connector for connection to the RS485 serial link. Connection to the PC is via a cable and an RS485/RS232 adaptor included in the PowerSuite for PC connection kit.

45 LEDs, including:

- 3 reserved for the application program
- 2 for the CANopen bus communication status
(1) Recommended power supply reference: ABL 7RE2402.

Please consult our "Phaseo power supplies and transformers" specialist catalogue.

Variable speed drives for asynchronous motors

Altivar 38, 58, 58F
Option: "Controller Inside" - programmable card

Environment characteristics (1)

Conforming to standards		Low voltage: EN 50178, EMC immunity: IEC/EN 61800-2, IEC/EN 61800-3 EMC, radiated and conducted emissions: IEC/EN 61800-3, UL 508C
C¢ marking		The drives have been designed to meet the requirements of the European low voltage (73/23/EEC and 93/68/EEC) and EMC (89/336/EEC) directives.
Product certifications		UL, CSA
Max. ambient pollution	Conforming to UL 508C	Level 3
Maximum relative humidity	Conforming to IEC 60068-2-3	93% without condensation or dripping water
Ambient air temperature		See the respective drive characteristics.

(1) These characteristics are in addition to those of the ATV 38, ATV 58, ATV 58F drives. Check the corresponding drive characteristics.
(2) Recommended power supply reference: ABL 7RE2402. Please consult our "Phaseo power supplies and transformers" specialist catalogue.
(3) After disconnecting the operator terminal, check the software version indicated on the label attached to the drive control card.
(4) The "PS 1131 software workshop" CD-ROM includes:

- the programming software workshop and associated manual
- the function libraries for communicating with the drive and managing the CANopen bus
the online help file
- program examples
- the user and programming manuals for the ATV 38, ATV 58 and ATV 58F drives
the internal variables manual
(5) The "PS 1131 software workshop" and "Application programs" CD-ROMs are provided during training. Please consult your Regional Sales Office.

Presentation, characteristics

Variable speed drives for asynchronous motors

Altivar 38, 58, 58F
Option: "Controller Inside" - CANopen

CANopen

CANopen bus configurator

The communication interface contained in the programmable card is used to connect the drive/programmable card device to the CANopen bus.

The drive/programmable card device can be either Master or Slave on this bus. The CANopen configurator is included in the software workshop described on pages 2/237 to 2/239.
It uses EDS description files for each of the Slaves.
The drive address and communication speed on the bus are defined either by the program or by switches.

The line termination resistor is integrated on the card.
The signalling LEDs indicate the states of the CANopen bus in accordance with standard CIA DR 303, version 1.0.

Architecture

Example of Master architecture
Example of Slave architecture

Characteristics

CANopen									
Structure	Physical interface	ISO 11898							
	Access method	CSMA/CA, multimaster, producer/consumer principle							
Transmission	Data rate	10 Kbps to 1 Mbps							
	Medium	Double shielded twisted pair							
Physical configuration selection via program	Length of a segment according to the data rate	1 Mbps	800 Kbps	500 Kbps	250 Kbps	125 Kbps	50 Kbps	20 Kbps	10 Kbps
		15 m	50 m	100 m	250 m	500 m	$1,000 \mathrm{~m}$	2,500 m	5,000 m
Physical configuration selection via switches	Length of a segment according to the data rate	1 Mbps		500 Kbps		250 Kbps		125 Kbps	
		15 m		100 m		250 m		500 m	
Number of addresses	Master CANopen	The address can be configured from 0 to 32 via the CANopen configurator							
	Slave CANopen	The address can be configured from 1 to 63 via switches or via the program							
Number of Slaves		32 with a maximum of 9 PDOs per Slave							
Services supported (in accordance with DSP 405, DS 301)	Master CANopen	Services supported: - NetWork Management Master - Boot-up messages - Emergency messages - Sync - Node guarding, consumer and producer Heartbeat - Status and error - Implicit exchange of Process Data Objects (PDO) on the network (this exchange is pre-programmed and does not require any special action) - Explicit exchange for each Slave of 2 Service Data Objects (SDO), 1 in read mode and 1 in write mode - Compatibility with the standard device and communication profiles on CANopen. Services not supported: - Time stamp message - Transfer of SDO blocks - Event timer on PDO							
	Slave CANopen	Services supported: - Boot-up messages - Emergency messages - Node guarding - Implicit exchange of Process Data Objects (PDO) on the network. Only asynchronous exchanges are supported. PDOs can be exchanged between Slaves. - Explicit exchange of Service Data Objects (SDO). Transfer of SDO blocks is not supported.							

Variable speed drives for asynchronous motors

Altivar 38, 58, 58F
Option: "Controller Inside" - PS1131 software workshop

Application components

PS 1131 software workshop

The PS 1131 software workshop conforms to international standard IEC 61131-3, and includes all the functions used to program and set up the "Controller Inside" programmable card.
It incorporates the configurator for the CANopen communication interface.
The software workshop is already used for other Schneider Electric products (LEXIUM, TWINline).
It is designed for Windows 98, Windows NT 4.0, Windows Millennium, Windows 2000 Professional and Windows XP operating systems.

It benefits from the user-friendly interface associated with these operating systems:

- pop-up menus
- function blocks
- online help

The software workshop exists in English and German.
The programming and debugging tools can be accessed via the application browser. This provides the user with an overview of the program and quick access to all the application components:

- program editor
- function blocks editor
- variables editor
- animation tables editor
- runtime screens editor

Modular structured programming

The software workshop is used to structure an application into functional modules consisting of sections (program code), animation tables and runtime screens. Each program section has a name and is programmed in one of the six available languages. To protect know-how or prevent any accidental modification, each section can be write-protected or read/write-protected.

Exporting/importing functional modules:

It is possible to export all or part of the tree structure in functional modules. In this case, all program sections at the various module levels are exported.

Program structure and execution of an application

The program structure is single-task. A single Master task is executed. It consists of several subroutines.
Exchanges with the drive are performed by a function block available in the standard library.
The cycle execution can be either cyclic, or periodic. A software "watchdog", which can be configured between 5 ms and 800 ms by the user, monitors the cycle time.

- Cyclic execution:

Once each cycle ends, execution of a new cycle begins. The cycle execution must last for at least 5 ms .

- Periodic execution:

The program is executed periodically, and the period can be set by the user to between 5 and 100 ms . Cycle execution must be shorter than the defined period. Drive response in the event of the cycle time being exceeded can be managed by the program.

Example of cycle execution for a drive connected on a CANopen bus

Variable speed drives for asynchronous motors

Altivar 38, 58, 58F
Option: "Controller Inside" - PS1131 software workshop

Example of Ladder language programming

Example of Structured Text language programming

Example of Grafcet language programming

Example of Instruction List programming

Programming languages

- 6 programming languages are available:
- Ladder language (LD)
- Structured Text language (ST)
\square Grafcet language (SFC)
- Instruction List language (IL)
- Function blocks (DFB)
- Continuous Flow Chart (CFC)

Ladder language (LD)

A Ladder language program consists of a set of rungs executed sequentially.
A rung consists of several lines.
A line consists of several contacts and a coil.
The language objects can be entered and displayed as symbols or tags as required. The Ladder language editor enables the immediate call of entry help functions such as access to function libraries and access to the variables editor.

Structured Text language (ST)

Structured Text language is a sophisticated algorithmic type language which is particularly well-suited to programming complex arithmetical functions, manipulating tables, message handling etc.
Structured Text language enables direct transcription of an analysis based on a flow chart, and is organised in statements.

Grafcet language (SFC)

Grafcet language is used to describe the sequential part of control systems in a simple, graphic way. It corresponds to the SFC "Sequential Function Chart" language described in standard IEC 61131-3.
Programs written in Grafcet (SFC) language consist of:

- macro-steps which are the single representation of a set of steps and transitions
- steps with which the actions to be performed are associated

■ transitions with which the conditions are associated

- directed links connecting the steps and transitions

Instruction List language (IL)

Instruction List language is a language which represents, in text form, the equivalent of a Ladder diagram. It can be used to write Boolean equations and use all the functions available in the language.
Each instruction consists of an instruction code and a bit or word type operand.
As in Ladder language, instructions are organised in sequences of instructions (equivalent to a rung).

Function blocks (DFB)

Function block programming is a graphic language. It consists of function blocks connected by a rung. The program is executed sequentially.
Each block can be a logical or an arithmetical expression, a call to another function block, a jump or a go-back instruction.

Continuous Flow Chart (CFC)

"Continuous Flow Chart" programming is a graphic language. The rung connecting the various function blocks on the page is not necessarily sequential. The output of a function block may be looped back on its input or on the input of a block already inserted in the rung.

Variable speed drives for asynchronous motors

Altivar 38, 58, 58F
Option: "Controller Inside" - PS1131 software workshop

Example of function block programming

Example of runtime screen

Functions

User function blocks

The PS 1131 software workshop has pre-programmed function blocks and offers customers the option of creating their own function blocks. Once created in the library, these function blocks can be used by the program.
User function blocks can be used to structure an application. They can be used once a program sequence has been repeated several times in the application.

■ Standard library

In addition to the basic functions (comparator, OR, AND function, etc), function blocks are used to simplify writing the program. They are used to make exchanges between the drive and the programmable card as transparent as possible.
Online help can be accessed for any library function.
Example of a function block used to send the speed reference to the drive.

- Library created by the user

The user has the option of creating his own function blocks in order to structure an application. It is possible to create an instance of the function block which can be used in different subroutines.

Debugging and running the application

Debugging is performed by means of the debug functions in the full program:

- use of breakpoints
- step-by-step program execution
- execution of the cycle only
- direct access to the subroutines to be executed (call stack).

Debugging is simplified:

- by writing the variable values in the application program, even during operation
- by designing display screens consisting of a set of data.

The list of data (explanatory texts, realtime values, block diagrams, bitmaps) for debugging and monitoring the application is created using the tools described below.

Variables editor

All defined variables are automatically available to perform supervision. It is possible to track the change in a variable after a particular event.

Animation table

The animation table is used for modification and realtime monitoring of variables according to the state of the process.

Runtime screen

A runtime screen is incorporated in the software workshop. It is used to debug the program and to improve diagnostics of faults or malfunctions.

Simulation

A "simulation" operating mode is available in the software workshop.
It is used to simulate the application program without being connected to the card.

Variable speed drives for asynchronous motors
Altivar 68

Variable speed drives for asynchronous motors

Altivar 68

Applications

A compact and robust speed drive for all types of high-power 3-phase asynchronous motors, the Altivar 681 incorporates the latest technological developments and its innovative functions meet the requirements of the most common applications, notably:

- ventilation, air-conditioning,
- pumping,
- conveying
- grinding,
- handling and lifting.

The Altivar 68 has several application-specific preset configurations with few basic parameters, which can be modified using the programming terminal 2 to create additional functions.

It covers a range from 75 to 500 kW for high torque applications and from 90 to 630 kW for standard torque applications for a single voltage range from 400 to 500 V .
In spite of its high performance, it is easy to adjust. The introduction of elements on the motor rating plate and autotuning on stopping make it possible to obtain high torque together with remarkable drive quality, even at very low rotation speeds ($<0.5 \mathrm{~Hz}$).
For applications which require exceptional speed precision even at very low speed, the speed drive can be supplied with an optional encoder feedback card.

Functions

The main functions are:

- dual configuration (2 motors),
- integrated PID drive (flow rate, pressure, speed correction),
- 7 possible preset speeds,
- JOG operation,
- brake release sequences for translational movement and hoisting,
- user-definable analogue and logic inputs,
- +/- speed,
- skip frequencies,
- comparator functions,
- logic functions,
- starting and speed regulation via flux vector control,
- 4 energy saving levels for variable torque applications,
- protection of motor and speed drive,
- automatic catching of spinning load with speed search (catch on the fly),
- high overtorque on start-up,
- separate 24 V --- supply for control circuit.

Programming terminal

The Altivar 68 is supplied with a programming graphic terminal which is used to:

- drive the speed drive in local mode,
- configure the various parameters,
- provide a remote display and indication of the speed drive status.

Options

Possible options:

- additional I/O card 3 , 2 available, if there is no communication card,
- PC-based setup software 4,
- Profibus 5 and Fiplo or Modbus Plus 6 communication cards via the optional module 7 ,
- braking unit and resistors,
- line chokes for protection against supply overvoltage and reduction of harmonic distortion,
- radio interference input filters to comply with electromagnetic compatibility,
- additional motor chokes to limit voltage surges on the motor terminals and when motor cables are very long,
- remote mounting kit for programming terminal 8 which enables installation of the terminal on the door of the enclosure or operator panel,
- DC bus connection in the form of a mechanical kit for connecting the braking module, several speed drives connected in parallel, or the optional external load circuit to the DC bus,
- external load circuit to connect several speed drives in parallel,
- earth fault detection kit in IT connection to protect the speed drive in the event of a short-circuit between phase and earth,
- air ducting kit and fan for mounting in an enclosure.

Characteristics:	References:	Dimensions, installation:	Schemes:
pages $2 / 242$ to $2 / 245$	pages $2 / 246$ to $2 / 261$	pages $2 / 264$ to $2 / 269$	pages $2 / 270$ to $2 / 277$

Variable speed drives for asynchronous motors

Altivar 68

Environment characteristics

Conforming to standards

Product certifications

Maximum relative humidity
and
Environmental class
Ambient air temperature
around the device

Storage	${ }^{\circ} \mathbf{C}$
Operation	${ }^{\circ} \mathbf{C}$

(with a switching
frequency of 2.5 kHz,
for a higher frequency,
see below)
Switching frequency

Lnv = max. nominal current
of the speed drive

Maximum operating altitude \qquad
Operating position
Switching frequency

Without derating

$-25 \ldots+70$
$0 \ldots+40$: ATV-68•10N4, •19N4, •33N4 and •63N4 speed drives
$0 \ldots+45:$ ATV-68•13N4, •15N4, $\bullet 23 N 4, \bullet 28 N 4, \bullet 43 N 4$, and $\bullet 53 N 4$ speed drives
With current derating of 2% per ${ }^{\circ} \mathrm{C}$:
$+40 \ldots+50$: ATV-68•10N4, •19N4, •33N4 and •63N4 speed drives
$+45 \ldots+55$: ATV-68•13N4, •15N4, $\bullet 23 N 4, \bullet 28 N 4, \bullet 43 N 4$, and $\bullet 53 N 4$ speed drives

To operate at a fixed frequency of 5 or 10 kHz , select the motor rating according to the derating values given To operate at a fixe
in the table below
Automatic adaptation of the switching frequency if the motor overheats

	Speed drive	Max. ambient temperature	Switchin 2.5 kHz	$5 \mathrm{kHz}$	10 kHz
	ATV-68•10N4	$40^{\circ} \mathrm{C}$	Inv	0.80 Inv	0.45 Inv
	ATV-68@13N4	$45^{\circ} \mathrm{C}$	Inv	0.95 Inv	0.78 Inv
	ATV-68•15N4	$45^{\circ} \mathrm{C}$	Inv	0.85 Inv	0.58 Inv
	ATV-68•19N4	$40^{\circ} \mathrm{C}$	Inv	0.80 Inv	0.52 Inv
	ATV-68•23N4	$45^{\circ} \mathrm{C}$	Inv	Inv	0.80 Inv
	ATV-68•28N4	$45^{\circ} \mathrm{C}$	Inv	0.86 Inv	0.64 Inv
	ATV-68•33N4	$40^{\circ} \mathrm{C}$	Inv	0.82 Inv	0.60 Inv
	ATV-68•43N4	$45^{\circ} \mathrm{C}$	Inv	Inv	0.80 Inv
	ATV-68•53N4	$45^{\circ} \mathrm{C}$	Inv	0.86 Inv	0.64 Inv
	ATV-68•63N4	$40^{\circ} \mathrm{C}$	Inv	0.82 Inv	0.60 Inv
m	1000 without derating (above this, derate the current by 1% per additional 100 m up to 2000 m)				
	Vertical				

pages 2/240 and 2/241 pages 2/246 to 2/261 pages $2 / 264$ to $2 / 269 \quad$ pages 2/270 to 2/277

Variable speed drives for asynchronous motors

Altivar 68

Drive characteristics

Output frequency range	Hz	$0 \ldots . .300$ Frequency stability: $\pm 0.01 \%$ at 50 Hz Resolution: 0.01 Hz
Speed range	$1 \ldots .100$ (in high torque configuration)	
Speed precision	Without encoder feedback card: -30% of nominal slip, speed $>10 \%$ of nominal motor speed, -50% of nominal slip, speed < 5% of nominal motor speed. With encoder feedback in control mode: $\pm 0.01 \%$ of high speed	
Transient overtorque on start-up	180% of nominal motor torque (typical value $\pm 10 \%$) in high torque configuration	
Maximum transient current	400,440 and 500 V: 150% of nominal current in high torque operation for 60 s then $120 \% \%$ in continuous operation 120% of nominal current in standard torque operation (variable torque) for 60 s then 100% in continuous operation 460 V: 150% of nominal current for 60 s, then 100% in continuous operation Current limitation depends on the heatsink temperature. If a speed drive is used outside its thermal capacity, the speed drive automatically lowers the switching frequency and lif necessary the transient limitation current.	
Braking torque	Up to 30% of nominal motor torque without braking unit (typical value) Up to to 150% with one or more additional braking units	
Voltage/frequency ratio	ATV-68CoeN4: flux vector control without sensor; constant torque or variable torque with configurable energy saving ATV-68FCooN4: flux vector control with sensor for more accurate speed control	

Electrical characteristics

3-phase power supply Voltage - frequency		$\begin{aligned} & 400 \mathrm{~V} \pm 15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \% \\ & 440 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz} \pm 5 \% \\ & 460 \mathrm{~V}-10 \% \text { to } 480 \mathrm{~V}+10 \%, 60 \mathrm{~Hz} \pm 5 \% \\ & 500 \mathrm{~V}-15 \%+10 \%, 50 \mathrm{~Hz} \pm 5 \% \end{aligned}$
Maximum output voltage		Maximum voltage equal to line supply voltage
Speed drive noise level	dBA	ATV-68•10N4 to •19N4: 65 ATV-68•23N4 to $\bullet 33 \mathrm{~N} 4$: 72 ATV-68•43N4 to $\bullet 63 N 4$: 74
Efficiency		97.5 \% (including line choke losses), at 50 Hz at nominal load.
Available internal supplies		$1+10 \mathrm{~V}$ output $+2 \%-0 \%, 10 \mathrm{~mA}$ maximum, with short-circuit protection $1+24 \mathrm{~V}$ output $+25 \%-15 \%$ programmable as power supply voltage for logic inputs, 150 mA maximum or as logic output, with short-circuit protection.
Analogue inputs AI AIV		1 analogue voltage input $0 . . .10 \mathrm{~V}$ Impedance $100 \mathrm{k} \Omega$ Precision $\pm 0.6 \%$ of full scale (10 V) Linearity error <-0.15 \% with a $1 \mathrm{k} \Omega$ reference potentiometer 10-bit resolution (~ 10 mV) Limit of operation is programmable Acquisition time 5 ms
AIC		1 analogue current input: 0(4)... 20 mA Maximum load: 250Ω Precision $\pm 0.9 \%$ of full scale 20 mA 10-bit resolution ($\sim 20 \mu \mathrm{~A}$) Stability $\pm 0.2 \%$ for a variation of $10^{\circ} \mathrm{C}$ Zero current monitoring Limit of operation is programmable Acquisition time 5 ms
Electrical zero volts for control		The electronic zero can be isolated from earth but its potential with respect to earth must not exceed 35 V
Analogue output AO1		1 analogue current output 0(4)... 20 mA with programmable operations Maximum external load 600Ω 10-bit resolution Precision: - frequency, current, voltage: $\pm 1.5 \%$, - torque, apparent or actual power: $\pm 5 \%$. Acquisition time 5 ms

Variable speed drives for asynchronous motors

Altivar 68

Electrical characteristics (continued)

PTC input	For a maximum of 6 PTC thermistors in series (wiring must be shielded and separated from the motor cabling) Nominal value < $1.5 \mathrm{k} \Omega$ De-energisation resistance: $3 \mathrm{k} \Omega$, reinitialisation value: $1.8 \mathrm{k} \Omega$ Short-circuit protection < 50Ω Measured current approximately 1 mA
DI logic inputs	4 bipolar inputs: positive or negative logic Programmable operations Minimum duration for acceptance: 10 ms Consumption: approx. 8 mA at 24 V State 1 above 15 V , state 0 below 4 V
Common	Common for all logic inputs is situated on the base card. The level of voltage can float up to 35 V with respect to 0 V and earth contact.
Auxiliary power supply	Used to supply the control circuit and option cards via an external +24 V if the power supply is cut. Power supply $24 \mathrm{~V}=-$. . Consumption: approx. 0.5 A Separated from the internal power supply by a diode
Output relay	Programmable relay Switching voltage: ~ 250 V , or $=-30 \mathrm{~V}$ Switching power: 1250 VA max., 150 W Max. DC current: 3 A Min. switched current (new relay): --- $24 \mathrm{~V}, 3 \mathrm{~mA}$ In PELV conditions, the external power supply must also be PELV (24 V) Electrical isolation between the line supply and the relay power supply
Signalling	Via 3 indicator lamps on the display module: - drive ready, - on, - faulty.

Characteristics of the coder feedback card

Power supply Voltage	V	+ $12 \pm 7 \%$
Max. current	mA	200
Maximum operating frequency	kHz	≤ 300
Coder output configuration		RS 422 supplied at 5 V , min. period $3 \mu \mathrm{~s}$ for electric 360° and a cyclic ratio of electric $180^{\circ} \pm 10 \%$
Input signals		A, $\bar{A}, \mathrm{~B}, \overline{\mathrm{~B}}(\mathrm{I}$ and $\overline{\mathrm{I}})$
Recommended type of coder		The selected incremental coder, for example XCC-14, XCC-15, XCC-19 (1) with type K output stage, must have an input voltage range of 8 to 30 V .
Recommended number of points/ revolution on the coder according to the type of motor		2-pole motor: 30 to 2048 points per revolution 4-pole motor: 60 to 4096 points per revolution 6-pole motor: 90 to 4096 points per revolution To obtain an accurate range, the encoder should have more than 200 points/revolution
Max. distance between coder and drive according to the frequency	m	200 at 50 kHz 100 at 100 kHz 50 at 300 kHz
Type of coder-drive cable		AWG 24 (0.22 mm²), shielded twisted pair

(1) Please consult your Regional sales office

Presentation:	References:	Dimensions, installation:	Schemes:
pages $2 / 240$ and $2 / 241$	pages $2 / 246$ to $2 / 261$	pages $2 / 264$ to $2 / 269$	pages $2 / 270$ to $2 / 277$

Variable speed drives for asynchronous motors
 Altivar 68

Torque characteristics (typical curves)

The curves below define the available continuous torque and transient overtorque, either on a naturally-cooled or a force-cooled motor. The only difference is the ability of the motor to provide a high continuous torque at less than half nominal speed.

High torque applications

Standard torque applications

1 Naturally-cooled motor: continuous useful torque (adjustable internal protection)
2 Force-cooled motor: continuous useful torque
3 Overtorque available for max. 60 seconds
6 Typical continuous useful torque in variable torque

Operation: special uses

Motor power rating different from that of speed drive

The speed drive can supply any motor which has a power rating between 20 and 120% of that for which it is designed. Ensure that the current drawn does not exceed the continuous output current of the drive.

Motors connected in parallel

The speed drive rating must be greater than the sum of the motor currents to be connected to the speed drive. In this case, external thermal protection must be provided for each motor by probes (up to 6 motors) or a thermal overload relay. If the total length of the motor cables is greater than 50 m (shielded cables) or 80 m (unshielded cables), the fitting of a choke between the speed drives and the motors is recommended.
Autotuning is necessary for applications which require a high start-up torque (conveyors, lifting). In this case, the motors should be mechanically coupled, should have the same power rating and the same cable length.
Autotuning is not necessary for applications which do not require a high start-up torque (pumps, fans). In this case, the motor power ratings and the cable lengths may be different.
Each motor can be isolated by a contactor during operation. On the other hand, the motor should be reconnected to the speed drive in accordance with the precautions described below: "Coupling a contactor downstream of the speed drive".
The nominal current set for the speed drive should be equal to the sum of the motor currents.

Coupling a motor downstream of the speed drive

Coupling on the fly is possible if the current peak of the motor to be connected is less than the maximum transient current of the speed drive.
In all cases it is preferable to lock the speed drive before closing the contactor and unlock it after closing the main poles of the contactors.

Connection to an IT network

This type of connection is possible, but radio interference filters cannot be mounted. In addition, if the stray capacitance (or the filter capacitors) between the network and earth are excessive, there is a risk of premature wear on the speed drive in the event of a prolonged earth fault.
For this type of network, it is advisable to use earth fault detection via toroid sensor, kit VW3-A68190, see page 2/261, which will protect the speed drive in the event of an earth fault downstream of the speed drive.

Mounting on DC bus

The Altivar 68 can be mounted on a DC bus or with a common bus. These special applications require the use of a load circuit in parallel, VW3-A68180, see page 2/261.

Variable speed drives for asynchronous motors

Altivar 68
Standard

ATV-68C10N4

ATV-68C13N4

High torque applications ($150 \% \mathrm{Tn}$)

3-phase power supply $400 \mathrm{~V}-15 \% \ldots 500 \mathrm{~V}+10 \% \mathbf{5 0 / 6 0 ~ H z}$

75	100	133	121	116	106	142	129	124	113	213	2050	ATV-68C10N4	60.000
90	125	161	146	146	129	172	156	156	137	258	2400	ATV-68C13N4	95.000
110	150	194	177	169	157	208	189	180	167	312	2800	ATV-68C15N4	95.000
132	200	234	224	225	188	250	240	240	200	375	3250	ATV-68C19N4	95.000
160	250	304	282	283	244	325	302	302	260	488	4000	ATV-68C23N4	190.000
200	300	378	343	338	304	404	367	361	323	606	5000	ATV-68C28N4	190.000
250	350	444	403	388	357	475	431	414	380	713	6200	ATV-68C33N4	190.000
315	500	577	552	553	464	617	590	590	494	926	7800	ATV-68C43N4	500.000
400	600	717	673	675	577	767	720	720	614	1151	9700	ATV-68C53N4	500.000
500	800	845	785	787	680	904	840	840	723	1356	12000	ATV-68C63N4	500.000

3-phase power supply $400 \mathrm{~V}-15 \% \ldots 500 \mathrm{~V}+10 \% 50 / 60 \mathrm{~Hz}$

90	(6)	159	145	(6)	128	170	155	(6)	136	213	2400	$\overline{\text { ATV-68C10N4 }}$	60.000
$110(6)$	193	175	(6)	155	206	187	(6)	165	258	2800	$\overline{\text { ATV-68C13N4 }}$	95.000	
$132(6)$	234	212	(6)	188	250	227	(6)	200	312	3250	$\overline{\text { ATV-68C15N4 }}$	95.000	
$160(6)$	280	269	(6)	226	300	288	(6)	240	375	3800	$\overline{\text { ATV-68C19N4 }}$	95.000	
$200(6)$	365	338	(6)	293	390	362	(6)	312	488	4700	$\overline{\text { ATV-68C23N4 }}$	190.000	
$250(6)$	453	411	(6)	365	485	440	(6)	388	606	5800	$\overline{\text { ATV-68C28N4 }}$	190.000	
$315(6)$	533	483	(6)	429	570	517	(6)	456	713	7300	$\overline{\text { ATV-68C33N4 }}$	190.000	
$400(6)$	692	662	(6)	556	740	708	(6)	592	926	9100	$\overline{\text { ATV-68C43N4 }}$	500.000	
500	(6)	860	808	(6)	692	920	864	(6)	736	1151	11300	$\overline{\text { ATV-68C53N4 }}$	500.000
630	(6)	1015	942	(6)	816	1085	1008	(6)	868	1356	14000	$\overline{\text { ATV-68C63N4 }}$	500.000

(1) Power values are given for a switching frequency of 2.5 kHz in steady state. For switching frequencies of 5 or 10 kHz the drive must be derated, see page $2 / 242$.
(2) Typical value with additional choke for a 4-pole motor.

The presumed short-circuit current for a 3-phase power supply of 400 to 500 V is $22,000 \mathrm{~A}$.
(3) For 60 seconds every 10 minutes for a voltage of 400 V (corresponding to 1.5 times the maximum drive nominal current).
(4) Power dissipated at maximum nominal current and switching frequency of 2.5 kHz .
(5) For 60 seconds every 10 minutes for a voltage of 400 V (corresponding to 1.2 times the maximum drive nominal current).
(6) At 460 V , only high torque is available.

Presentation:	Characteristics:	Dimensions, installation:	Schemes:
pages $2 / 240$ and $2 / 241$	pages $2 / 242$ to $2 / 245$	pages $2 / 264$ to $2 / 269$	pages $2 / 270$ to $2 / 273$

Variable speed drives
 for asynchronous motors

Altivar 68F Flux Vector Control with sensor
With integrated encoder feedback card

ATV-68FC10N4

ATV-68FC13N4

ATV-68FC33N4

High torque applications ($150 \% \mathrm{Tn}$)

3-phase power supply $400 \mathrm{~V}-15 \% \ldots 500 \mathrm{~V}+10 \% 50 / 60 \mathrm{~Hz}$

75	100	133	121	116	106	142	129	124	113	213	2050	ATV-68FC10N4	60.000
90	125	161	146	146	129	172	156	156	137	258	2400	ATV-68FC13N4	95.000
110	150	194	177	169	157	208	189	180	167	312	2800	ATV-68FC15N4	95.000
132	200	234	224	225	188	250	240	240	200	375	3250	ATV-68FC19N4	95.000
160	250	304	282	283	244	325	302	302	260	488	4000	ATV-68FC23N4	190.000
$\underline{200}$	300	378	343	338	304	404	367	361	323	606	5000	ATV-68FC28N4	190.000
250	350	444	403	388	357	475	431	414	380	713	6200	ATV-68FC33N4	190.000
315	500	577	552	553	464	617	590	590	494	926	7800	ATV-68FC43N4	500.000
400	600	717	673	675	577	767	720	720	614	1151	9700	ATV-68FC53N4	500.000
500	800	845	785	787	680	904	840	840	723	1356	12000	ATV-68FC63N4	500.000

Motor	Supply	Altivar 68			
Power	Line	Maximum	Max.	Power Reference	Weight
rating	current	drive	transient current (5)	dissipated	
on	(2)	nominal		at nominal	
motor		current		load	
plate				(4)	
(1)	400 V 4	400 V 440			

(1)	400 V 440 V 460 V 500 V	400 V 440 V 460 V 500 V								
$\mathbf{k W}$	HP	\mathbf{A}								

3-phase power supply $400 \mathrm{~V}-15 \% \ldots 500 \mathrm{~V}+10 \% 50 / 60 \mathrm{~Hz}$

90 (6)	159	145	(6)	128	170	155	(6)	136	213	2400	ATV-68FC10N4	60.000
110 (6)	193	175	(6)	155	206	187	(6)	165	258	2800	ATV-68FC13N4	95.000
132 (6)	234	212	(6)	188	250	227	(6)	200	312	3250	ATV-68FC15N4	95.000
160 (6)	280	269	(6)	226	300	288	(6)	240	375	3800	ATV-68FC19N4	95.000
200 (6)	365	338	(6)	293	390	362	(6)	312	488	4700	ATV-68FC23N4	190.000
$\underline{250(6)}$	453	411	(6)	365	485	440	(6)	388	606	5800	ATV-68FC28N4	190.000
315 (6)	533	483	(6)	429	570	517	(6)	456	713	7300	ATV-68FC33N4	190.000
400 (6)	692	662	(6)	556	740	708	(6)	592	926	9100	ATV-68FC43N4	500.000
500 (6)	860	808	(6)	692	920	864	(6)	736	1151	11300	ATV-68FC53N4	500.000
630 (6)	1015	942	(6)	816	1085	1008	6)	868	1356	14000	ATV-68FC63N4	500.000

(1) Power values are given for a switching frequency of 2.5 kHz in steady state. For switching frequencies of 5 or 10 kHz the drive must be derated, see page $2 / 242$.
(2) Typical value with additional choke for a 4 -pole motor.

The presumed short-circuit current for a 3-phase power supply of 400 to 500 V is 22,000 A.
(3) For 60 seconds every 10 minutes for a voltage of 400 V (corresponding to 1.5 times the maximum drive nominal current).
(4) Power dissipated at maximum nominal current and switching frequency of 2.5 kHz .
(5) For 60 seconds every 10 minutes for a voltage of 400 V (corresponding to 1.2 times the maximum drive nominal current).
(6) At 460 V , only high torque is available.

Presentation: pages $2 / 240$ and $2 / 241$	Characteristics: pages $2 / 242$ to $2 / 245$	Dimensions, installation: pages $2 / 264$ to $2 / 269$	Schemes: pages $2 / 270$ to 2/273
	(e) Telemecanique		$2 / 247$

Variable speed drives for asynchronous motors

Altivar 68
Options: reduction of harmonic currents

The main solutions for reducing harmonic currents are as follows:

- line chokes,
- passive filters (1),
- active compensators, also called SineWave active filters. Please consult the Merlin Gerin catalogue (1),
- hybrid filters (1),
- twelve pulse connection (1).

All five solutions can be used on the same installation. It is always easier and less expensive to handle the harmonics at installation level as a whole rather than at the level of each individual unit, particularly when using passive filters and active compensators.

Line chokes

This is an inexpensive solution, which can be applied to each unit individually, but which is of limited effectiveness in reducing harmonics because too high an inductance will cause an unacceptable voltage drop.

Example of currents and harmonic levels at 400 V (with line chokes)

High torque applications, $400 \mathrm{~V} / 50 \mathrm{~Hz}(\mathrm{Isc}=22,000 \mathrm{~A}$, L supply $=33.4 \mu \mathrm{H}$)

ATV-68 drives		\bullet-10N4	$\bullet 13 N 4$	$\bullet 15 N 4$	$\bullet 19 N 4$	$\bullet 23 N 4$	$\bullet 28 N 4$	\bullet 33N4	$\bullet 43 N 4$	$\bullet 53 N 4$	-63N4
Power	kW	75	90	110	132	160	200	250	315	400	500
Line current	A	131.5	159.3	191.9	232.2	286.9	359.8	451.6	567.8	707.3	885.1
H1	A	122.8	148.9	178.1	215.6	266.2	334.8	420.7	534.4	669.2	844.6
H5	$\%$	35.6	35.7	36.7	37.0	36.7	36.5	35.9	32.1	31.1	29.8
H7	$\%$	11.8	11.9	12.7	12.9	12.8	12.6	9.6	9.5	8.9	8.3
H11	$\%$	6.5	6.7	6.7	6.7	6.9	6.8	6.6	6.2	6.0	5.6
H13	$\%$	3.2	3.2	3.3	3.2	3.3	3.3	3.2	3.2	3.2	3.2

Standard torque applications, $400 \mathrm{~V} / 50 \mathrm{~Hz}$ (Isc $=22,000 \mathrm{~A}, \mathrm{~L}$ supply $=33.4 \mu \mathrm{H}$)

ATV-68 drives		\bullet •10N4	$\bullet 13 N 4$	$\bullet 15 N 4$	$\bullet 19 N 4$	\bullet 23N4	$\bullet 28 N 4$	\bullet 33N4	$\bullet 43 N 4$	$\bullet 53 N 4$	$\bullet 63 N 4$
Power	kW	90	110	132	160	200	250	315	400	500	630
Line current	A	157.1	189.5	228.2	276.5	341.0	428.0	537.6	678.2	843.6	1057.2
H1	A	148.0	179.2	214.5	259.6	320.4	402.9	506.8	644.8	805.6	1018.2
H5	$\%$	33.0	33.1	34.1	34.4	34.1	34.0	33.3	29.8	28.9	27.6
H7	$\%$	9.9	10.1	10.7	10.8	10.7	10.6	9.9	8.3	8.0	7.7
H11	$\%$	6.0	6.3	6.4	6.3	6.5	6.4	6.1	5.7	5.4	4.9
H13	$\%$	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2	3.2	3.2

Harmonic levels at $\mathbf{4 0 0} \mathrm{V}$ for harmonic orders H 17 to H 49
All drive ratings, for high and constant torque applications, $400 \mathrm{~V} / 50 \mathrm{~Hz}$ (Isc $=22,000 \mathrm{~A}, \mathrm{~L}$ supply $=33.4 \mu \mathrm{H}$).

Order	H 17	H 19	H 23	H 25	H 29	H 31	H 35	H 37	H 41	H43	H47	H49
Value (\%)	2.32	1.75	1.08	0.99	0.62	0.57	0.45	0.37	0.33	0.28	0.23	0.20

(1) For combinations with drives, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

Altivar 68

Options: line chokes

Presentation

Line chokes are essential, except for the ATV-68•10N4 to $\bullet 33 \mathrm{~N} 4$ ratings if the line or transformer impedance is greater than:
$-245 \mu \mathrm{H}$ for $\bullet 10 \mathrm{~N} 4$ rating ($\mathrm{Isc}=3000$),

- $120 \mu \mathrm{H}$ for $\bullet 13 \mathrm{~N} 4, \bullet 15 \mathrm{~N} 4$ and $\bullet 19 \mathrm{~N} 4$ ratings (Isc = 6100),
$-60 \mu \mathrm{H}$ for $\bullet 23 \mathrm{~N} 4, \bullet 28 \mathrm{~N} 4$ and $\bullet 33 \mathrm{~N} 4$ ratings (lsc $=12,200$).
These chokes can be used to provide improved protection against overvoltages on the line supply and to reduce harmonic distortion of the current produced by the drive. The recommended chokes are used to limit the line current.

The use of line chokes is also required for all ratings in the following cases:

- close connection of several drives in parallel,
- line supply with significant interference from other equipment (interference, overvoltages),
- line supply with voltage imbalance between phases $>1.8 \%$ of nominal voltage,
- installation of a large number of frequency converters on the same line,
- reduction of overload in $\cos \varphi$ correction capacitors, if the installation has a power factor correction unit.

Characteristics

Conforming to standards		IEC 60076 (with HD 398)	
Degree of protection		IP 00	
Maximum ambient pollution		Level 3	
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$
	Operation	${ }^{\circ} \mathrm{C}$	$0 \ldots+45$ Up to +55 with current derating of 2% per ${ }^{\circ} \mathrm{C}$ above $45{ }^{\circ} \mathrm{C}$.
Isolation class Conforming to IEC 60664 mm Clearance distance in air Conforming to IEC 60664 $\mathbf{m m}$ Leakage distance in air 11.5			
References			

	Chokes for high torque or standard torque applications (1)							
	Number of chokes required per drive	Fordrives	Choke characteristics				Reference	Weight
			Value of choke	Nominal current	Satur curre			
			$\mu \mathrm{H}$	A	A	W		kg
	Power supply voltage 400 V-15\%... 500 V + 15%							
	1	ATV-68•10N4	220	160	305	220	VW3-A68501	35.000
		ATV-68•13N4	155	195	370	220	VW3-A68502	35.000
		ATV-68•15N4	120	235	445	220	VW3-A68503	40.000
		ATV-68•19N4	98	280	530	245	VW3-A68504	50.000
VW3-A6850•		ATV-68•23N4	66	365	685	270	VW3-A68505	50.000
		ATV-68•28N4	49	455	855	270	VW3-A68506	55.000
		ATV-68•33N4	38	540	1025	280	VW3-A68507	60.000
	2	ATV-68•43N4	66	365	685	270	VW3-A68505	50.000
		ATV-68•53N4	49	455	855	270	VW3-A68506	55.000
		ATV-68•63N4	38	540	1025	280	VW3-A68507	60.000

[^27]
Variable speed drives for asynchronous motors

Altivar 68
Options: additional radio interference input filters

Presentation

Function

Additional input filters should be installed if the surrounding environment is subject to electromagnetic interference and radio-electric frequencies above 150 kHz .
These filters are designed to reduce emissions conducted on the line supply. The motor cables should be shielded and not exceed the maximum length given in the table below.
For the filter to operate efficiently, the installation conditions must be carefully respected

Use according to the type of network

Use of these filters is only possible on TN (connected to neutral) and TT (neutral to earth) type networks
These filters are not permitted on IT (impeding or isolated neutral) networks.
Characteristics

Degree of protection		IP 00	
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	$0 \ldots+45$ Up to +55 with current derating of 2% per ${ }^{\circ} \mathrm{C}$ above $45{ }^{\circ} \mathrm{C}$.
	Storage	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$
Maximum operating altitude	Without derating	m	1000 (above this, derate the current by 1% per additional 100 m)

VW3-A68403

VW3-A68465

Power supply voltage $400 \mathrm{~V}(\pm 15 \%)$ (2)

1 | ATV-68•10N4 | 120 | 40 | 170 | 500 | 100 | 20 | VW3-A68401 (2) | 5.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | ATV-68•13N4 | 150 | 40 | 300 | 500 | 100 | 40 | VW3-A68402 (2) |

Power supply voltage 440...500 V ($\pm 15 \%$) (2)

$\mathbf{1}$	ATV-68•10N4	100	25	180	(4)	6	38	VW3-A68415	6.500
	ATV-68•13N4	120	25	320	(4)	6	40	VW3-A68435	10.500
	ATV-68•15N4	120	25	320	(4)	6	40	VW3-A68435	10.500
	ATV-68•19N4	120	25	320	(4)	6	40	VW3-A68435	10.500
	ATV-68•23N4	100	25	600	(4)	6	65	VW3-A68465	11.000
	ATV-68•28N4	100	25	600	(4)	6	65	VW3-A68465	11.000
	ATV-68•33N4	100	25	600	(4)	6	65	VW3-A68465	11.000
									11.000
					11.000				
	ATV-68•43N4	120	25	600	(4)	6	65	VW3-A68465	11.000

(1) If motors are connected in parallel, it is the total length that should be taken into account

The motor cable lengths are given for a modulation frequency of 2.5 kHz . They should be multiplied by 0.6 for a frequency of 5 kHz and by 0.3 for 10 kHz . If the motor cable is longer, the addition of a motor choke enables the length to be multiplied by 2.5 , and the use of a single cable with a larger cross-section instead of several cables in parallel enables it to be multiplied by 1.5 or 2 if it is not shielded. In this case the radiated emissions are not limited.
(2) Filters VW3-A68401 to 403 have 2 parts: the line choke should be mounted between them.
(3) Filter VW3-A68404 has 3 parts: 2 parts similar to those of VW3-A68401 to 403, the third comprising 6 busbars. The line choke should be mounted between the first 2 and the third.
(4) Information not available.

Presentation, characteristics, references

Variable speed drives for asynchronous motors

Altivar 68
Options: additional motor chokes

Presentation

The use of an output choke between the drive and the motor is recommended for motor cables which are longer than 50 metres (shielded cables) or 80 metres (non-shielded cables). This makes it possible to:

- Limit $\frac{\mathrm{dv}}{\mathrm{dt}}$ within the following limits:
- $500 \mathrm{~V} / \mu \mathrm{s}$ at 400 V
$-750 \mathrm{~V} / \mu \mathrm{s}$ at 500 V
- Limit overvoltages on the motor terminals to:

1000 V at 400 V
-1300 V at 500 V

- Filter interference caused by opening a contactor placed between the filter and the motor,
- Reduce the motor earth leakage current.

3 single-phase chokes

Characteristics

Ambient air temperature around the device	Storage	${ }^{\circ} \mathbf{C}$	$25 \ldots+70$
	Operation	${ }^{\circ} \mathbf{C}$	$0 \ldots+45$
Degree of protection		IP 00	

References

VW3-A68553

| For drives | Maximum
 length of
 motor cable (1) | Nominal
 current | Max.
 loss | Reference |
| :--- | :--- | :--- | :--- | :--- |\quad Weight

Power supply voltage $400 \mathrm{~V} \pm 15 \%$

ATV-68•10N4	250	150	170	500		VW3-A68551
ATV-68•13N4	300	200	300	650	VW3-A68552	11.500
ATV-68•15N4	300	200	300	650	VW3-A68552	18.000
ATV-68•19N4	250	150	300	650	VW3-A68552	18.000
ATV-68•23N4	300	250	580	800	VW3-A68553	40.000
ATV-68•28N4	300	250	580	800	VW3-A68553	40.000
ATV-68•33N4	250	200	580	800	VW3-A68553	40.000
ATV-68•43N4	300	250	1085	1000	VW3-A68554	110.000
ATV-68•53N4	300	250	1085	1000	VW3-A68554	110.000
ATV-68•63N4	250	200	1085	1000	VW3-A68554	110.000

Power supply voltage 440 V -10 \%... 500 V + 15%

ATV-68•10N4	200	150	170	500	VW3-A68551	11.500
ATV-68•13N4	250	200	300	650	VW3-A68552	18.000
ATV-68•15N4	250	200	300	650	VW3-A68552	18.000
ATV-68•19N4	200	150	300	650	VW3-A68552	18.000
ATV-68•23N4	280	200	580	800	VW3-A68553	40.000
ATV-68•28N4	250	200	580	800	VW3-A68553	40.000
ATV-68•33N4	220	180	580	800	VW3-A68553	40.000
ATV-68•43N4	280	250	1085	1000	VW3-A68554	110.000
ATV-68•53N4	250	200	1085	1000	VW3-A68554	110.000
ATV-68•63N4	220	170	1085	1000	VW3-A68554	110.000

[^28] cable lengths between the motor and the drive given in the table above. For an application with several motors connected in parallel, the cable length must include all cabling. If a cable longer than that recommended is used, there is risk of the motor chokes overheating.

Variable speed drives for asynchronous motors

Altivar 68

Options: braking units and resistors

Presentation

The braking unit and resistor are external modules. They enable the Altivar 68 to operate while braking to a standstill or during "generator" operation, by dissipating the braking energy in the resistor.
Resistors are designed to be mounted on the outside of the enclosure, but should not inhibit natural cooling. Air inlets and outlets must not be obstructed in any way. The air must be free of dust, corrosive gas and condensation.

Schematic diagram

(1) Braking unit engage threshold

Variable speed drives for asynchronous motors

Altivar 68
Options: braking units and resistors

VW3 A687575

Resistance at drive end $=1.5 \Omega(2)$

Braking units (1)									
400 V-500 V nominal supply voltage									
Power		Loss	Cable (drivebraking unit)		Cable (braking unit-resistors)		Reference		Weight
Cont. Max	Max.	at Pn	Crosssection	Max. length	Crosssection	Max. length			
kW kW	kW	W	mm ${ }^{2}$	m	$\mathrm{mm}^{\mathbf{2}}$	m			kg
37180	180	250	2×50	0.9	2×50	50	VW3 A	687537	9.000
$75 \quad 300$	300	500	2×95	0.9	2×95	50	VW3 A	687575	10.000
Minimum resistance value according to drive									
Drive				Brakin	g unit				
Type		Power High torque/ standard torque		VW3 A687537 37 kW unit		VW3 A687575 75 kW unit		275 kW units (2)	
		kW		Ohm		Ohm	Ohm		
ATV68C10N4	ON4	75/90		4.2		4.2		-	
ATV68C13N4	3N4	90/110		3.3		3	3		
ATV68C15N4	5N4	110/132		3.3		3	3		
ATV68C19N4		132/160		3.3		3	3		
ATV68C23N4		160/200		3.3		2.1	1.5		
ATV68C28N4		200/250		3.3 (3)		2.1	1.5		
ATV68C33N4		250/315		3.3 (3)		2.1	1.5		
ATV68C43N4		315/400		3.3 (3)		2.1 (3)		1.05	
ATV68C53N4		400/500		3.3 (3)		2.1 (3)		1.05	
ATV68C63N4		500/630		3.3 (3)		2.1 (3)		1.05	
Braking resistors									
Ohmic value			Power continuous	Rating of thermal relay	Rating of thermal relay		Reference		Weight
at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ (4)	(4) (5)								
		kW							kg
4.16	5.64	5			35		VW3 A68706		43.000
3.36	4.57	8			49		VW3 A68707		50.000
2.16	2.9	10			68		VW3 A68708		56.000
4.55	6.23	18			63		VW3 A68709		68.000
3.33	4.5	26			88.5		VW3 A68710		113.000
4.26	5.74	28.4			82		VW3 A68711		113.000
3.28	3.8	32			99		VW3 A68712		100.000
2.2	2.6	47			146.5		VW3 A68713		115.000
2.1	2.44	59			168		VW3 A68714		142.000
3.35	4.5	50			108.5		VW3 A68715		135.000
3.1	3.6	70			150.5		VW3 A68716		152.000
2.1	2.87	88			205		VW3 A68717		115.000
2.1	2.48				218.5		VW3 A	68718	119.000

(1) For ratings ATV 68013N4 to 063N4 braking units should be connected to the DC bus using the DC bus connection kit VW3 A68802, see page 2/260.
(2) For 2 braking units in parallel, the value given corresponds to the resistance at the drive end. Example: a resistance of 1.5Ω minimum corresponds to two 3Ω resistors minimum on each braking unit (see diagram opposite).
(3) Use possible, but not recommended (maximum braking unit power < maximum drive power).
(4) Do not use a resistor with a value less than the minimum value given in the table.
(5) Continuous power ohmic value in a $20^{\circ} \mathrm{C}$ environment.

Nota : to increase the braking power, it is possible to install several braking resistors in parallel on the same braking unit. In this case do not forget to take into account the minimum resistance value on each unit.

Variable speed drives for asynchronous motors

Altivar 68

Options: braking units and resistors

Determining the braking unit and resistor

Calculating the various braking powers makes it possible to determine the braking unit and the braking resistor.

Presentation of the two main types of operation: A and B

A The braking power during deceleration is characterised by a peak power Pb obtained at the start of deceleration, which decreases to 0 in proportion with the speed.
Example: stopping centrifuges, travel, change of direction, etc.

B Braking power at constant speed n_{2}. Example: vertical downward movement, motor/generator test bench, gravity conveyors, etc.

Note: both these types of operation can be combined.

Type A operation

Calculating the braking time from the inertia
$t_{b}=\frac{J \cdot \omega}{T_{b}+T_{r}}$

$$
\omega=\frac{2 \pi \cdot n}{60}
$$

$$
\mathrm{T}_{\mathrm{b}}=\frac{\Sigma \mathrm{J} \cdot\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{9,55 \cdot \mathrm{t}_{\mathrm{b}}}
$$

$\hat{P}_{b}=\frac{T_{b} \cdot n_{1}}{9,55}$
$\bar{P}_{b}=\frac{\hat{P}_{b}}{2}$

[Nm]
[kgm ${ }^{2}$]
[rpm]
[rpm]
[s]
[W]
[W] [mN]

Motor braking torque
Total inertia applied to the motor
$\mathrm{P}_{\mathrm{b}} \quad$ Average braking power during time t_{b} Braking torque

Variable speed drives
for asynchronous motors
Altivar 68
Options: braking units and resistors

W	Kinetic energy
w	Weight
v	Speed
t_{b}	Braking time
$\hat{\mathrm{P}}_{\mathrm{b}}$	Peak braking power
P_{b}	Average braking power during time t_{b}
T_{b}	Braking torque
n	Motor speed
g	Acceleration
a	Deceleration
v	Linear downward speed
J	Moment of inertia
ω	Angular speed
t_{b}	Downward stopping time

$\hat{\mathrm{P}}_{\mathrm{bR}}$	Maximum actual braking power	$[\mathrm{W}]$
$\overline{\mathrm{P}}_{\mathrm{bR}}$	Continuous actual braking power	$[\mathrm{W}]$
$\eta_{\text {total }}$	Total efficiency	
$\mathrm{P}_{\text {load }}$	Braking power connected with the resistive or driving torque (not taken into account in the	
	calculation). $\mathrm{P}_{\text {load }}$ can be positive or negative.	
$\eta_{\text {drive }}$	Drive efficiency $=0.98$	
$\eta_{\text {mec }}$	Mechanical efficiency	
$\eta_{\text {mot }}$	Motor efficiency	

[Joule]
[kg]
[m / s]
[s]
[W]
[W]
[Nm]
[rpm]
$9.81 \mathrm{~m} / \mathrm{s}^{2}$
[m/s²]
[m/s]
[kgms²] [rad/s]

$$
\overline{\mathrm{P}}_{\mathrm{b}}=\mathrm{w} \cdot \mathrm{~g} \cdot \mathrm{v}
$$

All the braking power calculations are only true if it is assumed that there are no losses $(\eta=1)$ and that there is no resistive torque.

To be even more precise, the following must be considered:

- the losses and the resistive torque of the system, which reduce the necessary
braking power,
■ the driving torque, for example the wind, which increases the braking power.
The required braking power is calculated as follows:
$\hat{P}_{b R}=\left(\hat{P}_{\mathrm{b}}-\mathrm{P}_{\text {load }}\right) \times \eta^{2}$ total $\quad \overline{\mathrm{P}}_{\mathrm{bR}}=\left(\overline{\mathrm{P}_{\mathrm{b}}}-\mathrm{P}_{\text {load }}\right) \times \eta^{2}$ total
$\eta_{\text {total }}=\eta_{\text {mec }} \times \eta_{\text {mot }} \times 0,98$

For braking, the value of the braking resistor is selected to match the required power and the braking cycle.
In general:

$$
\hat{P}_{b R}=\frac{U^{2} d c}{R} \Rightarrow R=\frac{U^{2} d c}{\hat{P}_{b R}}
$$

Continuous power is obtained by taking the operating cycle into account.

The braking unit is selected taking the following into account:

- the continuous power $\overline{\mathrm{P}}_{\mathrm{b} 1}$

■ the average braking power during downward movement $\overline{\mathrm{P}}_{\mathrm{b} 2}$

- the peak power \hat{P}_{b}

Select the braking unit according to the characteristics on page $2 / 252$.
The braking resistor is selected taking account of the same elements listed above but with the addition of a check to ensure that the resistance value will allow the peak power to be exceeded $\left(R=\frac{U^{2} d c}{\hat{P}_{b}}\right)$.
Note: the resistance value must always be greater than or equal to the values given in the table on page $2 / 253$.

Presentation, characteristics:	References:	
page $2 / 252$	page $2 / 253$	Dimensions:

Variable speed drives for asynchronous motors
 Altivar 68
 Characteristics of braking resistors

VW3 A68706 (P continuous = 5 kW)

VW3 A68708 (P continuous = 10 kW)

VW3 A68710 (P continuous $=26 \mathrm{~kW}$)

VW3 A68712 (P continuous $=32 \mathrm{~kW}$)

VW3 A68706 (P continuous $=8 \mathrm{~kW})$

VW3 A68709 (P continuous = 18 kW) (1)

VW3 A68711 (P continuous $=28.4 \mathrm{~kW}$)

VW3 A68713 (P continuous $=47 \mathrm{~kW})$

- $\quad P$ max/P av (60 s cycle)
-=-=- P max/P av (120 s cycle)
- $\quad P$ max/P av (200 s cycle)

(1) Example:

for a 60 s cycle, resistor VW3 A68709 18 kW will take an overload of 2.5×18 for 25 s i.e. 45 kW for 25 s .

Presentation, characteristics:	References:	Dimensions:
page $2 / 252$	page $2 / 253$	page $2 / 266$

Variable speed drives for asynchronous motors

Altivar 68
Characteristics of braking resistors

VW3 A68714 (P continuous = 59 kW)

VW3 A68716 (P continuous $=70 \mathrm{~kW})$

VW3 A68715 (P continuous $=50 \mathrm{~kW})$

VW3 A68717 (P continuous $=88 \mathrm{~kW}$)

VW3 A68718 (P continuous $=100 \mathrm{~kW}$)

- P max/P av (60 s cycle)
--=- $P \max / P$ av (120 s cycle)
_ P max/P av (200 s cycle)

Variable speed drives for asynchronous motors

Altivar 68
Options: I/O extension card

Presentation

The card comprises:

- 1 analogue input 0(4)... 20 mA ,
-1 analogue output 0 (4) $\ldots 20 \mathrm{~mA}$,
- 4 logic inputs,
- 1 output relay with C/O contact,
- 1 output relay with N/O contact.

All these I/O have identical characteristics to those of the basic drive
It is possible to mount $2 \mathrm{I} / \mathrm{O}$ cards or $1 \mathrm{I} / \mathrm{O}$ extension card and 1 Profibus communication card on each drive. They are connected to the control card connector.

Characteristics

Analog input AI2
(differential amplifier)

1 analogue current input: 0(4)... 20 mA
Load: 250Ω
Precision $\pm 1.1 \%$ of full scale (20 mA)
10-bit resolution
Stability $\pm 0.2 \%$ for a $10^{\circ} \mathrm{C}$ variation
Zero current monitoring (detection at 3 mA)
Programmable limit and operation
Acquisition time 5 ms

1 analogue current output: $0(4) \ldots 20 \mathrm{~mA}$ with programmable limit and operation
Maximum external load: 600Ω
10-bit resolution
Precision:
frequency, current, voltage: $\pm 1.5 \%$

- torque, apparent or actual power: $\pm 5 \%$

Acquisition time 5 ms

4 2-pole inputs DI5 to DI8: positive or negative logic
Programmable operation (1)
Minimum recognition time: 10 ms
Consumption: approx. 8 mA at 24 V

2 relay outputs RL2 and RL3
Programmable relay
Switching voltage: ~ 250 V or $-\mathrm{-} 30 \mathrm{~V}$
Switching power: 1250 VA max., 150 W
Max. DC current: 3 A
Min. switched current (new relay): =-- $24 \mathrm{~V}, 3 \mathrm{~mA}$
In PELV conditions, the external power supply must also be PELV (24 V)
Electrical isolation between the line supply and the relay power supply
RL2: changeover contact: N/C + N/O
RL3: N/O contact

References

	Description	For drives	Reference	Weight kg
	I/O extension card	ATV-68 all ratings	VW3-A68201	0.200
DIS 1 ox ${ }^{3}$				
R, 18 \%				
M03\% \quad = 3				
VW3-A68201				

[^29]Presentation, characteristics, references

Variable speed drives for asynchronous motors

Altivar 68

Options: communication cards

Presentation

The Altivar 68 can be adapted for communication by adding a communication card or module.
The models are available for the following buses: Fipio, Modbus Plus, Modbus RTU and Profibus DP.
The Fipio and Modbus Plus cards require the use of a connection kit.
The Modbus RTU module requires connection cables.
The Profibus DP card is connected directly to the drive.
Functions common to the Fipio, Modbus Plus, Modbus RTU and Profibus DP cards and module

- Control (accessible in read and write): run/stop, braking, frequency reference, fault reset, etc.
- Signalling (only accessible in read): drive status register, motor speed, motor current, logic I/O status register, fault register, etc.
- Authorisation of local control (via terminals)

Functions specific to the Profibus DP card

- Configuration (accessible in read and write): line supply frequency, motor voltage, ramp profile, I/O assignment, etc. - Adjustment (accessible in read and write): DC injection time and amplitude, thermal protection, speed range, ramp time, current limitation, etc.
Characteristics

Protocol	Fipio	Modbus Plus	Modbus RTU	Profibus DP
Number of drives controlled	62	64	31	127
Transmission speed	19.2 Kbps	19.2 Kbps	1.2 to 19.2 Mbps	1.5 Mbps

References

VW3-A68301 or VW3-A68302

Communication kits, module and cards
For ATV-68 drives, all ratings Reference Weight Protocol
Fipio : VW3-A68301kg

The kit comprises:

- the FIPIO communication card, reference VW3-A58311, equipped
with a 9-way male SUB-D connector, which will take a TSX FP ACC 12
removable connector with TSX FP CA \bullet connecting cable or
TSX FP CCeo tap cable (1)
- the communication interface, reference VW3-A68300,
the connecting cable, reference VW3-A68332.
An external $24 \mathrm{~V}=$, 200 mA minimum, power supply must be provided
(type TBX SUP10) to be ordered separately.

Modbus Plus:

VW3-A68302	1.400

The kit comprises:

- the Modbus Plus card, reference VW3-A58302, equipped with a 9-way female SUB-D connector, which will take a Modbus Plus tap cable equipped with connectors, reference 990 NAD 21110 or 990 NAD 21130, to be connected to a Modbus Plus tap, reference 990 NAD 23000 , for connection to the Modbus Plus trunk cable, reference 490 NAA 271 (1)
- the communication interface, reference VW3-A68300,
the connecting cable, reference VW3-A68332.
An external $24 \mathrm{~V}=-, 200 \mathrm{~mA}$ minimum, power supply must be provided (type TBX SUP10) to be ordered separately.

Modbus RTU

Communication module equipped with an RJ45 connector and a 9-way female SUB-D connector, 2-wire RS 485 serial link.
The module is supplied without cable or documentation, which should be ordered separately.
Connecting cable from ATV 68 to the module.
Connecting cable from the module to a Modbus T-junction box TSX SCA62
(1).

Documentation: user manual.
The module configuration can be modified using ABC Configurator software.
An external $24 \mathrm{~V}=$ - power supply must be provided.
Profibus DP: The card is equipped with a 9-way female SUB-D connector
VW3-A68307

VW3-A68313	0.150
VW3-A68306	0.150

VW3-A68306
0.150

VVDED301064 -
for connection using cables equipped with connectors (please consult manufacturer's catalogue).
(1) To order Fipio cables and Modbus Plus and Modbus RTU cables and connectors, please consult our "Modicon Premium and PL7 software" and "Modicon TSX Micro and PL7 software" catalogues.

Variable speed drives for asynchronous motors

Altivar 68
Options: programming terminal support, PC-based setup software, DC bus connection

Programming terminal remote mounting kit

The terminal is supplied with the drive.
A terminal support option allows remote location of the drive terminal at a maximum distance of 3 metres. This mechanical option supports the control card, the programming terminal and any I/O cards. It is particularly suitable for mounting on the enclosure door.

Description	For drives	Reference	Weight kg
Terminal support with	ATV-68	all ratings	VW3 A68800
$\mathbf{3} \mathbf{m}$ remote location cable			3.000

PC-based setup software

This option is available in the form of a kit for setting up an RS 232 C standard link between the Altivar and a PC operating in a Microsoft Windows environment.

Minimum configuration: 486 PC with 8 Mb of RAM.
Recommended configuration: Pentium 2 with 32 Mb of RAM.
Possible environment: Windows 95, Windows 98, or Windows NT.

Main functions:

- drive configuration,
- configuration backup,
- print out of complete parameter list,
- ability to load a configuration from one drive to another,
- oscilloscope mode for maintenance,
- local control.

Description	For drives	Reference
PC interconnection kit comprising:	ATV-68	
- a VW3 A68332 connection cable,	all ratings	
length 3 m, with		
19-way SUB-D socket		
and 1 RJ45 data socket,		
- 3×3 " $1 / 21.44$ Mb disks,		
- a quick reference guide.		
DC bus connection		

This kit is used to connect the braking unit or external load circuit options to the drive's DC bus, and also to connect several drives in parallel.

Description	For drives (1)	Reference	Weight kg
DC bus connection kit	ATV-68•13N4 to $\bullet 63 \mathrm{~N} 4$	$\overline{\text { VW3 A68802 }}$	
comprising:			
-1 U-shaped copper bar,			
-120 mm thick copper bar with fixing nuts.			

[^30]
Variable speed drives for asynchronous motors

Altivar 68

Options: external load circuit, earth protection and IT connection, air ducting kit, fan

VW3 A68180

VW3 A68190

VW3 A68820

External load circuit (degree of protection IP ${ }^{20}$)

This circuit is used when connecting several drives in parallel on the DC bus, the total power of which must not exceed 500 kW (for high torque applications), in order to avoid a possible overload when powering up.

Description	For drives	Reference	Weight kg
External load circuit	ATV-68 all ratings	$\underline{\text { VW3 A68180 }}$	3.000
	-		
Earth fault detection in IT connection (isolated neutral)			

This option protects the drive in the event of an earth fault between the drive and the motor, by measuring the differential current between the three phases of the line supply. It is connected to a 0-20 mA analogue input.

Description	For drives	Reference	Weight kg
Detection kit for earth faults comprising:	ATV-68 a current transformer with an integrated load block		$\boxed{0.500}$
	$\boxed{\text { VW3 A68190 }}$		

This kit evacuates hot air from the power part to the outside when the drive is mounted in an enclosure with IP 23 protection.
The temperature outside the enclosure must not exceed the maximum ambient temperature around the drive $-5^{\circ} \mathrm{C}$, see drive characteristics, page $2 / 242$ and installation recommendations, page 2/269.

Description	For drives	Number of kits required per drive	Reference	Weight kg
Kit comprises: - a tube, - an IP 23 protection grille.	ATV-68•13N4 to -19N4	1	VW3 A68801	0.500
	ATV-68•23N4 to •33N4	2	VW3 A68801	0.500
	ATV-68•43N4 to •63N4	4	VW3 A68801	0.500

External fan (enclosure with IP 23 protection)

The fan enables the drive to be mounted in an enclosure with IP 23 protection by increasing the evacuation or hot air to the outside. This is used to obtain a maximum temperature outside the enclosure equal to the maximum ambient temperature around the drive, see drive characteristics, page 2/242 and installation recommendations, page 2/269.

Description	For drives	Number of kits required per drive	Reference	Weight
Ventilation kit comprising: - a fan, - an IP 23 protection unit.	ATV-68•10N4 to •33N4	1	$\underline{\mathrm{VW} 3 \text { A68820 }}$	

Variable speed drives for asynchronous motors
Altivar 68

Combinations

Line supply	Motor Power indicated on plate		ATV-68 drive for applications		Options				
Supply voltage $50 / 60 \mathrm{~Hz}$			standard torque (120 \% Tn)	high torque ($150 \% \mathrm{Tn}$)	Line chokes	$\begin{aligned} & \text { RFI input } \\ & \text { filter } \\ & \hline 400 \mathrm{~V} \end{aligned}$	440...500 V	Motor chokes	Braking unit and resistor
	kW	HP	See p. 2/246 and 2/247		See p. 2/249	See p. 2/250	See p. 2/250	See p. 2/251	See p. 2/253
$\begin{aligned} & 400 \ldots 500 \mathrm{~V} \\ & \text { 3-phase } \end{aligned}$	75	100	ATV-68•10N4		VW3-A68501	VW3-A68401	VW3-A68415	VW3-A68551	VW3-A68•e७
	90	-	ATV-68•10N4		VW3-A68501	VW3-A68401	VW3-A68415	VW3-A68551	VW3-A68•0७
	90	125	ATV-68•13N4		VW3-A68502	VW3-A68402	VW3-A68435	VW3-A68552	VW3-A68•e७
	110	-	ATV-68•13N4		VW3-A68502	VW3-A68402	VW3-A68435	VW3-A68552	VW3-A68•e७
	110	150	ATV-68•15N4		VW3-A68503	VW3-A68402	VW3-A68435	VW3-A68552	VW3-A68•e७
	132	-	ATV-68•15N4		VW3-A68503	VW3-A68402	VW3-A68435	VW3-A68552	VW3-A68•0๑
	132	200	ATV-68•19N4		VW3-A68504	VW3-A68402	VW3-A68435	VW3-A68552	VW3-A68•e๑
	160	-	ATV-68•19N4		VW3-A68504	VW3-A68402	VW3-A68435	VW3-A68552	VW3-A68•0๑
	160	250	ATV-68•23N4		VW3-A68505	VW3-A68403	VW3-A68465	VW3-A68553	VW3-A68000
	200	-	ATV-68•23N4		VW3-A68505	VW3-A68403	VW3-A68465	VW3-A68553	VW3-A68•e७
	200	300	ATV-68•28N4		VW3-A68506	VW3-A68403	VW3-A68465	VW3-A68553	VW3-A68000
	250	-	ATV-68•28N4		VW3-A68506	VW3-A68403	VW3-A68465	VW3-A68553	VW3-A68•0๑
	250	350	-	ATV-68•33N4	VW3-A68507	VW3-A68403	VW3-A68465	VW3-A68553	VW3-A68•e७
	315	-	ATV-68•33N4		VW3-A68507	VW3-A68403	VW3-A68465	VW3-A68553	VW3-A68•0๑
	315	500	ATV-68•43N4		VW3-A68505 (1)VW3-A68404		VW3-A68465 (2) VW3-A68554		VW3-A68•0๑
	400	-	ATV-68•43N4		VW3-A68505 (1)VW3-A68404		VW3-A68465 (2) VW3-A68554		VW3-A68•0๑
	400	600	ATV-68•53N4		VW3-A68506 (1)VW3-A68404		VW3-A68465 (2) VW3-A68554		VW3-A68•0๑
	500	-	ATV-68•53N4		VW3-A68506 (1)VW3-A68404		VW3-A68465 (2) VW3-A68554		VW3-A68•**
	500	800	ATV-68•63N4		VW3-A66507 (1)VW3-A68404		VW3-A68465 (2) VW3-A68554		VW3-A68•e७
	630	-	ATV-68063N4		VW3-A66507 (1)VW3-A68404		VW3-A68465 (2) VW3-A68554		VW3-A68•e๑

(1) Allow for 2 chokes per speed drive.
(2) Allow for 2 filters per speed drive.

I/O extension card See p. 2/258	Communication cards See p. 2/259	Programming terminal remote mounting kit See p. 2/260	PC-based setup software See p. 2/260	DC bus connection See p. 2/260	External load circuit See p. 2/261	Earth fault detection in IT connection See p. 2/261	Air ducting kit to exterior of IP 23 enclosure See p. 2/261	External fan IP 23 enclosure See p. 2/261
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	-	VW3-A68180	VW3-A68190	-	VW3-A68820
VW3-A68201	VW3-A ${ }^{\text {830 }}$	VW3-A68800	VW3-A68331	-	VW3-A68180	VW3-A68190	-	VW3-A68820
VW3-A68201	VW3-A $830 \bullet$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A ${ }^{\text {830 }}$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A $830 \bullet$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A ${ }^{\text {830 }}$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A ${ }^{\text {830 }}$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A $830 \bullet$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A ${ }^{\text {830 }}$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830•	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A $830 \bullet$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830•	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A•830	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820
VW3-A68201	VW3-A ${ }^{\text {830 }}$	VW3-A68800	VW3-A68331	VW3-A68802	VW3-A68180	VW3-A68190	VW3-A68801	VW3-A68820

Variable speed drives for asynchronous motors
Altivar 68

ATV-68•10N4 (Size 2)

ATV-68•13N4 to •19N4 (Size 3)

(1) Air outlet $\varnothing 200 \mathrm{~mm}$ ATV-68•43N4 to •63N4 (Size 5)

Presentation:	Characteristics:	References:	
pages $2 / 240$ and $2 / 241$	pages $2 / 242$ to $2 / 245$	pages $2 / 246$ and $2 / 247$	Pageses: $2 / 270$ to $2 / 273$

Variable speed drives for asynchronous motors

Altivar 68

Radio interference input filters
VW3-A68401 (2 elements)

VW3-	a	b	b1	c	c1	G	G1	H	\varnothing	$\varnothing 1$	$\varnothing 2$

$\begin{array}{llllllllll}\text { A68501 } & 280 & 305 & 240 & 210 & 200 & 200 & 125 & 275 & 9\end{array}$

A68502	280	330	260	210	200
$\mathbf{4 6 8 5 0 3}$	320	380	300	210	200

A68503	320	380	300	210	200
A68504	320	380	300	210	200

A68505	320	380	300	250	230

A68506	320	380	300	250	230
A68507	320	380	300	250	230

(1) 25 mm min .

Radio interference input filters
VW3-A68402, A68403 (2 elements)

VW3-	a	a1	$\varnothing 1$	(1)
A68402	204	35	11	30×5 bar
A68403	224	40	13.5	40×5 bar

VW3-A68415

$\xrightarrow[120]{40}+30$ $\xrightarrow{120}$

VW3-A68404 (3 elements)

VW3-	C	L
A68435	115	6
A68465	135	8

Presentation: Characteristics: pages $2 / 248$ to $2 / 250$ pages $2 / 248$ to $2 / 250$	References: pages $2 / 248$ to $2 / 250$	
	(年 Telemecanique	$2 / 265$

Variable speed drives for asynchronous motors

Altivar 68

Additional motor chokes
VW3 A68551

Additional motor chokes

VW3 A68553 and VW3 A68554

VW3	a	a1	b	c	G	Ø1				$\boldsymbol{\varnothing} 2$
A68553	185	120	375	155	75	$325 \ldots 345$	13	9×20		
A68554	210	170	475	210	125	$425 \ldots 445$	2×13	9×20		

Braking resistors

VW3 A68706 to VW3 A68711

VW3 A68552

Braking units

VW3 A687537 and VW3 A687575

VW3 68712 to VW3 A68718

VW3	a	a1	a2	b	c	c1	c2
A68706	500	472	530	440	480	400	540
A68707	580	552	610	440	480	400	540
A68708	670	642	700	440	480	400	540
A68709	860	232	890	440	480	400	540
A68710	860	232	890	690	480	400	540
A68711	860	232	890	690	480	400	540

VW3	a	a1	a2	b	c	c1	c2
A68712	960	932	1140	1150	380	300	460
A68713	960	932	1140	1150	540	460	620
A68714	960	832	1040	1150	540	660	820
A68715	860	932	1140	1150	740	460	620
A68716	960	932	1140	1150	540	660	820
A68717	960	832	1040	1150	740	460	620
A68718	860	932	1140	1150	540	460	620

Presentation:	Characteristics:	References:	
pages $2 / 251$ and $2 / 252$	pages $2 / 251$ and $2 / 252$	pages $2 / 251$ and $2 / 253$	pagemes: $2 / 276$ and $2 / 277$

Variable speed drives for asynchronous motors

Altivar 68

Remote mounting kit for programming terminal

External load circuit VW3 A68180

Cut-out for mounting support VW3 A68552

Air ducting kit vW3 A68801

Earth fault detection kit
VW3 A68190

VW3-A68801 tube
2 Drive size 4 (for size 5, 4 VW3 A68801) tubes are necessary
Enclosure top cover
Additional cover grille
Cover grille

External fan

Presentation:	Characteristics:	References:
pages $2 / 240$ and $2 / 241$	pages $2 / 242$ to $2 / 245$	pages $2 / 260$ an
		(年 Telemecanique

Variable speed drives for asynchronous motors

Altivar 68

Installation recommendations for all ratings of ATV-68

- Observe the minimum dimensions shown opposite when installing.
- Install the Altivar in a vertical position (2).
- Make provision for evacuation of the hot air to the outside of the enclosure.
- Make provision for an air inlet on the door of the enclosure.

Pay attention to the ambient temperature (see Characteristics, page 2/242).
Avoid harmful environments such as those with high temperature and humidity levels as well as environments containing dust, dirt or corrosive gases. The location must be well ventilated and away from direct sunlight. Install the equipment against a vertical surface which is fireproof and vibration-free.
(1) Clearances at the sides are only required for access during maintenance. If the equipment can be easily removed, these distances are not necessary. (2) To ensure convection cooling, the Altivar 68 drives are designed for vertical installation. Observe the minimum recommended clearances, especially if the equipment is enclosed.
The ingress of objects during installation risks causing damage to the installation: ensure that no objects, wires, wire insulation, swarf or dust enter the equipment by covering it when it is not connected to the supply.

- The power block is accessed by tilting it forward, for ratings ATV-68•13N4 to $\bullet 63 \mathrm{~N} 4$. For maintenance provide a free space of 1.20 m in front of the Altivar.

Power block
2 Rotation axis

Installing the ATV-68•10N4 drive in an IP 20 or IP 23 enclosure For a maximum ambient temperature of $+40^{\circ} \mathrm{C}$ outside the enclosure

1 Air duct in order to avoid circulation of air from the power part inside the enclosure
2 Open section to facilitate the circulation of air
3 Air inlet (without filter) $6 \mathrm{dm}^{3}$
4 Fan
Air flow: 450 m³/h

Variable speed drives for asynchronous motors
 Altivar 68

Installing ATV-68e13N4 to -63N4 drives in IP 20 or IP 23 enclosures (1)
For a maximum ambient temperature of $+35 \ldots+40^{\circ} \mathrm{C}$ (2) outside the enclosure

The grille in the upper part 1 must be at least 60 mm away from the roof of the enclosure and should guarantee air circulation on all sides.
Mounting of separators 5 is essential if the fans of adjacent enclosures create back pressure.
Circulation of air within the enclosure must not be obstructed by the presence of additional components (line chokes, motor chokes, etc., except for radio interference filters and wiring) mounted between the enclosure air inlet and the drive air inlet 4 in the lower part and between the drive air outlet and enclosure air outlet in the upper part.

No heat source should be mounted under the drive!
Surface area of air inlet 4 according to drive rating

ATV-68	Surface area in $\mathrm{dm}^{2}(3)$
\bullet 13N4 to \bullet 19N4	7
\bullet 23N4 to \bullet 33N4	10
\bullet 43N4 to \bullet 68N4	20

Air circulation around the ventilation outlet should be around $10 \mathrm{~m} / \mathrm{s}$ (approx. $35 \mathrm{~km} / \mathrm{h}$) so that each air duct creates an increase in pressure.

Air flow according to drive rating

Top cover should be a minimum of 60 mm from the air outlets.
2 Hot air evacuation duct (VW3-A68801): 1, 2 or 4 outlets in the upper part of the enclosure depending on the rating (internal diameter 195 mm with rubber seal).
Partition with holes for cables to pass through, do not obstruct.
Drive air inlet.
5 Compulsory separator.

ATV-68	Flow in $\mathrm{m}^{3} / \mathrm{h}$
13N4 to \bullet 19N4	600
23N4 to 9 33N4	2×600
43N4 to -68 N 4	4×600

If another enclosure is mounted immediately adjacent to the drive, the enclosure partition 3 must be closed to avoid heat exchange.

For a maximum ambient temperature of $+40 \ldots+45^{\circ} \mathrm{C}$ outside the enclosure

The additional fan 1 avoids drive derating for an ambient air temperature outside the enclosure of $+40 \ldots+45^{\circ} \mathrm{C}$, see drive characteristics, page $2 / 242$.

Volume processed $>1500 \mathrm{~m}^{3} / \mathrm{h}$.
The cooling air flowing through the enclosure fans is evacuated by the additional fan (air duct need not be used).

1 Additional fan VW3-A68820.

(1) For IP 54 installation, please consult your Regional Sales Office.
(2) To determine the maximum ambient temperature: see drive characteristics, page $2 / 242$ and reduce by $5^{\circ} \mathrm{C}$ to take account of the temperature rise due to mounting in an enclosure.
(3) Defined surface area without filter.

Presentation:	Characteristics:	References:	Schemes:
pages $2 / 240$ and $2 / 241$	pages $2 / 242$ to $2 / 245$	pages $2 / 246$ and $2 / 247$	pages $2 / 270$ to $2 / 273$

Variable speed drives for asynchronous motors

Altivar 68

Wiring diagram for ATV-68•10N4 to ATV-68•33N4 (supply voltage 400 V)

(1) Motor cable shielding is necessary if the environment is sensitive to radiated interference. At the drive end, fix and ground the shielding to the mounting plate using 360° contact stainless steel clamps.
The main function of the motor cable shielding is to limit radio frequency radiation. Therefore use a 4 -pole cable for the motor, connecting each end of the shielding. The protection material (copper or steel) is of less importance than the quality of the connection at both ends. An alternative is to use metal trunking of high conductivity ensuring continuity throughout.
(2) Conductive mounting plate (in stainless or galvanised steel) to connect the motor cable shielding ground and to ensure ground equipotentiality between filter, drive and shielding.
All connections should be marked --- representing the EMC equipotential required for the flow of high frequency interference: protection connections, ground connections to shielding plates and interconnection of shielding.
They require low impedance at high frequencies; use machine ground wiring or, when this is not possible, large cross-section braiding (as short as possible). They can be in parallel with the normal protective conductor (green/yellow) which ensures safety
(3) It is possible to mount a second I/O card on the X3 connector.
(4) Not programmable on the first I/O extension card assigned to: "drive locking".

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 240$ and $2 / 241$	pages $2 / 242$ to $2 / 245$	pages $2 / 246$ and $2 / 247$	page $2 / 264$

Variable speed drives for asynchronous motors

Altivar 68

Components to connect to ATV-68•10N4 to ATV-68•33N4 drives

Label	Description
A1	ATV-68 -10N4 to •33N4 drives
F1A - F1B	Radio interference input filters in 2 parts, see page 2/250. Their IL line choke connections must be as short as possible. At 500 V , the filter is a single part, place it at F1B.
IL	Line chokes, see page 2/249.
IM	Motor chokes, see page 2/251.
KM1	LC1-Feee with suppressor (see pages 2/278 and 2/279). Optional contactor - Avoid frequent operation of contactor KM1 (risk of premature ageing of filter capacitors). Instead use the drive locking function. - In the case of cycles < 60 s , this is essential, to avoid risk of damaging the capacitator load card. - If the safety standards require motor isolation, install a contactor at the drive output and lock the drive when the contactor is closed.
Q1	Circuit-breaker (see pages $2 / 278$ and $2 / 279$).
Q2	GV2-L rated at twice the primary nominal current of T1.
Q11	Isolator or fused isolator Fuse rating depends on drive and supply voltage
	ATV-68•10N4 $200 \mathrm{~A} \quad 160 \mathrm{~A} \quad 75 \times 10^{3} \mathrm{~A}^{2}$.s
	ATV-68•13N4 $250 \mathrm{~A} \quad 200 \mathrm{~A} \quad 245 \times 10^{3} \mathrm{~A}^{2} . \mathrm{s}$
	ATV-68•15N4 $315 \mathrm{~A} \quad 250 \mathrm{~A} \quad 245 \times 10^{3} \mathrm{~A}^{2} . \mathrm{s}$
	ATV-68•19N4 $400 \mathrm{~A} \quad 315 \mathrm{~A} \quad 245 \times 10^{3} \mathrm{~A}^{2} . \mathrm{s}$
	ATV-68•23N4 $500 \mathrm{~A} \quad 400 \mathrm{~A} \quad 1000 \times 10^{3} \mathrm{~A}^{2} . \mathrm{s}$
	ATV-68•28N4 $630 \mathrm{~A} \quad 500 \mathrm{~A} \quad 1000 \times 10^{3} \mathrm{~A}^{2} . \mathrm{s}$
	ATV-68•33N4 $800 \mathrm{~A} \quad 630 \mathrm{~A} \quad 1000 \times 10^{3} \mathrm{~A}^{2} . \mathrm{S}$
R1-R2	Braking units, see pages 2/252 to 2/257.
T1	Control supply transformer, depends on the application.

Variable speed drives for asynchronous motors

Altivar 68

Wiring diagram for ATV-68•43N4 to ATV-68•63N4 (supply voltage 400 V)

$\overline{(1) ~ M o t o r ~ c a b l e ~ s h i e l d i n g ~ i s ~ n e c e s s a r y ~ i f ~ t h e ~ e n v i r o n m e n t ~ i s ~ s e n s i t i v e ~ t o ~ r a d i a t e d ~ i n t e r f e r e n c e . ~ A t ~ t h e ~ d r i v e ~ e n d, ~ f i x ~ a n d ~ g r o u n d ~ t h e ~ s h i e l d i n g ~ t o ~ t h e ~ m o u n t i n g ~ p l a t e ~}$ using 360° contact stainless steel clamps.
The main function of the motor cable shielding is to limit radio frequency radiation. Therefore use a 4 -pole cable for the motor, connecting each end of the shielding. The protection material (copper or steel) is of less importance than the quality of the connection at both ends. An alternative is to use metal trunking of high conductivity ensuring continuity throughout.
(2) Conductive mounting plate (in stainless or galvanised steel) to connect the motor cable shielding ground and to ensure ground equipotentiality between filter, drive and shielding.
All connections should be marked --- representing the EMC equipotential required for the flow of high frequency interference: protection connections, ground connections to shielding plates and interconnection of shielding.
They require low impedance at high frequencies; use machine ground wiring or, when this is not possible, large cross-section braiding (as short as possible). They can be in parallel with the normal protective conductor (green/yellow) which ensures safety.
(3) It is possible to mount a second I/O card on the X3 connector.
(4) Not programmable on the first I/O extension card assigned to: "drive locking".

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 240$ and $2 / 241$	pages $2 / 242$ to $2 / 245$	pages $2 / 246$ and $2 / 247$	page $2 / 264$

Variable speed drives for asynchronous motors

Altivar 68

Components to connect to ATV-68•43N4 to ATV-68•63N4 drives

Label	Description
A1	ATV-68•43N4 to $\bullet 63 \mathrm{~N} 4$ drives
F1A - F1B-F1C	Radio interference input filters in 3 parts, see page 2/250. Their IL line choke connections must be as short as possible. At 500 V , these are 2 identical filters: one is connected at F1C for L1A, L2A, L3A, the other at F1C for L1B, L2B, L3B.
IL	Line chokes, see page 2/249.
IM	Motor chokes, see page 2/251.
KM1	LC1-Fee७ with suppressor (see pages 2/278 and 2/279). Optional contactor - Avoid frequent operation of contactor KM1 (risk of premature ageing of filter capacitors). Instead use the drive locking function. - In the case of cycles < 60 s , this is essential, to avoid risk of damaging the capacitator load card. - If the safety standards require motor isolation, install a contactor at the drive output and lock the drive when the contactor is closed.
Q1	Circuit-breaker (see pages 2/278 and 2/279).
Q2	GV2-L rated at twice the primary nominal current of T1.
Q11	Isolator or fused isolator Fuse rating depends on drive and supply voltage
	Drive Supply voltage Maximum tripping value $400 \ldots 40 \mathrm{~V}$ 500 V t
	ATV-68•43N4 $2 \times 500 \mathrm{~A}(1) \quad 2 \times 400 \mathrm{~A}(1)$
	$\underline{\text { ATV-68•53N4 } 4} 2 \times 630 \mathrm{~A}(1) \quad 2 \times 500 \mathrm{~A}(1) \quad 1000 \times 10^{3} \mathrm{~A}^{2} . \mathrm{S}$
	$\underline{\text { ATV-68•63N }} 2 \times 800 \mathrm{~A}(1) \quad 2 \times 630 \mathrm{~A}(1) \quad 1000 \times 10^{3} \mathrm{~A}^{2} . \mathrm{S}$
R1-R2	Braking units, see pages $2 / 252$ to $2 / 257$.
T1	Control supply transformer, depends on the application

(1) 2×3-pole fuses as there are two input bridges.

Presentation: pages 2/240 and 2/241	Characteristics: pages 2/242 to 2/245	References: pages 2/246 and 2/247	Dimensions: page 2/264	
(官 Telemecanique 2/273				

Variable speed drives for asynchronous motors

Altivar 68

Connection of several drives in parallel on the DC bus
Drives of different rating

Braking unit Braking unit and braking resistor if necessary.
Connection of several drives in parallel on the DC bus
Drives of same rating

Label

Description

KM1	Using a common line contactor, all Altivar 68 load circuits function in parallel and so cannot be overloaded. Warning: If one contactor per drive is used, the "external load circuit" option VW3-A68180 should be connected to each drive.
Q1, Q2, Q3	Line-side circuit-breakers for drive overload protection. Use the trip contacts acting on the "external fault" logic input or on the line contactor. The line contactor must only be energised if the three circuit-breakers are closed, otherwise there is a risk of drive deterioration.
F1, F2, F3	Fast-acting fuses protection on the DC bus side, see table on opposite page.
Drives 1, 2 and 3	Generally the number and size of drives can be freely selected, but only drives of the same size or the first rating of the next size can be used together. Line chokes (IL) must be used.

Variable speed drives for asynchronous motors

Altivar 68

DC bus fuse size (F1, F2, F3) according to drive rating

Drive	Fast-acting fuses (1)	
400 and 440 V	460 and 500 V	
ATV-68•10N4	250 A	200 A
ATV-68•13N4	315 A	250 A
ATV-68•15N4	400 A	315 A
ATV-68•19N4	500 A	400 A
ATV-68•23N4	630 A	500 A
ATV-68•28N4	800 A	500 A
ATV-68•33N4	800 A	630 A
ATV-68•43N4	1000 A	800 A
ATV-68•53N4	1250 A	1000 A
ATV-68•63N4	1600 A	1250 A
(1) Nominal voltage of fast-acting fuse:$400 \mathrm{~V}:$ fast-acting 690 V $440 \mathrm{~V}:$ fast-acting 800 V 460 V : fast-acting 800 V $500 \mathrm{~V}:$ fast-acting 800 V		

Presentation:	Characteristics:	References:	Dimensions:
pages $2 / 240$ and $2 / 241$	pages 2/242 to 2/245	pages $2 / 246$ and $2 / 247$	page 2/264
	華 Telemecanique		$2 / 275$

Variable speed drives for asynchronous motors
Altivar 68

Drive combined with one braking unit and one braking resistor

Drive combined with two braking units

Variable speed drives for asynchronous motors

Altivar 68

Drives combined with one or two braking units, wired to the same DC Bus

External load circuit

Earth fault detection kit VW3-A68190

Variable speed drives for asynchronous motors

Altivar 68
Motor starters

Applications

Circuit-breaker-contactor-drive combinations ensure service continuity of the installation with optimum safety. The coordination between the circuit-breaker and the contactor reduces maintenance costs in the event of a shortcircuit by minimising intervention time and the expense of replacing equipment.
The combinations available provide type 1 or type 2 coordination.
Type 2 coordination: there will be no damage and no loss of settings after a short-circuit. The motor starter should be operational after the electrical fault has been cleared. Electrical isolation provided by the circuit-breaker is maintained after the incident. The risk of soldering the line contactor contacts is accepted, as these can easily be separated.
Type 1 coordination: electrical isolation provided by the circuit-breaker is maintained after the incident and parts other than the contactor are not damaged following the short-circuit.

The circuit-breaker protects against short-circuits of power supply cables and internal drive cables.
The contactor powers up the motor starter as well as isolating the variable speed drive from the line supply, when the motor stops.
The drive controls the motor, protects against short-circuits between the drive and the motor, and protects the motor cable against overload. This protection against overload is ensured by the drive's thermal motor protection. If this is removed, external thermal protection should be provided.

The cause of the trip should be cleared before the installation is powered up again.
3-phase supply voltage 400 V

Stand		Circuit-breaker				Line contactor		Drive	Line
4-pol		Reference	Rating		Irm	Basic	AC-1	Reference to be	
moto		to be completed(1)		at		reference to	at$55^{\circ} \mathrm{C}$	completed (3)	with
50/60				$55^{\circ} \mathrm{C}$		be completed (2)			choke
P	In max.			(5)					(4)
kW	A		A	A	A		A		A
For high torque applications									
Type 2 coordination									
75	142	NS160•MA	150	160	1350	LC1-D11500	200	ATV-68•10N4	133
90	172	NS250®MA	220	235	1980	LC1-F18500	275	ATV-68•13N4	161
110	208	NS250HMA	220	235	1980	LC1-F18500	275	ATV-68•15N4	194
132	250	NS400॰MA	320	390	2880	LC1-F26500	300	ATV-68•19N4	234
160	325	NS400॰MA	320	390	2880	LC1-F26500	300	ATV-68•23N4	304
200	404	NS400॰MA	320	390	2880	LC1-F400e*	430	ATV-68028N4	378
220	430	NS630॰MA	500	585	4500	LC1-F40000	430	ATV-68033N4	402
250	475	NS630॰MA	500	585	4500	LC1-F50000	580	ATV-68033N4	444
315	617	NS630^MA	500	585	4500	LC1-F500e*	580	ATV-68•43N4	577
Type 1 coordination									
400	767	C8010STR35ME	800	770	1600	LC1-F630••	850	ATV-68053N4	717
450	800	C801•STR35ME	800	770	1600	LC1-F630••	850	ATV-68•63N4	748
500	904	C10010STR35ME	1000	925	2000	LC1-F800•e	850	ATV-68063N4	845
For standard torque applications									
Type 2 coordination									
90	170	NS250^MA	220	235	1980	LC1-F18500	275	ATV-68•10N4	159
110	206	NS250^MA	220	235	1980	LC1-F18500	275	ATV-68•13N4	193
132	250	NS250^MA	220	235	1980	LC1-F18500	275	ATV-68•15N4	234
160	300	NS400•MA	320	390	2880	LC1-F2650॰	300	ATV-68•19N4	280
200	390	NS400^MA	320	390	2880	LC1-F40000	430	ATV-68023N4	365
220	430	NS630^MA	500	585	4500	LC1-F400•*	430	ATV-68028N4	402
250	485	NS630^MA	500	585	4500	LC1-F500e*	580	ATV-68028N4	453
315	570	NS630^MA	500	585	4500	LC1-F500e*	580	ATV-68•33N4	533
Type 1 coordination									
400	675	C8010STR35ME	800	770	1600	LC1-F63000	850	ATV-68•43N4	692
450	860	C1001eSTR35ME	1000	925	2000	LC1-F800•*	850	ATV-68053N4	804
500	855	C1001eSTR35ME	1000	925	2000	LC1-F780•*	1350	ATV-68•53N4	860
630	1045	C12510STR35ME	1250	1100	2500	LC1-F780••	1350	ATV-68063N4	1015

(1) Magnetic circuit-breaker marketed under the Merlin Gerin brand.

Replace the point in the reference with the letter which corresponds to the circuit-breaking performance:
Circuit-breaking performance in kA (at $400 \mathrm{~V} / 440 \mathrm{~V} / 500 \mathrm{~V}$)

Circuit-breaker	N	H	L
NS160•MA	$35 / 35 / 30$	$70 / 65 / 50$	$130 / 130 / 70$
NS250•MA	$35 / 35 / 22$	$70 / 65 / 35$	$130 / 130 / 50$
NS400•MA	-	$70 / 65 / 50$	$130 / 130 / 70$
NS630•MA	-	$70 / 65 / 35$	$130 / 130 / 50$
C801• to C1251•	$50 / 42 / 40$	$70 / 65 / 50$	-

$\mathrm{C} 801 \bullet$ to $\mathrm{C} 1251 \bullet$	$50 / 42 / 40$	$70 / 65 / 50$	-
(2) In order to define the complete reference for contactors: auxiliary contacts, control circuit voltage, and if applicable,			

(3) Replace the point in the reference according to the type of drive required, see pages $2 / 246$ and $2 / 247$.
(4) Line current corresponding to the maximum motor current for an ambient temperature of 40 to $45^{\circ} \mathrm{C}$ max. depending on the rating (see pages $2 / 242,2 / 268$ and $2 / 269$).
(5) In type 2 coordination, circuit-breaker In at $55^{\circ} \mathrm{C}$ is higher than the circuit-breaker rating current. The drive limits current peaks on startup contrary to a direct startup from the mains.

Combinations for customer assembly
(continued)

Variable speed drives for asynchronous motors

Altivar 68
Motor starters

3-phase supply voltage 440 V

Standard 4-pole Circuit-breaker $\begin{array}{ll}\text { motor } 50 / 60 \mathrm{~Hz} & \begin{array}{l}\text { Reference to } \\ \text { completed (1) }\end{array}\end{array}$ PW In max. completed (1)
kW A
For high torque applications Type 2 coordination

For standard torque applications
Type 2 coordination

90	155	NS160@MA	150	160	1350	LC1-D11500	200	ATV-68•10N4	145
110	187	NS250@MA	220	235	1980	LC1-F18500	275	ATV-68•13N4	175
132	227	NS250@MA	220	235	1980	LC1-F18500	275	ATV-68•15N4	212
160	288	NS400@MA	320	390	2880	LC1-F26500	300	ATV-68•19N4	269
200	362	NS400@MA	320	390	2880	LC1-F330*	360	ATV-68•23N4	338
220	391	NS400@MA	320	390	2880	LC1-F400**	430	ATV-68•28N4	365
250	440	NS630@MA	500	585	4500	LC1-F400*	430	ATV-68•28N4	411
517	517	NS630@MA	500	585	4500	LC1-F500*	580	ATV-68•33N4	483
Type 1 coordination									
400	708	C8010STR35ME	800	770	1600	LC1-F63000	850	ATV-68•43N4	662
450	781	C801•STR35ME	800	7701	1600	LC1-F630*	850	ATV-68•53N4	730
500	864	C1001eSTR35ME	1000	925	2000	LC1-F80000	850	ATV-68•53N4	808
630	1008	C12510STR35ME	1250	1100	2500	LC1-F780••	1350	ATV-68•63N4	942

3-phase supply voltage 500 V
For high torque applications
Type 2 coordination

$\frac{\text { Line contactor (2) }}{\text { Basic reference AC-1 }} \frac{\text { Drive }}{\text { Reference to be }}$
Line current
with choke (4) A $\quad 55^{\circ} \mathrm{C}(5)$ to be completed at $55^{\circ} \mathrm{C}$ completed (3) choke (4)

Variable speed drives for asynchronous motors

Altivar 68
 Dialogue

Presentation of the programming terminal

The Altivar 68 has a programming terminal on the front panel which allows:

- local control of the drive,
- configuration of different parameters,
- remote display and signalling of drive status.

Presentation of the control keypad

1 A summary table for moving around in the menus.
2 Liquid crystal display screen.
3 "Run" key for local mode.
4 "Stop" key in local or remote mode, programmable for fault acknowledgement.
5 "Local/remote" key: choice of terminal or keypad control.
6 "Left" key for menu selection or to move the cursor left and to control reverse rotation in local mode.
7 "Down" key for menu selection or to decrement numeric values or the reference in local mode.
8 "Menu/Parameters" key accesses the parameter settings or exits adjust mode to return to the menu.
9 "Up" key for menu selection or to increment numeric values or the reference in local mode.
10 "Right" key for menu selection or to move the cursor right and to control forward rotation in local mode.
11 Drive status display: ready, running or faulty.
12 Basic display menu and parameter storage.

Presentation, characteristics:	References:	Dimensions:	Schemes:
pages $2 / 240$ to $2 / 245$	pages $2 / 246$ to $2 / 261$	pages $2 / 264$ to $2 / 269$	pages $2 / 270$ to 2/277

Variable speed drives for asynchronous motors

Altivar 68
Dialogue

Presentation of the programming terminal (continued)

The different menus
The different menus A, B, C, D, E, F define groups of homogenous menus. Each menu contains a group of parameters.

Menu	Function
A1 to A6	Display
B1 to B6	Start-up
C1 to C6	Function groups
D1 to D6	Configuration of the I/O, speed feedback and motorised potentiometer
E1 to E6	Limiting and protection of the drive
F1 to F6	Service, help and factory settings, logic blocks and comparators

Variable speed drives for asynchronous motors

Altivar 68
 Dialogue

Presentation of the programming terminal (continued)

Example of parameter setting

Cursor = underlined number or letter

Presentation, characteristics:	References:	Dimensions:	Schemes:
pages $2 / 240$ to $2 / 245$	pages $2 / 246$ to $2 / 261$	pages $2 / 264$ to $2 / 269$	pages $2 / 270$ to $2 / 277$

Summary of functions

Control keypad key and corresponding function

A Display
A1 Display (basic display, Home function)
A2 Display of motor values: current, speed, etc.
A3 Display of drive values: thermal state, etc.
A4 Display of references
A5 Display of the number of operating hours and the KW used
A6 Configuration of the basic display. Display of 3 parameterable values
B Initial set-up
B1 Language selection
B2 Choice of application macro (preset according to the application, 4 possible choices) Storage of 2 complete adjustment configurations possible with autotuning.

B3 Adjustment of motor parameters
Acceptance of reverse mode operation
B4 Measurement of motor parameters on request
B5 Access to the main settings in the short menu. This short menu groups all the parameters which are important for the application and different to the factory settings.

C Adjustment

C1 General functions:

- Starting overtorque (up to 180\%):
- adjustment of the range starting overtorque.
- Choice of stop mode:
- freewheel,
- decelerated
- fast.
- Choice of braking mode:
- no braking unit (standard),
- with braking unit. When several ALTIVAR 68 and braking units are connected to a common DC bus, there is a function for distributing the braking power across all the braking units,
- fast without braking unit. This type of braking is a low cost alternative for simple applications, mainly for fans, which avoids the use of an external braking unit. A 250 KW motor with a total inertia applied at the motor shaft of 2 to 3 times its inertia can be fast-stopped in 4 seconds. There is an increase in loss in the motor and noise during braking (warning: braking torque is not constant).
- Preset references
- JOG
- Energy saving, for variable torque applications (reduction of magnetising current on applications with quadratic torque)

C2 Selection of acceleration and deceleration ramps:

- 2 ramps
- Choice of ramp profile, S or U with curve adjustment
- Adjustment of a threshold for switching from no. 1 acceleration (deceleration) ramp to no. 2 acceleration (deceleration) ramp.
- Adjustment of a time delayed low speed threshold before stopping. This operation is obtained after a stop request.

C3 Adjustment at low speed and high speed

- Possible to phohibit a direction of rotation
- Possible to reverse motor rotation phases without reversing the motor wiring

C4 Simple PID drive or PID drive for reference correction:

- Possible to use the PID drive reference as a process reference (eg pressure or flow reference) or as a speed reference (press applications).

C5 Catch on the fly
C6 Special functions:

- Line contactor control
- Brake logic suitable for hoisting with the brake release pulse, possible management of a closed brake contact, detection of speed deviation between the reference and the speed feedback (adjustment possible), anti-repeat - Brake logic suitable for translational movement
- Adaptation of maximum speed as a function of the load (lifting applications).
Presentation, characteristics: References: Dimensions: Schemes:
pages 2/240 to 2/245 pages 2/246 to 2/261 pages 2/264 to 2/269 \quad pages 2/270 to 2/277

Variable speed drives for asynchronous motors

Altivar 68

Summary of functions (continued)

Control keypad key and corresponding function

D $1 / 0$
D1 Configuration of the analogue inputs and adjustment of max. and min. signal values on each input:

- Frequency reference (automatic), standard choice
- Manual frequency reference
- PID reference
- PID feedback
- Reference correction
- Torque limitation

D2 Configuration of the logic inputs:

- MAN/AUTO

This command switches between the references : automatic reference or manual reference.

- LOCAL/REMOTE. This command selects local or remote mode.

Local corresponds to commands from the graphic terminal keypad and to logic signals sent by the logic inputs assigned to local mode:

Remote corresponds to logic and analogue signals sent via the terminals (apart from those programmed in local mode) and via the line:

- run/stop by stay-put control (2-wire control),
- run/stop by pulse control (3 -wire control),
- remote motorised potentiometer (+/- speed),
- run/stop by local pulse control (3-wire control),
- local motorised potentiometer (+/- speed),
- JOG,
- preset references (8 possible),
- selection of ramps 1 or 2,
- selection of user macro. Allows control of a motor with 2 completely different configurations or to alternately control

2 motors. The user macro is a complete parameter configuration, including motor parameter measurement and thermal calculation,

- drive locking, freewheel stop.
- External event monitoring, with a display of fault type according to configuration:
- external fault,
- external motor fault,
- external isolation fault,
- external braking unit fault,
- drive locking: this input allows monitoring and display on the terminal screen of the state of the accessories around the drive which may prevent the drive from starting (fuse, contactor, fan, etc.),
- fault reset,
- external torque limitation,
- PID activation,
- activation of PID drive gains,
- speed regulation or open loop, uset to change from encoder feedback mode to open loop mode,
- open brake contact handling,
- Emergency stop management in the case of a line contactor controlled by a drive,
- parameter locking (this command prohibits parameter modification from the keypad),
- local forcing (commands are only possible in local mode).

Presentation, characteristics:	References:	Dimensions:	Schemes:
pages $2 / 240$ to $2 / 245$	pages $2 / 246$ to $2 / 261$	pages $2 / 264$ to $2 / 269$	pages $2 / 270$ to $2 / 277$

Altivar 68

Summary of functions (continued)

Control keypad key and corresponding function

D3 Assignment of analogue outputs:

- Output frequency (signed or not signed)
- Motor current
- Torque (signed or not signed)
- Motor power
- Motor voltage
- Speed in rpm (signed or not signed)
- Internal frequency reference
- Torque limitation reference
- PID reference
- PID feedback
- PID error
- References from the line
- Motor thermal state
- Braking resistor thermal state

D4 Assignment of logic outputs

- Brake opening (brake sequence)
- Selection of user macro 1 or 2
- External torque limit activation
- Logic block output
- Comparator block output
- Different drive states:
- ready,
- running,
- ready + RUN,
- fault,
- alarm,
- generator mode,
- line supply present,
- local control mode,
- DC bus charged,
- manual control mode,
- PID activated,
- PID gain enabled,
- drive in closed loop.
- Monitoring:
- reference frequency greater than motor frequency (adjustable hysteresis),
- motor frequency greater than a set level,
- drive command word,
- drive heatsink thermal state higher than maximum limit,
- voltage threshold limit of DC bus reached, which leads to a decrease in the motor stator frequency,
- motor temperature calculated by the drive higher than maximum temperature,
- active braking unit,
- active motor heating.

D5 Encoder feedback

- Choice of control mode:
- no slip compensation,
- with slip compensation, and possibility of adjusting slip compensation range,
- with encoder feedback,
- with load balancing on several motors. For open loop operation only (without encoder feedback),
- with balancing of 2 motors. For closed loop operation only (with encoder feedback).

The DMA function balances the torque for 2 motors which are mechanically linked and controlled by 2 different drives (provides the master/slave function).
In encoder feedback mode, adjustment of the number of pulses per revolution and adjustment of the proportional, integral and derivative gain is possible.

D6 Electronic potentiometer ($+/-$ speed)

- Choice of speed or torque reference
- Adjustment of low speed, high speed and acceleration ramps
- EEPROM reference storage after a mains power failure

After a stop whether the drive is switched off or not, when a run command is given, the frequency increases up to the value of the stored reference (with the run command sign), if the $+/-$ speed commands are not enabled. +/- speed has priority.

- RAM reference storage on the disappearance of a run command

After a stop without the drive being switched off, when a run command is given, the frequency increases up to the value of the stored reference (with the run command sign), if the $+/-$ speed commands are not enabled. $+/-$ speed has priority. In the case of a mains power failure, the reference is not stored.

- Choice of $+/$ - speed control at the terminals in local or remote mode
- Choice of $+/$ - speed control via the keypad or terminals

Variable speed drives for asynchronous motors

Altivar 68

Summary of functions (continued)

Control keypad key and corresponding function

E Adapting the drive to the installation requirements

E1 Overload limitation :

- Adjustment of maximum drive current (activation of limitation possible via logic input)
- Adjustment of maximum motor torque (activation of limitation possible via logic input)

E2 Protection adapted to the motor :

- Use of a PTC probe
- Thermal motor protection by calculating I 2 t and UL thermal protection
- Processing of a pump underload from the PID drive or from the estimated torque.
- Thermal braking resistor protection
- Stalled rotor detection, with frequency and stalling time adjustment
- Overspeed protection
- Detection of maximum motor speed

Protection processing is possible as a default or in emergency.

E3 Processing of external faults

- Undervoltage fault: - an undervoltage fault need not be considered as a permanent fault or it may be considered as such only when the drive is running,
- adjustment of time delay before acceptance of an undervoltage fault,
- automatic restart (3 times in 5 minutes).
- 4/20 mA loss

When the $4-20 \mathrm{~mA}$ signal is lost, it is possible to select either a fallback speed to a fixed reference, or the recorded rotation speed brefore the break.

- Processing of external faults:
- acceptance of a time before tripping,
- configuration of acceptance conditions (drive running, normally closed or normally open contact, etc.).
- Selection of type of stop on fault

E4 Selection of drive control modes:

- Selection of frequency reference origin:
- local and remote,
- local,
- remote.
- Control mode:
- local and remote
- local,
- remote.
- Origin of local and remote control:
- keypad,
- terminals.

E5 Skip frequency

- Hysteresis adjustment

E6 Choice of switching frequency

- 2.5 kHz
- 5 kHz
- 10 kHz

Presentation, characteristics:	References:	Dimensions:	Schemes:
pages $2 / 240$ to $2 / 245$	pages $2 / 246$ to $2 / 261$	pages $2 / 264$ to $2 / 269$	pages $2 / 270$ to $2 / 277$

Variable speed drives for asynchronous motors

Altivar 68

Summary of functions (continued)

Control keypad key and corresponding function

F Diagnostic

F1 Test-help

- Possible earth fault test
- Control circuit test

F2 Return to factory settings (except for motor data)

- Return to motor data factory settings
- Return to application program factory settings (all parameters except for motor data and language)

F3 Fault memory

- Fault counter
- Selection of 16 most recent faults, 14 data items relating to the fault are displayed (time, output frequency, current, etc.). This information correspond to the real values 10 ms before the appearance of the fault.

F4 Logic function blocks

The drive contains 4 comparator blocks (greater than, less than, equal to and different from) and 2 logic function blocks (AND, OR, equal, different).
The function block output signals can be operated with a time delay.
The block input can be either an external signal or an internal data item from the drive.
The block output can be either a logic output or a direct action on the drive.

F6 Locking parameter modifications by an access code

- Choice of lock : keypad, line or terminals
- Choice of access code

Variable speed drives for asynchronous motors

Altivar 68 ready-assembled in enclosure

Presentation

ATV-68EeCeoN4

ATV-68EXeCeoN4

Altivar 68 variable speed drives can be supplied ready-assembled in an enclosure to facilitate installation and particularly to ensure optimum ventilation. The enclosure equipment can be split into two offers: a standard offer and a modular offer.
The ATV-68Eeeeeee standard offer comprises an enclosure with non-modifiable hardware configuration only for 400 V power supply with IP 23 and IP 54 degrees of protection.
The ATV-68EX to the torque characteristics (high torque or standard torque) for line supplies of 400 V to 500 V , with IP 23 and IP 54 protection.
For supply voltages over 400 V , order the 500 V option.

The standard offer comprises:

- a ready-assembled pre-wired enclosure,
- an Altivar 68 drive,
- a switch and fast-acting fuses (see pages $2 / 271$ and $2 / 273$),
- line chokes (see page 2/249).

The modular offer comprises:

- a ready-assembled pre-wired enclosure,
- an Altivar 68 drive,
- a switch and fast-acting fuses (see pages $2 / 271$ and $2 / 273$),
- line chokes and one or more options to be selected from the following list (see page 2/249).

The Altivar 68 in the modular offer enclosures can be fitted with the same options as the ATV-68 range.
Options common to all ratings:

- I/O extension card,
- Fipio, Modbus Plus, Profibus DP communication cards,
- programming terminal remote mounting kit (IP 54 degree of protection),
- earth fault detection in IT connection (isolated neutral).

Options depending on the drive rating and/or torque characteristics (modular offer)
(see pages 2/292 and 2/293):

- protection circuit-breaker with handle extension (replaces the switch and fuses on ATV-A68 $\bullet 10 \mathrm{~N} 4$ to $\bullet 33 \mathrm{~N} 4$ drives),
- line contactor to be combined with a circuit-breaker,
- line contactor to be combined with switches and fuses,
- radio interference input filters,
- additional motor chokes,
- twelve-phase power supply option.

Special options for mounting in enclosure (modular offer):

- 500 V line supply,
- external fan in IP 23 version,
- access window to IP 54 programming terminal (1),
- switch handle extension,
- enclosure lighting,
- 400 V or $500 \mathrm{~V} / 230 \mathrm{~V}$ transformer,
- voltage loss coil for 400 V circuit-breaker,
- -.- 24 V supply for drive control circuit,
- customised terminals,
- emergency stop button,
- anti-condensation heater (see pages $2 / 292$ and $2 / 293$),
- enclosure baseplate (see pages $2 / 292$ and $2 / 293$).

Characteristics

Degree of protection of enclosure

Air inlet via grille on enclosure door
Air outlet on roof of enclosure, protected by a plate
Air inlet via fan fitted with a filter for ATV-68•10N4 to •19N4 drives
Air inlet via grille located in the baseplate and via filtered and ventilated grille, located in the enclosure door, for ATV68•23N4 to $\bullet 63 N 4$ drives
Air outlet via horizontal grille on front panel, located on enclosure roof
$+35^{\circ} \mathrm{C}$ for ATV-68EeC19N4, ATV-68EeC33N4 and ATV-68EeC63N4 (+5 ${ }^{\circ} \mathrm{C}$ with external fan option)
$+40^{\circ} \mathrm{C}$ for other ratings $\left(+5^{\circ} \mathrm{C}\right.$ with external fan option)
Maximum external temperature of enclosure

Line supply connection	Directly to switch or circuit-breaker, cable entry required at
Motor connection	Directly to drive, cable entry required at base of enclosure

Control terminal connection
Colour of 6000 SAREL Spacial Cell Enclosures

Directly to drive
Customised terminals option (40 contacts)
RAL 7032
(1) Without this option the programming terminal can be viewed through a fixed bakelized plastic window.

References:	Dimensions:
compatibility:	
pages $2 / 289$ and $2 / 290$	pages $2 / 292$ and $2 / 293$

Variable speed drives for asynchronous motors

Altivar 68 ready-assembled in enclosure

ATV-68EeCeeN4

Standard ATV-68E CeeN4 offer for $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ three-phase line supply in IP 23 and IP 54 enclosure

Degree of protection	Power in kw for applications		With ATV-68 drive	Ready-assembled enclosure reference	Weight kg
	standard torque (120 \% Tn)	high torque (150 \% Tn)			
IP 23	90	75	ATV-68C10N4	ATV-68E2C10N4	240.000
	110	90	ATV-68C13N4	ATV-68E2C13N4	325.000
	132	110	ATV-68C15N4	ATV-68E2C15N4	330.000
	160	132	ATV-68C19N4	ATV-68E2C19N4	335.000
	200	160	ATV-68C23N4	ATV-68E2C23N4	520.000
	250	200	ATV-68C28N4	ATV-68E2C28N4	525.000
	315	250	ATV-68C33N4	ATV-68E2C33N4	530.000
	400	315	ATV-68C43N4	ATV-68E2C43N4	1110.000
	500	400	ATV-68C53N4	ATV-68E2C53N4	1115.000
	630	500	ATV-68C63N4	ATV-68E2C63N4	1135.000
IP 54	90	75	ATV-68C10N4	ATV-68E5C10N4	255.000
	110	90	ATV-68C13N4	ATV-68E5C13N4	340.000
	132	110	ATV-68C15N4	ATV-68E5C15N4	345.000
	160	132	ATV-68C19N4	ATV-68E5C19N4	350.000
	200	160	ATV-68C23N4	ATV-68E5C23N4	570.000
	250	200	ATV-68C28N4	ATV-68E5C28N4	575.000
	315	250	ATV-68C33N4	ATV-68E5C33N4	580.000
	400	315	ATV-68C43N4	ATV-68E5C43N4	1220.000
	500	400	ATV-68C53N4	ATV-68E5C53N4	1225.000
	630	500	ATV-68C63N4	ATV-68E5C63N4	1245.000

Modular ATV-68EX Ce•N4 offer for 400 V to $500 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ line supply in IP 23 and IP 54 enclosure (1)

ATV-68EX•Ce॰N4

Degree of protection	Power in kW for applications		With ATV-68 drive	Ready-assembled enclosure reference	Weight kg (2)
	$\begin{aligned} & \text { standard torque } \\ & (120 \% \mathrm{Tn}) \end{aligned}$	high torque (150 \% Tn)			
IP 23	90	75	ATV-68C10N4	ATV-68EX2C10N4	
	110	90	ATV-68C13N4	ATV-68EX2C13N4	
	132	110	ATV-68C15N4	ATV-68EX2C15N4	
	160	132	ATV-68C19N4	ATV-68EX2C19N4	
	200	160	ATV-68C23N4	ATV-68EX2C23N4	
	250	200	ATV-68C28N4	ATV-68EX2C28N4	
	315	250	ATV-68C33N4	ATV-68EX2C33N4	
	400	315	ATV-68C43N4	ATV-68EX2C43N4	
	500	400	ATV-68C53N4	ATV-68EX2C53N4	
	630	500	ATV-68C63N4	ATV-68EX2C63N4	
IP 54	90	75	ATV-68C10N4	ATV-68EX5C10N4	
	110	90	ATV-68C13N4	ATV-68EX5C13N4	
	132	110	ATV-68C15N4	ATV-68EX5C15N4	
	160	132	ATV-68C19N4	ATV-68EX5C19N4	
	200	160	ATV-68C23N4	ATV-68EX5C23N4	
	250	200	ATV-68C28N4	ATV-68EX5C28N4	
	315	250	ATV-68C33N4	ATV-68EX5C33N4	
	400	315	ATV-68C43N4	ATV-68EX5C43N4	
	500	400	ATV-68C53N4	ATV-68EX5C53N4	
	630	500	ATV-68C63N4	ATV-68EX5C63N4	

(1) For supply voltages over 400 V , order the 500 V option.
(2) The weight depends on the options selected. The weights shown in the table on page $2 / 291$ should be added to the standard offer weights.

Variable speed drives for asynchronous motors

Altivar 68 ready-assembled in enclosure

Options common to all ratings (modular offer)

Special options for mounting in enclosure (modular offer)

Enclosure baseplate

(3)
(4)
(1) Reference VW3-A68E500V should be ordered for supply voltages $>400 \mathrm{~V}$ (fast-acting fuse characteristics, correct power supply for options).
(2) If 230 V single-phase supply is not available (eg: non-distributed neutral), the control transformer option should be used.
(3) Depends on drive ratings (please refer to compatibility on pages 2/292 and 2/293).
(4) Please refer to the table of weights on page $2 / 291$.
page 2/288_page 2/291_ pages 2/292 and 2/293

Variable speed drives for asynchronous motors

Altivar 68 ready-assembled in enclosure

Dimensions

Altivar 68 ready-assembled in enclosure

ATV-68EeeCeeN4 offer for 400 or 500 V three-phase $50 / 60 \mathrm{~Hz}$ line supply, in IP 23 and IP 54 enclosures

Degree of protection of enclosure
IP 23

Reference	a	b	c
ATV-68Ee2C10N4	600	2060	500
ATV-68Ee2C13N4	800	2060	500
ATV-68Ee2C15N4			
ATV-68Ee2C19N4			
ATV-68Ee2C23N4	1200	2060	500
ATV-68Ee2C28N4			
ATV-68Ee2C33N4			
ATV-68E02C43N4	2400	2060	500
ATV-68Ee2C53N4			
ATV-68Ee2C63N4			

Additional dimensions of enclosures according to options selected (1).

Reference	Motor choke	Twelve-phase supply	Baseplate	Fan kit
	a	a	b	b
ATV-68EXeC10N4	-	400	200	230
ATV-68EX•C13N4	-	400	200	230
ATV-68EXeC15N4	-	400	200	230
ATV-68EX•C19N4	-	400	200	230
ATV-68EX•C23N4	200	400	200 (2)	230
ATV-68EX•C28N4	200	400	200 (2)	230
ATV-68EX•C33N4	200	400	200 (2)	230
ATV-68EX•C43N4	600	-	200 (2)	230
ATV-68EXeC53N4	600	-	200 (2)	230
ATV-68EXeC63N4	600	-	200 (2)	230

(1) These dimensions should be added to those given for the enclosures in the above table.
(2) For references ATV-68EX5C23N4 to ATV-68EX5C63N4, the height of the baseplate is already included in the height of the enclosure.

Additional weights in kg according to the drive ratings and options selected.

Reference	Line contactor				Radio interference input filters	Motor choke		Twelvephase supply	Baseplate Fan kit	
	400 V	400 V	500 V	500 V		IP 23	IP 54			
	St. torque	High torque	St. torque	High torque						
ATV-68EX•C10N4	5	8	5	5	6	15	15	200	7	17
ATV-68EXeC13N4	8	8	5	5	7	20	20	230	8	17
ATV-68EX•C15N4	8	8	5	8	7	20	20	230	8	17
ATV-68EX•C19N4	10	10	8	8	7	20	20	230	8	17
ATV-68EX•C23N4	10	13	10	10	8	50	50	250	15	17
ATV-68EX•C28N4	13	15	12	13	8	50	50	250	15	17
ATV-68EX•C33N4	15	15	12	15	8	50	50	250	15	17
ATV-68EX•C43N4	22	22	18	18	13	235	260	5	31	17
ATV-68EX•C53N4	26	26	22	22	13	235	260	5	31	17
ATV-68EXeC63N4	26	26	22	22	13	235	260	5	31	17

| Presentation, characteristics: References:
 page $2 / 288$Compatibility:
 pages $2 / 289$ and $2 / 290$ | pages $2 / 292$ and $2 / 293$ |
| :--- | :--- | :--- |

Variable speed drives for asynchronous motors

Altivar 68 in ready-assembled enclosure

Combinations for ready-assembled enclosure on 400 V mains supply
Options linked to the rating of the drive and the torque characteristic (standard torque/high torque applications) for the modular offer.

	standard torque	high torque	standard torque	high torque
ATV68EX ${ }^{\text {c }}$ C10N4	VW3-A68E8611	VW3-A68E8610	VW3-A68E8711	VW3-A68E8710
ATV68EX ${ }^{\text {c }}$ (3N4	VW3-A68E8612	VW3-A68E8612	VW3-A68E8711	VW3-A68E8711
ATV68EX ${ }^{\text {c }}$-15N4	VW3-A68E8612	VW3-A68E8612	VW3-A68E8711	VW3-A68E8711
ATV68EX ${ }^{\text {c }}$ (19N4	VW3-A68E8614	VW3-A68E8614	VW3-A68E8714	VW3-A68E8714
ATV68EX ${ }^{\text {c }}$ C23N4	VW3-A68E8615	VW3-A68E8615	VW3-A68E8715	VW3-A68E8714
ATV68EX ${ }^{\text {c }}$ 28N4	VW3-A68E8616	VW3-A68E8615	VW3-A68E8716	VW3-A68E8715
ATV68EX ${ }^{\text {c }}$ (33N4	VW3-A68E8617	VW3-A68E8617	VW3-A68E8716	VW3-A68E8716
ATV68EX ${ }^{\text {c }}$-43N4	VW3-A68E8618	VW3-A68E86171	VW3-A68E87191	VW3-A68E87181
ATV68EX ${ }^{\text {c }}$ C53N4	VW3-A68E8619	VW3-A68E8618	VW3-A68E87211	VW3-A68E87191
ATV68EX ${ }^{\text {che3N4 }}$	VW3-A68E8620	VW3-A68E8619	VW3-A68E87211	VW3-A68E87201

Combinations for ready-assembled enclosure on 500 V mains supply
Options linked to the rating of the drive and the torque characteristic (standard torque/high torque applications) for the modular offer.

IP 23 or IP 54 enclosure	Circuit-breaker for applications		Line contactor to be used with a circuit-breaker (1) (2) for applications	
	standard torque	high torque	standard torque	high torque
ATV68EX ${ }^{\text {che }} 10 \mathrm{~N} 4$	VW3-A68E8651	VW3-A68E8651	VW3-A68E8751	VW3-A68E8751
ATV68EX ${ }^{\text {C }}$ 13N4	VW3-A68E8652	VW3-A68E8652	VW3-A68E8751	VW3-A68E8751
ATV68EX ${ }^{\text {C }}$ 15N4	VW3-A68E8653	VW3-A68E8652	VW3-A68E8753	VW3-A68E8751
ATV68EX ${ }^{\text {c }}$ C19N4	VW3-A68E8653	VW3-A68E8653	VW3-A68E8753	VW3-A68E8753
ATV68EX ${ }^{\text {C }}$ 23N4	VW3-A68E8655	VW3-A68E8655	VW3-A68E8755	VW3-A68E8755
ATV68EX ${ }^{\text {C }}$ 28N4	VW3-A68E8655	VW3-A68E8655	VW3-A68E8756	VW3-A68E87551
ATV68EX ${ }^{\text {ch3 }}$ - ${ }^{\text {a }}$	VW3-A68E8657	VW3-A68E86561	VW3-A68E8757	VW3-A68E87551
ATV68EX ${ }^{\text {c }}$ C43N4	VW3-A68E8658	VW3-A68E8658	VW3-A68E87571	VW3-A68E87571
ATV68EX ${ }^{\text {c }}$-53N4	VW3-A68E8659	VW3-A68E8658	VW3-A68E87581	VW3-A68E87571
ATV68EX ${ }^{\text {C63N }} 4$	VW3-A68E8660	VW3-A68E8659	VW3-A68E87591	VW3-A68E87581

(1) Consult the additional weights and dimensions (page 2/291).
(2) If a single-phase 230 V power supply is not available (for example: non-distributed neutral), the control transformer option must be used.
(3) Only for IP 23 enclosures.
(4) The option makes it possible to connect to the transformer output with 2 secondary windings. It consists of a 6 -pole switch, fast-acting fuses, a power-up sequence and an additional line choke. The transformer must be ordered separately.
(5) For ATV-68-C43N4 to -C63N4 drives the references of the line contactors to be used are:
$2 \times$ LC1-F400 for VW3-A68E8718 and VW3-A68E8758, $2 \times$ LC1-F500 for VW3-A68E8719 and $2 \times$ LC1-265 for VW3-A68E87572.
Note: check the characteristics of the following:

- circuit-breakers and contactors, pages 2/278 and 2/279
- radio interference input filters, page $2 / 250$,
- motor choke, page 2/251.

Line contactor to be used with switches and fuses (1) (2) for applications	Radio interference input filters	Motor choke (1)	Anti-condensation heater (2)	Twelve pulse power Baseplate supply option		
standard torque	high torque					
VW3-A68E8711	VW3-A68E8710	VW3-A68E401	VW3-A68E551	VW3-A68E881	VW3-A68E150	VW3-A68E891
VW3-A68E8711	VW3-A68E8711	VW3-A68E402	VW3-A68E552	VW3-A68E881	VW3-A68E160	VW3-A68E892
VW3-A68E8711	VW3-A68E8711	VW3-A68E402	VW3-A68E552	VW3-A68E881	VW3-A68E160	VW3-A68E892
VW3-A68E8714	VW3-A68E8714	VW3-A68E402	VW3-A68E552	VW3-A68E881	VW3-A68E160	VW3-A68E892
VW3-A68E8715	VW3-A68E8714	VW3-A68E403	VW3-A68E553	VW3-A68E881	VW3-A68E170	VW3-A68E893 (3)
VW3-A68E8716	VW3-A68E8715	VW3-A68E403	VW3-A68E553	VW3-A68E881	VW3-A68E170	VW3-A68E893 (3)
VW3-A68E8716	VW3-A68E8716	VW3-A68E403	VW3-A68E553	VW3-A68E881	VW3-A68E170	VW3-A68E893 (3)
VW3-A68E8718 (5)	VW3-A68E8718 (5)	VW3-A68E404	VW3-A68E554	VW3-A68E882	VW3-A68E175	VW3-A68E894 (3)
VW3-A68E8719 (5)	VW3-A68E8719 (5)	VW3-A68E404	VW3-A68E554	VW3-A68E882	VW3-A68E175	VW3-A68E894 (3)
VW3-A68E8719 (5)	VW3-A68E8719 (5)	VW3-A68E404	VW3-A68E554	VW3-A68E882	VW3-A68E175	VW3-A68E894 (3)

Line contactor to be used with switches and fuses (1) (2) for applications	Motor choke (1)	Anti-condensation heater (2)	Twelve pulse power supply option (4)	Baseplate
standard torque high torque				
VW3-A68E8751 VW3-A68E8751	VW3-A68E551	VW3-A68E881	VW3-A68E150	VW3-A68E891
VW3-A68E8751 VW3-A68E8751	VW3-A68E552	VW3-A68E881	VW3-A68E160	VW3-A68E892
VW3-A68E8753 VW3-A68E8751	VW3-A68E552	VW3-A68E881	VW3-A68E160	VW3-A68E892
VW3-A68E8753 VW3-A68E8753	VW3-A68E552	VW3-A68E881	VW3-A68E160	VW3-A68E892
VW3-A68E8755 VW3-A68E8755	VW3-A68E553	VW3-A68E881	VW3-A68E170	VW3-A68E893 (3)
VW3-A68E8756 VW3-A68E87551	VW3-A68E553	VW3-A68E881	VW3-A68E170	VW3-A68E893 (3)
VW3-A68E8757 VW3-A68E87551	VW3-A68E553	VW3-A68E881	VW3-A68E170	VW3-A68E893 (3)
VW3-A68E87572 (5) VW3-A68E87572 (5)	VW3-A68E554	VW3-A68E882	VW3-A68E175	VW3-A68E894 (3)
VW3-A68E8758 (5) VW3-A68E8758 (5)	VW3-A68E554	VW3-A68E882	VW3-A68E175	VW3-A68E894 (3)
VW3-A68E8758 (5) VW3-A68E8758 (5)	VW3-A68E554	VW3-A68E882	VW3-A68E175	VW3-A68E894 (3)

PowerSuite software workshop

- Presentation

■ References . page $3 / 3$
■ Compatibility . page $3 / 3$

PowerSuite with PC screen
Monitoring screen

PowerSuite with Pocket PC screen

Presentation

The PowerSuite software workshop, for PC or Pocket PC, is designed for setting up Telemecanique starters and variable speed drives.

This single program is an easy-to-use interface for configuring Altistart and Tesys model U starters as well as all Altivar drives in a Microsoft Windows ${ }^{\circledR}$ environment, in five languages (English, French, German, Italian and Spanish).

Functions

The PowerSuite software workshop can be used for preparing, programming, setting up and maintaining Telemecanique starters and variable speed drives.

The PowerSuite software workshop can be used:
■ stand alone to prepare and store starter or drive configuration files,

- connected to the starter or drive to:
- configure,
- adjust,
- monitor (except for Altivar 11 drives),
- control (except for Altivar 11 drives),
- transfer and compare configuration files between PowerSuite and the starter or drive.

The configuration files generated by the PowerSuite software workshop can be:
■ saved to hard disk, CD-Rom, floppy disk, etc...

- printed,

■ exported to office automation software applications,

- exchanged between a PC and a Pocket PC using standard synchronization
software. PowerSuite PC and Pocket PC configuration files have the same format,
■ they are password protected.
The software associated with the Altivar 31 has been enhanced to include: oscilloscope function, parameter name customisation, creation of a user menu, creation of monitoring screens, searching and sorting on different parameters. The PowerSuite software workshop has on-line contextual help.

Connections

- The PowerSuite software workshop can be connected directly to the terminal port on the starter or variable speed drives, via the serial port on the PC or Pocket PC.
Two types of connection are possible:
- either with a single starter or drive (point to point connection)
- or with a group of starters or drives (multi-point connection).

■ The PowerSuite software workshop for PC can be connected to an Ethernet network (see pages 4/2 to 4/5). In this case the starters and drives can be accessed using:

- either an Ethernet-Modbus 174 bridge CEV 300 20,
- or a communication option card VW3 A58310 (for Altivar 38, 58 and 58F drives only).

Hardware and software environment

- The PowerSuite for PC software workshop can operate in the following PC environments and configurations:
\square Microsoft Windows ${ }^{\circledR} 95$ OSR2, Microsoft Windows ${ }^{\circledR} 98$ SE, Microsoft
Windows ${ }^{\circledR}$ NT4 X SP5, Microsoft Windows ${ }^{\circledR}$ Me, Microsoft Windows ${ }^{\circledR}$ 2000, Microsoft Windows ${ }^{\circledR} \mathrm{XP}$,
- Pentium III, 800 MHz , hard disk with 300 Mb available, 128 Mb RAM,
\square SVGA or higher definition monitor
■ The PowerSuite for Pocket PC software workshop, version V2.0.0, is compatible with Pocket PCs equipped with Windows for Pocket PC 2002 or 2003 operating system and an ARM or XSCALE processor.
Performance tests for version V2.00 of the PowerSuite software workshop have been carried out on the following Pocket PCs:
- Hewlett Packard® IPAQ 2210,
- Compaq® IPAQ series 3800 and 3900,
- Hewlett Packard (®) Jornada series 560 .

References

PowerSuite software workshop for PC or Pocket PC (1)

| Description | Composition | Reference | Weight
 $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- | :--- |
| PowerSuite CD-Rom | ■ Software for PC and Pocket PC in English, French, German,
 Italian and Spanish,
 ■ technical documentation and ABC configurator program. | VW3 A8104 | 0.100 |
| PowerSuite upgrade CD | ■ Software for PC and Pocket PC in English, French, German,
 Italian and Spanish,
 n technical documentation and ABC configurator program. | VW3 A8105 | 0.100 |

$\overline{\text { PC connection kit } \quad 2 \times 3 \mathrm{~m} \text { connection cables with } 2 \times \mathrm{RJ} 45 \text { connectors, }} \quad$ VW3 A8106 0.350

- 1 RJ 45/9-way SUB-D adapter for connecting ATV 58/58F/38 drives,
- 1 RJ 45/9-way SUB-D adapter for connecting ATV 68 drives,
- 1 converter marked "RS 232/RS 485 PC" with one 9-way female SUB-D connector and one RJ 45 connector,
- 1 converter for ATV 11 drives, with one 4-way male connector and one RJ 45 connector.
Pocket PC ■ $2 \times 0.6 \mathrm{~m}$ connection cables with $2 \times \mathrm{RJ} 45$ connectors, VW3 A8111 0.300
connection kit (2)
■ $2 \times 0.6 \mathrm{~m}$ connection cables with $2 \times \mathrm{RJ} 45$ connectors,
VW3 A8111
- 1 RJ 45/9-way SUB-D adapter for connecting ATV 58/58F/38 drives,
- 1 converter marked "RS 232/RS 485 PPC" with one 9 -way male SUB-D connector and one RJ 45 connector,
- 1 converter for ATV 11 drives, with one 4-way male connector and one RJ 45 connector.
(1) To find out about the latest available version, please consult your Regional Sales Office.
(2) These kits connect to the synchronization cable, which must be ordered separately from your Pocket PC supplier.

VW3 A8104

Compatibility								
Compatibility of the PowerSuite software workshop with starters and variable speed drives	Startercontroller	Soft start/ soft stop unit	Variable	peed drive				
	$\begin{aligned} & \text { TeSys } \\ & \text { model U } \\ & \geqslant \text { V } 1.40 \end{aligned}$	ATS 48$\geqslant \text { V } 1.30$	ATV 11$\geqslant \text { V } 1.40$	ATV 28$\geqslant \text { V } 1.0$	ATV 31$\geqslant \text { V 2.0.0 }$	ATV 38$\geqslant \text { V } 1.40$	ATV 58 ATV 58F$\geqslant \text { V } 1.0$	ATV 68$\geqslant \text { V } 1.50$
PowerSuite software workshop for PC with serial link								
PowerSuite software workshop for PC with Ethernet link	$-$	$\begin{aligned} & \geqslant \text { V } 1.50 \\ & \text { and } \\ & \text { Ethernet- } \\ & \text { Modbus } \\ & \text { bridge } \end{aligned}$	-	$\begin{aligned} & \geqslant \text { V } 1.50 \\ & \text { and } \\ & \text { Ethernet- } \\ & \text { Modbus } \\ & \text { bridge } \end{aligned}$	$\begin{array}{\|l\|} \hline \geqslant \text { V } 2.0 .0 \\ \text { and } \\ \text { Ethernet- } \\ \text { Modbus } \\ \text { bridge } \\ \hline \end{array}$	\geqslant V 1.50 and Ether communi or bridge	net V2 ation card	-
PowerSuite software workshop for Pocket PC	$\geqslant \mathrm{V} 1.50$	$\geqslant \mathrm{V} 1.30$	$\geqslant \mathrm{V} 1.40$	$\geqslant \mathrm{V} 1.20$	$\geqslant \mathrm{V} 2.0 .0$	$\geqslant \mathrm{V} 1.40$	$\geqslant \mathrm{V} 1.20$	-
	Com	patible prod compatible	cts and so oducts.	ware versi				

Operating system	Performance tests carried out on models	PowerSuite software version			
		V 1.30	V 1.40	V 1.50	V 2.0.0
Windows for Pocket PC 2003	Hewlett Packard ${ }^{\text {® }}$ IPAQ 2210	no	no	no	yes
Windows for Pocket PC 2002	Compaq ${ }^{\text {® }}$ IPAQ series 3800,3900	no	no	yes	yes
	Hewlett Packard ${ }^{\circledR}$ Jornada series 560	no	yes	yes	yes
Windows for Pocket PC 2000	Hewlett Packard ${ }^{\circledR}$ Jornada series 525	yes	yes	yes	no
Windows CE	Hewlett Packard ${ }^{\text {® }}$ Jornada 420	yes	no	no	no

4 - Communication

Starters, drives and communication

- Ethernet TCP/IP network. page $4 / 5$
- Communication via Fipio bus . page $4 / 8$
- Communication via Modbus Plus bus . page 4/12
- Communication via AS-Interface cabling system page $4 / 15$

■ Communication via Modbus bus . page 4/18
■ Communication via Uni-Telway bus . page 4/21

- Communication via gateways LUF-P . page $4 / 23$

■ Communication via gateway LA9-P307. page 4/25

Presentation

Nowadays, applications for distributed control systems can use a single communication network. The network should meet not only the demands for realtime performance on the factory floor, but also the need for open access to control/ monitoring software. It should be based on products using standard communication protocols or applications using Internet technology.
Ethernet responds to these different needs in terms of data rate, capacity for open access on TCP/IP and flexibility in terms of topology.
All these criteria are reinforced by the capacity of Schneider Electric to provide highlevel services which enable the user to reduce his development and operating costs.

Ethernet communication is mainly aimed at applications for:

- coordination between PLCs,
- local or centralised supervision,
- communication with production management software,
- communication with remote I/O,
- communication with industrial control products.

The Altivar 58 drive connects to the Ethernet TCP/IP network via the VW3 A58310 communication card.

This communication card supports:

- a TCP/IP communication profile on Ethernet 10/100 Mbps,
- the I/O Scanning function,
- the integrated Web server function.

I/O Scanning service

Schematic diagram

The Altivar 58 drive accepts the I/O Scanning service generated by:

- automation platforms:
- Premium equipped with a TSX ETY 410/5101
module,
- Quantum,
- Momentum M1E,
- a PC equipped with Modbus communication software with I/O scanner function.
This service is used to manage the exchange of remote I/O on the Ethernet network after simple configuration and without the need for special programming.
The drive I/O are scanned transparently by means of read/write requests according to the Modbus Master/ Slave protocol on the TCP/IP profile.
The Altivar 58 I/O Scanning service can be disabled.
Please consult our "Modicon Premium and PL7 software" catalogue.

Control configuration

The Web server "Control configuration" screen is used to:
■ enable the I/O Scanning service,

- configure the I/O scanner (assignment of 10 drive input words and 10 drive output words to configurations, adjustments and signalling according to the requirements of the client application),
■ configure the communication functions.

The Altivar 58 drive incorporates an integrated Web server, in English.
The functions provided by the Web server require no special configuration or programming of the PC which supports the Internet browser. The Web server screens are predefined, with secure access (password).

The integrated Web server provides access to the following functions:

- Altivar Viewer,
- Data Editor,
- Statistics,
- Security,
- Web server for Pocket PC.

1 "Altivar Viewer" function

The "Altivar Viewer" screen is used to display:

- the drive status,
- the motor speed,
- the drive I/O.

2 "Data Editor" function

The "Data Editor" screen is used to access the drive configuration, adjustment and signalling functions. For safety reasons, the drive control function is not accessible.

3 "Statistics" function

The "Statistics" screen gives the Ethernet network communication statistics. It also shows the product connected to the network (reference, software version, etc).

Functions (continued), connections

Starters, drives and communication Ethernet TCP/IP network

4 "Security" function

The "Security" screen is used to modify the user name and passwords:
■ the HTTP password authorises access to the drive function display,

- the Data Editor Write password authorises access to modification of the drive functions.

5 "Altivar Viewer for Pocket PC" function

The "Altivar Viewer for Pocket PC" screen is used to display a table of the main drive data.
The Web browsers for Pocket PC do not provide access to the screens shown opposite.

Connections

(1) Splitter block

The communication card is incorporated in the Altivar 58 drive and is connected to the Ethernet TCP/IP network via a 10/100baseT interface (RJ45).
See page $4 / 5$ for accessories and connecting cables.

Starters, drives and communication
 Ethernet TCP/IP network

Type of link		Ethernet			
Characteristics					
Structure	Type	Industrial local area network conforming to ANSI/IEEE Std 802.3 (4th edition 1993-07-08)			
	Topology	Star network			
Transmission	Mode	Manchester baseband. Half-duplex or full-duplex			
	Data rate	10/100 Mbps with automatic recognition			
	Medium	STP double shielded twisted pair impedance $100 \Omega \pm 15 \Omega$ for 10 baseT or category 5 Ethernet cable conforming to standard TIA/EIA-568A			
Configuration	Number of device stations	Point-to-point connection (via RJ45 standard connector) enabling formation of a star network (the stations are connected to concentrators or switches) 64 stations max. per network			
	Length	100 m max. between concentrator and terminal device			
Ethernet functions	Access security	HTTP password. Password for modifications			
	I/O scanning	Performed from a master Ethernet module 10 control words (outputs), 9 of which can be configured 10 signalling words (inputs), 9 of which can be configured			
	1/P addressing	IP configuration via the drive operator terminal or via BOOTP. DHCP not supported.			
	TCP/Modbus	Client/server mode. 8 simultaneous connections.			
	HTTP server	Simultaneous connection of 8 Internet browsers possible			
	File transfer	FTP not supported			
	Network management	SNMP not supported			
Conforming to standards		The communication card conforms to the following standards: ISO/IEC 8802.3, ANSI/IEEE Std 802.3 (4th edition 1993-07-08), UL 508C, CSA C22.2 N14 M95, (\in marking, Drive standards NF-EN50178, IEC 61800-3 class A			
Ethernet network connection elements					
		Communication interfaces			
-		Description	For drives	Reference	Weight kg
		Communication card Ethernet Modbus TCP/IP 10/100 Mbps	ATV 38 ATV 58 (1) ATV 58F All ratings	VW3 A58310	0.300

Factory-installed Web server cannot be modified
Ethernet/Modbus bridge 174 CEV $30010 \quad 0500$
with $1 \times$ Ethernet 10 baseT port
(RJ45 type)

Connecting cables				
Description	Connectors	Length m	Reference	Weight kg
Shielded twisted pair cables Create the link between the communication card and the Ethernet network	RJ45/RJ45	2	490 NTW00002	-
		5	490 NTW00005	-
		12	490 NTW00012	-
		40	490 NTW00040	-
		80	490 NTW00080	-
Wiring systems				
Description	Type of Ethernet network	Available ports	Reference	Weight kg
TF splitter blocks	10 Mbps	4 10baseT ports	499 NEH00410	0.525
		3 10baseT ports 2 10baseFL ports	499 NOH00510	0.900
	100 Mbps	4 100baseTX ports	499 NEH04100	1.450
TF switches (3)	10/100 Mbps	5 10baseT/100baseTX ports 2 100baseTX ports	499 NES07100	1.450
		5 100baseTX ports 2 100baseFX ports	499 NOS07100	1.450

[^31]

Presentation

The Fipio fieldbus is a standard means of communication between different control system components, and conforms to the World FIP standard. The bus arbitrator is a PLC (Premium, PCX, etc).

■ Once they have been declared with the predefined profile, the following Altivar speed drives can be connected to the Fipio bus:

- ATV 38, ATV 58 and ATV 58F via a VW3 A58301 or VW3 A58311 communication card
- ATV 68 via a VW3 A68301 communication kit
- The Altistart 48 soft start - soft stop unit can be connected to the Fipio bus via the LUF P1 gateway.
Once the predefined gateway profile has been declared, configure the control and monitoring variables using ABC Configurator software (see pages $3 / 2$ and $3 / 3$).

An application using Altivar variable speed drives and the Altistart 48 soft start - soft stop unit on the Fipio bus is developed by simply declaring the device using PL7 software.

Characteristics:	References:	Connections:
page $4 / 7$	page $4 / 8$	page $4 / 9$

Starters, drives and communication
 Communication via Fipio bus

Characteristics

Bus type		Fipio bus			
Structure	Type	Industrial bus conforming to the World FIP standard			
	Topology	Devices linked by exten	sions or tap junctions		
	Access method	Bus management by an arbitrator			
Transmission	Mode	Baseband physical layer on shielded twisted pair, according to standard NF C 46-604			
	Data rate	1 Mbps			
	Medium	Shielded twisted pair 150Ω. Optical fibre 62.5/125 with the use of electrical/fibre optic repeaters			
Configuration	No. of devices per segment	32 connection points per segment			
	Maximum	64 over all segments (27 for Premium Fipio,	2 ATV type drives max.	
	No. of segments	Unlimited in tree or sta Limited to 5 cascaded The link between 2 de	architectures segments (4 cascaded ices may cross 4 elect	epeaters) cal/fibre optic repeaters	maximum
	Length of bus (1)	1000 m maximum with 5000 m maximum betw 3000 m between 2 fibr	ut repeater for an elec een the furthest device optic repeaters	rical segment (5 segments)	
For starters and drives		ATS 48	ATV 38/58/58F	ATV 58/58F	ATV 68
Interfaces		LUF P1	VW3 A58311	VW3 A58301	VW3 A68301
Profiles		FED C 32 or FED C 32P	FED C 32	FSD C 8P	FED C 32
Control		26 configurable words (2)	5 predefined words	5 predefined words	1 predefined word, 3 configurable references
Monitoring		26 configurable words (2)	8 predefined words	8 predefined words	1 predefined word, 3 configurable words
Configuration and adjustments		Read/write access to all ATS 48 functions via the PLC application program	Read/write access to all ATV 38/58/58F functions via the PLC application program	Read/write access to predefined functions in the PL7 software screens	-

(1) For the Fipio bus, distance of 15,000 m maximum, please consult your Regional Sales Office.
(2) To extend the I/O capacity to 26 control words and 26 monitoring words, use the ABC Configurator.

Communication via Fipio bus

VW3 A58301

VW3 A68301

Fipio bus connection elements with Premium PLCs

| Description | Used
 for | Reference |
| :--- | :--- | :--- | :--- |

Fipio Modbus gateway
ATS 48 LUF P1
0.240

The gateway is equipped with:

- a Fipio male 9 -way SUB-D connector which will take a TSX FP ACC12 mobile connector for connection with A TSX FP CA $\bullet \bullet$ trunk cable or a TSX FPee drop cable,
- an RJ45 connector for Modbus for
connection with the VW3 A8306Ree cable
Fit an external power supply $24 \mathrm{~V}=-$
100 mA minimum (to be ordered
separately).
Fipio bus connection elements with Series 7 PLCs

| Description | Used
 for | Reference |
| :--- | :--- | :--- | :--- | | Weight |
| ---: |
| kg |

Documentation

User's manuals	Language	Reference	Weight kg
Fescription	French English	VVDED397045	0.130
Fipio card VW3 A58 311	French English	VVDED300024	0.150
ATV 68 Fipio	French English	VVDED300023	0.120
Internal communication variables"	French ATV 38/58/58F Technical manual	VVDED397058	0.100
International technical manual (ITM) (1)	French English	DCI CD 398111	0.150

[^32]Nota : to order connection cables for the Fipio bus, please consult our "Modicon Premium and PL7 software" catalogue.

Fipio wiring system

1 TSX FP CA $\bullet 00$ Trunk cable, shielded twisted pair 150Ω (8 mm diameter) for standard environments and inside buildings.
TSX FP CR ©00 Trunk cable, shielded twisted pair 150Ω (8 mm diameter) for harsh environments or use outside buildings.
2 TSX FP CG 0^0 Tap link cable for TSX FPP 10/20 PCMCIA module card for Micro/Premium PLCs, FTX 417-40 terminal and PC compatibles. The bus is connected on the TSX FP ACC 4 junction box 9-way SUB-D connector.
3 TSX FP CC •00 Drop cable, double shielded twisted pair 150Ω (8 mm diameter) for standard environments and inside buildings.
TSX FP ACC 7 Line terminator, to be placed at the end of each segment.
5 TSX FP ACC 4 Junction box: creates a tap link from the trunk cable for connecting a device via a TSX FP CCe00 drop cable. It also has a female 9-way SUB-D connector for connecting any device which connects to the bus via a PCMCIA card.
TSX FP ACC 14 Polycarbonate junction box.
6 TSX FP ACC 6 Electrical repeater: used to increase the number of stations (64 max .) and to increase the length of the network by creating additional segments of 1000 m maximum (4 cascaded repeaters maximum allowing a network length of 5000 m).
TSX FP ACC 2 Female 9-way SUB-D connector for Fipio extensions or tap junctions. TSX FP ACC 12
8 TSX FP ACC 8M Fibre optic/electrical repeater: used to interconnect electrical segments via a fibre optic link (excellent resistance for crossing zones subject to interference) or connecting a fibre optic device.
9 TSX FP JF 020 Fibre optic jumper (length 2 m): used for fibre optic connection of the TSX FP ACC 8 M repeater to a patch panel. Maximum optical fibre length $(62.5 / 125)$ between 2 repeaters: 3000 m .
TSX FP ACC 9 Network wiring test tool: used to test the continuity of segments and connections on the various devices, as well as to check that line terminators have been inserted correctly.

Presentation

The Modbus Plus network is a token network which enables point-to-point communication between the various subscribers. Each subscriber listens and speaks at the token rotation speed.

Altivar 38/58/58F/68 variable speed drives are connected to the Modbus Plus bus via:
■ a VW3 A58302 communication card for ATV 38/58/58F,

- a communication kit for ATV 68.

Modbus Plus communication profile

Altivar 38/58/58F/68 variable speed drives on the Modbus Plus bus, controlled by a PLC, are accessed by simple configuration in the PLC using "Peer Cop" services and the Modbus Plus network "global data" database. Rapid exchange of the main drive registers is thus made possible. The PLC/drive communication speed is not affected by the number of drives on the network (20 maximum with "Peer Cop" rapid exchange). The other parameters, which are used less frequently, can be accessed via the standard PLC function block (MSTR) only for Altivar 38/58 and Altivar 58F drives.

Rapid exchange

PLC writing to drive
(Peer Cop)
32 words for ATV 38/58/58F
Frequency references
Control register
Low and high speed
Preset speeds
Acceleration/deceleration 1 and 2
IR compensation
Voltage/frequency profile (U/F)
Slip compensation
Etc

4 words for ATV 68
Control register
References

Drive writing to PLC

(Global Data)
32 words for ATV 38/58/58F
Reference frequency/applied
frequency
Status register
Motor current/speed
Supply voltage
Drive/motor temperature
Read discrete or analogue I/O
Number of faults
Current fault
Etc
4 words for ATV 68
Status register
Motor frequency
Motor speed
Motor current

Characteristics:	References:	Connections:
page $4 / 11$	page $4 / 12$	page $4 / 13$

Characteristics			
Bus type		Modbus Plus bus	
Structure	Type	Industrial bus	
	Topology	Point-to-point, bus and "self-healing" ring	
	Access method	"Plug and play"	
Transmission	Mode	Baseband physical layer on shielded twisted pair	
	Data rate	1 Mbps , useful data rate 20,000 words/s	
	Medium	Shielded twisted pair 120 W BELDEN 9841. Optical fibre $50 / 125,62 / 125,100 / 140 \mathrm{~mm}$ with the use of electrical/fibre optic repeaters	
Configuration	No. of devices per segment	32 connection points per segment	
	Maximum	64 over all segments	
	Number of segments	Unlimited in tree or star architectures Limited to 4 cascaded routers (4 cascaded repeaters) The link between 2 devices should cross 4 electrical routers and/or 3 repeaters maximum	
	Length of bus	450 m maximum without repeater for an electrical segment 1800 m maximum between the furthest devices (3 repeaters) 3000 m between 2 fibre optic repeaters	
Services	Modbus Plus	Point-to-point requests with confirmation report: 200 bytes maximum, compatible with all Modbus/Jbus devices	
	Application-to-application	Point-to-point messages (Peer Cop): 64 bytes in read and write mode, 64 bytes in broadcast mode via the global database	
	Security	Each frame is protected by a CRC 16 and an acknowledgement of receipt conforming to layers $1,2,7$, of the OSI model	
	Monitoring	Network diagnostics are performed by the PC software or by the standard PLC function block (MSTR)	
For drives		ATV 38/58/58F	ATV 68
Functions	"Peer Cop" control and adjustment	32 predefined words	1 predefined word, 3 configurable references
	"Global Data" monitoring	32 predefined words	1 predefined word, 3 configurable words
	"MSTR" configuration and adjustment	Read/write access to all ATV 38/58/58F functions by the PLC application program	-

VW3 A58302

VW3 A68302

Description	Used		Length	Position of connector	Reference	Weight kg
	From	To				
Cables for Modbus Plus	Communication card	Modbus Plus tee	2.4 m	Right	990NAD21910 (1)	0.100
			6 m	Right	990NAD21930 (1)	0.300
			2.4 m	Left	990NAD21810 (1)	0.100
			6 m	Left	990 AD21830 (1)	0.300

| Documentation | Language Supplied | Reference | Weight
 kg |
| :--- | :--- | :--- | :--- | :--- |
| | | Vescription | |

(1) Products sold under the Modicon brand.

Starters, drives

 and communication
Communication via Modbus Plus bus

Modbus Plus wiring system

Premium

1	990NAD23000	Tee for Modbus Plus
2	NWRR85001	Repeater for Modbus Plus network (extension to 64 subscribers or extension to 450 m)
3	490NRP25400	Fibre optic repeater for Modbus Plus network
4	990NAD21810	Modbus Plus cable (length 2.4 m) with connector exiting on left
	990NAD21830	Modbus Plus cable (length 6 m) with connector exiting on left
	990 AD21910	Modbus Plus cable (length 2.4 m) with connector exiting on right
	990NAD21930	Modbus Plus cable (length 6 m) with connector exiting on right
5	990 AD21110	Modbus Plus cable dedicated to the Quantum PLC (length 2.4 m) with connector exiting on left
	990NAD21130	Modbus Plus cable dedicated to the Quantum PLC (length 6 m) with connector exiting on right
6	NWBP85002	Modbus Plus bridge
7	490NAA27101	Modbus Plus cable on a 30 m reel
	490NAA27102	Modbus Plus cable on a 150 m reel
	490NAA27103	Modbus Plus cable on a 305 m reel
	490NAA27104	Modbus Plus cable on a 455 m reel
	490NAA27105	Modbus Plus cable on a 1525 m reel
8	NWBM85000	Modbus Plus communication gateway to 4 Modbus master or slave ports

Presentation

The cabling system comprises a master station (Premium, Micro PLC) and a maximum of 31 slave stations.
4 inputs and/or 4 outputs can be connected to each device, giving a maximum of 248 I/O on each segment.
The AS-Interface PLC module, which supports the AS-Interface M2 profile, interrogates the devices connected on the AS-Interface line one by one and stores the data (status of sensors/actuators, operational status of devices) in the PLC memory. Communication management on the AS-Interface line is totally transparent with regard to the PLC application program.
An AS-Interface power supply must be used for powering the various components on the cabling system. Ideally, this PSU should be situated nearest to the components with the largest power demands.
For more detailed information, please consult our "AS-Interface cabling system" catalogue.

Description

ATV 38/58/58F drives are connected to the AS-Interface line via the VW3 A58305 communication card.
Any other drive or starter can be connected to the network via an ABE-8 discrete interface. The available functions then depend on the wiring between the ABE-8 interface module and the drive or starter and their I/O configuration.

The functions available are:
■ control of logic commands: forward/reverse, enable preset speeds,

- reading of states: drive fault, speed reached, etc.

Start-stop commands via the AS-Interface line

The AS-Interface line communication card is used to perform the following commands:
forward, reverse, normal stop on deceleration ramp, fast stop, DC injection stop, freewheel stop, fault reset (to reset the drive).

Speed commands via the AS-Interface line

One of the following operating modes can be chosen:
2 directions of operation with 4 preset speeds, 1 direction of operation with 7 preset speeds, + speed/- speed.
Selection is made via the AS-Interface line, using 2 parameters.

Speed commands via analogue input
Inputs Al1 and AI2 can be used to accept a frequency reference.

Software setup, diagnostics, references

Starters, drives
 and communication
 Communication via AS-Interface line

ABE 8S44SBB1

XZ-CB1•001

Software setup

The AS-Interface line is configured using PL7 Micro/Junior/Pro software. The utilities available are based on the principle of simplicity:
■ management of profile tables, parameters and data by the master (this management is transparent to the user),
■ topological I/O addressing: each AS-Interface slave declared on the line is assigned a topological address on the line. This is transparent to the user,
■ each sensor/actuator on the AS-Interface line is treated as an "in-rack" input/ output by the PLC.
Configuration of the AS-Interface slave devices using PL-7
Using the configuration screen, it is possible to configure all the slave devices (1 to 31), i.e. all 248 I/O.

The user selects the AS-Interface device reference from the various product families. This selection determines the AS-Interface profile and parameters associated with the device.

Diagnostics

Diagnostics performed using the display unit on the Micro/Premium PLC can be completed using a PC compatible with PL7 Micro or PL7 Junior/Pro.

The terminal connected to the PLC is used for operational diagnostics of the master module, the AS-Interface line and the slave devices on the AS-Interface line.

These diagnostics are performed using a single screen divided into four sections providing information on:
1 Operational status of the AS-Interface module (RUN, ERR, I/O)
2 Operational status of the AS-Interface channel connected to the module
3 Faulty slave
4 Data relating to any selected slave (profile, parameters, forcing, etc.)

In the event of an AS-Interface module or channel fault, a second screen can be accessed, which clearly shows the type of fault, which may be at internal or external level.

References

AS-Interface line connection elements

Description	Reference	Weight kg
ATV 58/58F communication card	VW3 A58305	0.300

Interfaces for discrete I/O with AS-Interface line for drive and starter

Number of channels	Function		Voltages		Output current/ channel	Reference	Weight
	Type	No.	Inputs	Outputs			
			V	V	A		kg
8	Input	4	line	-	-	ABE 8S44SBB1	0.240
	Output	4	-	=- 24	1		

Connection accessories for AS-Interface flat cable

Description	Power supply	Length \mathbf{m}	Reference	Weight $\mathbf{k g}$
Flat cables for AS- Interface line	For AS- Interface line (yellow)	20	XZ CB10201	1.400
	50	XZ CB10501	3.500	
	100	XZ CB11001	7.000	
Tap link for connection to a cable	2	XZ CG0122	0.215	

Presentation

Characteristics

Type of connection For starters and drives			Terminal port		Module	Communication card
			ATS 48	ATV 31/38/58/58F	ATV 68	ATV 38/58/58F
Structure	Type		Industrial bus			
	Physical interface		RS 485			
	Access method		Master/slave type			
Transmission	Mode		RTU			RTU or ASCII
	Data rate	19.2 or 9.6 Kbps	-	\bullet	\bullet	\bullet
		4.8 Kbps	-	-	-	-
		2.4 and 1.2 Kbps	-	-	\bullet	-
	Medium		Double shielded twisted pair			
Configuration	Number of devices		18,27 or 31 slaves, depending on polarisation (1)			
	Type of polarisation		Pulldown resistors of $4.7 \mathrm{k} \Omega$		No pulldown	Configurable No pulldown or pulldown resistors of $4.7 \mathrm{k} \Omega$
	Length of bus		1000 or 1300 m excluding tap links, depending on polarisation (1)			
	Tap link		3 or 20 m maximum, depending on polarisation (1)			
			1) See th	configuration table	n page 4/17.	

Starters, drives and communication
 Communication via Modbus bus

Configuration on the basis of polarisation

The specification of the physical layer provided by standard RS 485 is incomplete. Various polarisation diagrams can therefore be applied, depending on the environment in which the equipment is to be used.

		Master	
		With polarisation $4.7 \mathrm{k} \Omega$	With polarisation 470Ω
Slave	Without polarisation	Configuration not recommended	Jbus type configuration 31 slaves Length of bus: 1300 m Tap link: 3 m max. Fit a line terminator ($\mathrm{R}=150 \Omega$)
	With polarisation $4.7 \mathrm{k} \Omega$	Uni-Telway type configuration 27 slaves Length of bus: 1000 m Tap link: 20 m max. Fit an RC line terminator	18 slaves Length of bus: 1000 m Tap link: 20 m max.

Connections

Connections via splitter blocks and RJ45 type connectors

PLC (1)
2 Modbus cable depending on the type of controller or PLC
3 Modbus splitter block LU9 GC3
4 Modbus drop cable VW3 A8 306 Ree
5 Line terminators VW3 A8 306 RC
6 Modbus T-junction boxes VW3 A8 306 TFeo (with cable)

Connections via junction boxes

PLC (1)
2 Modbus cable depending on the type of controller or PLC
Modbus cable TSX CSA •00
Junction box TSX SCA 50
Subscriber sockets TSX SCA 62
6 Modbus drop cable
VW3 A8 306
7 Modbus drop cable VW3 A8 306 D30

Connections via screw terminals

In this case, use a VW3 A8 306 D30 Modbus drop cable and VW3 A8 306 DRC line terminators.

[^33]
Communication via Modbus bus

VW3 A68303

TSX SCA 50

TSX SCA 52

Communication module				
Description			Reference	Weight kg
Communication module for ATV 68 fitted with an RJ45 connector and a female 9-way SUB-D connector			VW3 A68303	1.400
Connection accessories				
Description			Unit reference	Weight kg
Junction box 3 screw terminals, RC line terminator			TSX SCA 50	0.520
Subscriber sockets 2 female 15 -way SUB-D connectors and 2 screw terminals, RC line terminator			TSX SCA 62	0.570
Modbus splitter block 10 RJ45 type connectors and 1 screw terminal			LU9 GC3	0.500
Line terminators (1)	For RJ45 connector	$\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$	VW3 A8 306 RC	0.200
		R $=150 \Omega$	VW3 A8 306 R	0.200
	For screw terminals	$\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$	VW3 A8 306 DRC	0.200
		$\mathrm{R}=150 \Omega$	VW3 A8 306 DR	0.200
Modbus T-junction boxes		With integrated cable	VW3 A8 306 TF03	-
		With integrated cable	VW3 A8 306 TF10	-

Connecting cables (2)				
Description	Length m	Connectors	Reference	Weight kg
Cables for Modbus bus	3	1 RJ45 connector and one end stripped	VW3 A8 306 D30	0.150
	3	1 RJ45 connector and 1 male 15-way SUB-D connector for TSX SCA 62 subscriber sockets	VW3 A8 306	0.150
	0.3	2 RJ45 connectors	VW3 A8 306 R03	0.050
	1	2 RJ45 connectors	VW3 A8 306 R10	0.050
	3	2 RJ45 connectors	VW3 A8 306 R30	0.150
	3	1 male 9-way SUB-D connector and 1 male 15way SUB-D connector for TSX SCA 62 subscriber sockets	VW3 A68 306	0.150
Cable for module	3	2 RJ45 connectors	VW3 A68 313	0.150
RS 485 double shielded twisted pair cables	100	Supplied without connector	TSX CSA 100	-
	200	Supplied without connector	TSX CSA 200	-
	500	Supplied without connector	TSX CSA 500	-

(1) Sold in lots of 2.
(2) Use the table below to select the appropriate connection cables:

	ATS 48 ATV 31	ATV 38/58/58F Terminal port	ATV 38 Communication card	ATV 68
Junction box TSX SCA 50	Cable VW3 A8 306 D30	Cable TSX CSA•e + connector (3)	Cable TSX CSA•e + connector (3)	Cable TSX CSA•e + connector (3)
Subscriber sockets TSX SCA 62	Cable VW3 A8 306	Cable VW3 A58 306	Cable VW3 A58 303 (included in the kit)	Cables VW3 A68 313 VW3 A68 306
Splitter block LU9 GC3	Cable VW3 A8 306 Ree	Cable VW3 A8 306 D30	Cable VW3 A8 306 D30	Cables VW3 A68 313 VW3 A8 306 D30

Presentation:	Characteristics:	Configuration:
page $4 / 16$	page $4 / 16$	page $4 / 17$

Modbus bus connection kits

Description	Used for	For protocol	Reference	Weight kg
RS485 connection kit between a TSX SCA 62 subscriber socket and the terminal port, comprising: 1 cable (length 3 m) with one male 9-way SUB-D connector and one male 15 -way SUB-D connector - 1 "RS485" user's manual - 1 "Communication variables" user's manual	ATV 38/58/58F in place of the operator terminal	Modbus RTU (1)	VW3 A58306	0.300

Communication kit	ATV 58	Uni-Telway, VW3 A58303	0.300
comprising:	with operator	Modbus	
$\square 1$ communication card	terminal	ASCII	
equipped with a male 9-way		Modbus	
SUB-D connector		RTU/Jbus	
$\square 1 \times 3$ m cable with:			

- 1 male 9 -way SUB-D connector for connection to the communication card and
- 1 male 15 -way SUB-D connector for connection to a TSX SCA 62 subscriber socket

Documentation			
Description	Format	Reference	Weight kg
International technical manual (ITM) (2)	CD-ROM	DCI CD 398111	0.150

(1) Modbus RTU only, 8 drives maximum on the network, 9600 bps fixed speed for the ATV 58, 9600/19,200 bps adjustable speed for the ATV 31.
(2) Library containing:

- manuals and quick reference guides for starters and speed drives,
- user's manuals for communication gateways.

Presentation

The Uni-Telway bus is a standard means of communication between control system components (PLCs, HMI terminals, supervisors, variable speed drives, numerical controllers, etc.).

It is suitable for architectures designed to pilot control and monitoring equipment via a PLC, or architectures used for HMI (supervision, etc).

The Uni-Telway bus requires a master station (Premium, Micro) which manages the allocation of bus access rights to the various connected stations (known as slave stations) that can communicate with one another.

Characteristics		
Bus type		Uni-Telway
For drives		ATV 38/58/58F
Structure	Type	Industrial bus
	Physical interface	RS 485 isolated
	Link	Multidrop
	Access method	Master/Slave type
Transmission	Mode	Asynchronous transmission in baseband
	Data rate	4.8..19.2 Kbps
	Medium	Double shielded twisted pair
Configuration	Number of devices	28 devices maximum
	Length of bus	1000 mmax . excluding tap links
	Tap links	20 m maximum
Service	UNI-TE	Point-to-point requests with confirmation (question/response), of up to 240 bytes (1) initiated by any connected device
		Unsolicited point-to-point data without confirmation of up to 240 bytes (1) initiated by any connected device
		Broadcast messages of up to 240 bytes (1) initiated by the master device
	Other functions	Transparent communication, via the master, with any device in an X-WAY architecture
		Diagnostics, debugging, adjustment, programming of PLCs
	Security	Check character on each frame, acknowledgement and, if required, repetition of messages ensure security of transmission
	Monitoring	Bus status table, transmission error counters and device status can be accessed by program in each device

(1) Limited to 128 bytes with Micro/Premium PLC terminal port.

Uni-Telway bus wiring system

1 TSX SCA ・セセ
2 TSX SCA 50
3 TSX SCA 62

TSX SCP 114
TSX SCY CU 6530

TSX P ACC 01

Bus cable, double shielded twisted pair. The shielding must be connected to the earth of each device.
Passive junction box, matches the impedance when it is installed at the end of the line.
Passive 2-channel Uni-Telway subscriber socket, used for coding the address of two connected devices, and matching the impedance when it is installed at the end of the line.
PCMCIA card for connecting Micro (1)/Premium PLCs to the Uni-Telway bus.

VW3 A58303

TSX SCA 62

Uni-Telway connecting cable between the integrated channel of the TSX SCY 21601 module and the TSX SCA 62 subscriber socket.
Connection box, used for connecting a Micro/Premium to the Uni-Telway bus via the PLC terminal port. The connecting cable (length 1 m) is integrated in the connection box. It isolates the signals (for distances $>10 \mathrm{~m}$) and is used to match the end of line impedance. It is also used to set the operation of the terminal port (Uni-Telway master/slave or character mode).
TSX SCP CU 4030 Uni-Telway connecting cable between the TSX SCP 114 PCMCIA card (on TSX P57 •0M processor or TSX SCY 21601 module) and the TSX SCA 50 junction box.

Uni-Telway bus connection elements

Description	Used with	For protocol	Reference	Weight kg
Communication kit comprising a communication card fitted with a male 9-way SUB-D connector, and one 3 m cable with 2 SUB-D connectors: male 9-way for connection to the communication card - male 15 -way for connection to a TSX SCA 62 connector (2) To order other cables and connection accessories, please consult our "Modicon Premium and PL7 software" catalogue.	ATV 38 ATV 58 ATV 58F	Uni-Telway, Modbus ASCII, Modbus, RTU/Jbus	VW3 A58303	0.300
Extension card Connection via screw terminals	RTV 74/ RTV 84	Uni-Telway, Modbus	VW1 RZD101	0.550

(1) With TSX 37-2122 PLC
(2) The TSX SCA 62 junction box comprises 2 female 15-way SUB-D subscriber sockets.

Presentation

Communication gateways LUF P allow connection between Modbus and field buses such as Fipio, Profibus DP or DeviceNet.

After configuration, these gateways manage information which can be accessed by the Modbus bus and make this information available for read/write functions (command, monitoring, configuration and adjustment) on the field buses.

An LUF P communication gateway consists of a box which can be clipped onto a 35 mm omega rail, allowing connection of up to 8 Slaves connected on the Modbus bus.

Example of architecture

(1) Connection kit for PowerSuite software workshop.

Description
 Front panel of the product

1 LED indicating:

- communication status of the Modbus buses,
- gateway status,
- communication status of the Fipio, Profibus DP or DeviceNet bus.

2 Connectors for connection to Fipio, Profibus DP or DeviceNet buses.

Underside of product

RJ45 connector for connection on the Modbus bus
RJ45 connector for link to a PC
=- 24 V power supply

Software set-up

For the Fipio bus, software set-up of the gateway is performed using either PL7 Micro/Junior/Pro software or ABC Configurator software.
For the Profibus DP and DeviceNet buses, software set-up is performed using ABC Configurator.
This software is included:

- in the PowerSuite software workshop for PC (see page 3/3),
- in the TeSys model U user's manual.

Characteristics, references:	Dimensions
page $4 / 23$	page $4 / 23$

Characteristics,
references,
dimensions

Starters, drives and communication

Communication gateways LUF P

Characteristics

(2) See pages 4/16 and 4/17.
(3) This CD-Rom contains user's manuals for AS-Interface and Modbus communication modules, multifunction control units and gateways, as well as for the gateway programming software, ABC Configurator.

Dimensions

Presentation

Communication gateway LA9 P307 provides connection between the Profibus DP and Modbus buses. It is a Slave on the Profibus DP bus and Master on the Modbus bus. It manages information present on the Modbus bus to make it available for read/write functions in the Master PLC on the Profibus DP bus.

Gateway LA9 P307 consists of a box which can be clipped onto a 35 mm omega rail. It manages up to15 Slaves on the Modus bus.

Example of architecture

Profibus DP

Description

Gateway LA9 P307 comprises :
1 A SUB-D 9-way female connector for connection to the Profibus DP bus,
2 A line end adapter on the Profibus DP bus,
3 Gateway address coding on the Profibus DP bus,
4 Status signalling LED,
5 RJ 45 female connector for connection on the Modbus bus,
6 --- 24 V power supply.

Software set-up

The gateway is configured using the standard software tools for the Profibus bus. For the Premium automation platform, use SYCON configurator software. The user's manual (.PDF) and the gateway description file (.GSD) are supplied on diskette with the gateway.

Characteristics, references:	Dimensions
page $4 / 25$	page $4 / 25$

Characteristics,
references, dimensions

Starters, drives and communication

Communication gateway LA9 P307

Characteristics

Environment	Conforming to IEC 664		Degree of pollution: 2					
Ambient air temperature	Around the device	${ }^{\circ} \mathrm{C}$	0... +50					
Degree of protection			IP 20					
Number of Modbus slaves which can be connected			15					
Connection on	Modbus		RJ 45 connector					
	Profibus		SUB-D 9-way female connector					
Supply			External supply, --- $24 \mathrm{~V} \pm 20$ \%					
Consumption		mA	150 on =-- 24 V					
Indication/diagnostics			By LED					
Services	Command		16 words					
	Monitoring		16 words					
	Configuration and adjustment		By gateway mini messaging facility (PKW)					
References								
		Description		For use with		Reference	Weight kg	
6		Profibus DP/Modbus communication gateway		LT6 P ATS 48 ATV 31/38/58/58F		LA9 P307	0.260	
		Description		For use with	Length m	Reference	Weight kg	
		RJ 45 cable with stripped wires		Screw terminal block - T-junction box TSX SCA 50 - Y-junction subscriber socket TSX SCA 62 SUB-D connector (to be ordered separately) - LT6 P (SUB-D 9 female) - ATV 58 (SUB-D 9 male)	3	VW3 A8 306 D30	0.150	
LA9 P307								
		RJ 45-RJ 45 cable			ATS 48 ATV 31 Modbus splitter box LU9 GC3	1	VW3 P07 306 R10	0.050
1								
		Conn	ctors	Profibus mid line	-	490 NAD 91104	-	
490 NAD 91103				Profibus line end	-	490 NAD 91103	-	

Dimensions

LA9 P307

5 - Technical appendices and substitution

Technical appendices

- Speed drive
- Technical and practical information page 5/2
\square Mechanical information page 5/3
- Conversion tables for standard units page 5/4
- Driving machines page 5/6
- Electronic speed drive
- Cage asynchronous motors page 5/11
- Power circuits page 5/15
- Application examples. page 5/16
\square Harmonics page 5/17
\square Nominal load currents of cage asynchronous motors page 5/23
Substituting starters
- ATS 23, ATS 23P page 5/24
- ATS 46. page 5/25
Substituting variable speed drives
- ATV 08, ATV 16 page 5/26
- ATV 18. page 5/27
- ATV 66. page 5/27
. ATV 452 page 5/29

(1) In order to avoid confusion, you are advised not to use the symbol mN .

Old units	
Force	$1 \mathrm{kgp}=9.81 \mathrm{~N}=$ approx. $10 \mathrm{~N}=1 \mathrm{daN}$
Work	$1 \mathrm{kgm}=9.81 \mathrm{Nm}=9.81 \mathrm{~J}$
Power	$1 \mathrm{kgm} / \mathrm{s}=9.81 \mathrm{Nm} / \mathrm{s}=9.81 \mathrm{~J} / \mathrm{s}=9.81 \mathrm{~W}$ Torque
	$1 \mathrm{ch}=75 \mathrm{kgm} / \mathrm{s}=75 \times 9.81=736 \mathrm{~W}$
	$1 \mathrm{mkgp}=9.81 \mathrm{Nm}$

Other information

Moment of inertia J (kgm²)

$$
J=m r^{2}=\frac{m D^{2}}{4}
$$

$\mathrm{m}=$ mass, in kg
$r=$ gyration radius (m)
$D=$ gyration diameter (m)

Inertia is sometimes expressed in mD^{2}, in which case the value of J can be obtained by dividing by 4 .

The moment of inertia J1 of a mass rotating at speed N1 connected to a shaft rotating at speed N 2 is calculated as follows:

$$
\mathrm{J} 1=\mathrm{J} 2\left(\frac{\mathrm{~N} 1}{\mathrm{~N} 2}\right)^{2}
$$

Gyration radius

- Solid cylinder

$$
r^{2}=\frac{R^{2}}{2}
$$

$$
R=\text { cylinder radius }
$$

$$
r=\text { gyration radius (or } r=0.707 R \text {) }
$$

- Hollow cylinder

$$
\begin{aligned}
& r^{2}=\frac{R 1^{2}+R 2^{2}}{2} \\
& \Rightarrow J=m r^{2}=m \frac{R 1^{2}+R 2^{2}}{2}
\end{aligned}
$$

Centrifugal force

$F=m \omega^{2} r$
In circular motion at constant speed ω :
F: N
$\mathrm{m}: \mathbf{k g}$
ω : rad/s
r: m

Technical appendices
Speed drive
Conversion tables for standard units

Conversion tables for standard units
$\left.\begin{array}{lllllll}\hline \begin{array}{l}\text { Length }\end{array} & \mathbf{m} & \text { in. } & \mathbf{f t} & \text { yd } \\ \hline \begin{array}{l}\text { Units } \\ 1 \text { metre (m) }\end{array} & 1 & 39.37 & 3.281 & 1.094\end{array}\right]$

Technical appendices
Speed drive
Conversion tables for standard units

Conversion tables for standard units
(continued)

Angular speed				
Units	rad/s	rpm		
1 radian per second (rad/s)	1	9.549		
1 revolution per minute (rpm)	0.105	1		
Linear speed				
Units	m/s	km/h	m/min	
1 metre per second (m/s)	1	3.6	60	
1 kilometre per hour (km/h)	0.2778	1	16.66	
1 metre per minute	0.01667	0.06	1	
Power				
Units	W	ch	HP	ft-lbf/s
1 watt (W)	1	1.3610^{-3}	1.34110^{-3}	0.7376
1 metric horsepower (ch)	736	1	0.9863	542.5
1 horsepower (HP)	745.7	1.014	1	550
$1 \mathrm{ft}-\mathrm{lbf} / \mathrm{s}$	1.356	1.84310^{-3}	$1.818{ }^{10}{ }^{-3}$	1
Force				
Units	N	kgf	Ibf	pdl
1 newton (N)	1	0.102	0.225	7.233
1 kilogram force (kgf)	9.81	1	2.205	70.93
1 pound weight (lbf)	4.448	0.453	1	32.17
1 poundal (pdl)	0.138	0.0141	0.0311	1
Energy-Work-Heat				
Units	J	cal	kWh	BTU
1 joule (J)	1	0.24	2.7810^{-7}	9.4810^{-4}
1 calorie (cal)	4.1855	1	1.16310^{-6}	3.96710^{-3}
1 kilowatt-hour (kWh)	3.610^{6}	8.6010^{5}	1	3412
1 British thermal unit (BTU)	1055	252	2.9310^{-4}	1
Moment of inertia				
Units	kg.m ${ }^{\mathbf{2}}$	lb.ft ${ }^{\text {2 }}$	lb.in ${ }^{\text {2 }}$	oz.in ${ }^{2}$
1 kilogram/square metre (kg.m²)	1	23.73	3417	54675
1 pound/square foot ($\mathrm{lb} . \mathrm{ft}^{2}$)	0.042	1	144	2304
1 pound/square inch (lb.in ${ }^{2}$)	2.92610	6.94410^{-3}	1	16
1 ounce/square inch (oz.in2)	1.82910	4.3410^{-4}	0.0625	1

Driving machines

Generally, the machine connected to the motor introduces a moment of inertia J (kg.m²) to which the moment of inertia of the motor, which may be significant, must be added. Calculating this total inertia enables transient states (starts and stops) to be analysed although it has no effect in steady state.

Circular motion

If the machine is being driven by a gearbox at speed N 1 , its moment of inertia at the motor rotating at speed N 2 is expressed using the formula:
J machine at the motor $=\mathrm{J}$ machine $\left(\frac{\mathrm{N} 1}{\mathrm{~N} 2}\right)^{2}$

Translatory motion

If the machine of mass $\mathrm{m}(\mathrm{kg})$ moves at linear speed $\mathrm{V}(\mathrm{m} / \mathrm{s})$, the moment of inertia at drive shaft level for the speed of rotation $\mathrm{w}(\mathrm{rad} / \mathrm{s})$ of the drive motor is expressed using the formula:

Starting

In order to start within a specific time t (changing from stop to angular speed ω), the average accelerating torque required (Ta) can be calculated if the moment of inertia J is known.

$$
\mathrm{Ta}(\mathrm{Nm})=\mathrm{J}(\mathrm{~kg} \mathrm{~m})^{2} \frac{\mathrm{~d} \omega(\mathrm{rad} / \mathrm{s})}{\mathrm{dt}(\mathrm{~s})}=\mathrm{J}(\mathrm{~kg} \mathrm{~m})^{2} \frac{2 \pi \mathrm{~N}(\mathrm{rpm})}{60 \mathrm{t}(\mathrm{~s})}
$$

The average accelerating torque Ta and the average resistive torque Tr due to the mechanics determine the average motor torque required during the starting time Ts.
Ts $=\mathrm{Tr}+\mathrm{Ta}$

Conversely, if an accelerating torque Ta is fixed, the starting time, for Ta constant, is determined by:

$$
\mathrm{t}=\frac{\mathrm{J} \omega}{\mathrm{Ta}}
$$

In practice:

- For d.c.
$\mathrm{Ts}=\mathrm{kTn}$ where $\mathrm{Tn}=$ nominal motor torque
$\mathrm{k}=$ motor overload coefficient. It is connected to the overload time and the initial temperature. Its value is usually between 1.2 and 1.9 (see the motor manufacturer's catalogue). In this zone, the armature current and the torque may be approximately proportional.
- For a.c.

Please refer to the overtorque and overcurrent characteristics given in the motor manufacturer's catalogue and to the operating characteristics given in this catalogue.

Stopping

If the machine is left alone when the supply voltage is disconnected, the deceleration torque will be equal to the resistive torque:

$$
\mathrm{Tdec}=\operatorname{Tr}=\mathrm{J} \frac{\mathrm{~d} \omega}{\mathrm{dt}}
$$

The motor will stop after a period of time (t) has elapsed which is related to the moment of inertia by means of the ratio:

$$
\mathrm{t}=\frac{\mathrm{J}}{\mathrm{Tr}} \omega
$$

if the value of Tr is more or less constant.

Driving machines (continued)

Rheostatic braking

If this stopping time is not acceptable, the deceleration torque must be increased by an electrical braking torque Tb such as:

$T \mathrm{dec}=\mathrm{Tr}+\mathrm{Tb}=\mathrm{J} \frac{\mathrm{d} \omega}{\mathrm{dt}}$

Braking may be rheostatic, but do remember that its effect will be proportional to the speed $(\mathrm{Tb}=\mathrm{k} \omega)$.

Regenerative braking

Braking may be regenerative, which requires the use of reversible drives. If current limiting is applied, the braking torque remains constant until a stop is reached.

The machine determines the size of the motor and the equipment, which must be suitable for both continuous and intermittent operation: frequent or fast stops, repeated load surges.

Direction of operation

The illustration opposite shows the 4 operating options (4 quadrants) in the torque/speed range.
They are summarised in the table below.

Rotation	Machine operating	Torque T	Speed N	Product T x N	Quadrant
$1{ }^{\text {st }}$ direction	as a motor	+	+	+	1
	as a generator	-	+	-	2
$2^{\text {nd }}$ direction	as a motor	-	-	+	3
	as a generator	+	-	-	4

As a general rule for all our products, applying a positive reference voltage will cause the motor to rotate in a clockwise direction ($1^{\text {stt }}$ quadrant) if the appropriate polarities are applied at the armature and at the field coil.

Torque and power

It is essential to determine the torque/speed characteristic of the various machines driven in order to select the correct motor/drive assembly.

In practice, all machines can be classified in 4 basic categories:

- constant torque (curve 1),
- constant power (curve 2),
- torque increasing linearly with the speed $\mathbf{T}=\mathbf{k N}$, the power P varies in accordance with the square of the speed (curve 3),
- torque increasing with the square of the speed $\mathbf{T}=\mathbf{k N} \mathbf{N}^{2}$, the power varies in accordance with the cube of the speed (curve 4).
Some machines may have operating characteristics which are the result of a combination of these different categories.
They are limited in number.

Technical appendices
 Speed drive
 Driving machines

Driving machines (continued)

Constant torque

With the exception of pumps, 90% of the machines used in industry are systems which operate at constant torque.
The torque required by the machine is not determined by the speed.
If the speed doubles, the power also doubles.
On starting, the starting overtorque is often much greater than the resistive torque which is introduced subsequently.

Constant power

For machines operating at constant power, the power required is not determined by the speed and the torque will vary so that it is inversely proportional to the speed. This type of operation is most often found in machine tools and in winding systems. Drilling, cutting, milling and turning applications are usually performed at constant power, which means that the torque must be high at low speed and low at high speed.
The motor must supply maximum torque at minimum speed, which usually requires the drive to be oversized in relation to the motor.

Torque increasing linearly with the speed

For these machines, the torque varies linearly with the speed, although the power will vary in accordance with the square of the speed.
This may be found in certain helical positive displacement pumps and mixers.

Torque increasing with the square of the speed

For these machines, the torque will vary in accordance with the square of the speed, although the power will vary in accordance with the cube of the speed.
This type of operation is found in centrifugal pumps and fans.
In some cases, the power required by a fan or an air blower will vary in accordance with the fifth power of the speed.
This characteristic must be taken into account when selecting the motor and associated drives.
In this configuration, when the speed doubles, the torque is multiplied by 4 and the power by 8 .

Operating range at constant torque

The table below shows how different types of machine behave during starting and in continuous operation.

Type of machine	Starting torque or overtorque during operation	Drive selection
Machine with ball or roller bearings	110 to 125%	Normal
Machine with axle bearings	130 to 150%	Normal
High friction conveyor or machine	160 to 250%	Oversize the drive and, if necessary, the motor
Machine with jerky operating cycle (press, machine with cams or connecting rod systems)	250 to 600%	Oversize the drive and the motor
High inertia, machine with flywheel or rotating masses (centrifuge)	-	The size of the drive will depend on the time required for starting and/or braking

Operating range at constant torque

The power ratings given in the catalogues generally correspond to the nominal speed of the motors. The cooling of self-cooled motors is directly linked to their speed and is therefore reduced as the motor slows down.
If continuous operation at nominal torque is required at low speed, you must select a motor with auxiliary forced cooling.

Torque limiting

The drives have a configurable function for limiting the current drawn and thus the torque applied by the motor. The maximum current value is I max. continuous, except in specific operating circumstances where this value may be exceeded temporarily. This method of limiting protects the motor and the machine being driven.
Some drives have two-state limitation which permits temporary overloads on starting up to 1.3 times the nominal torque (Tn).
Overloads are permitted on high-performance (e.g. static reversible) drives.

Examples of theoretical applications

Use the following information to determine the nominal power Pn of a motor:

$$
\begin{aligned}
& P^{2}=8 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \Delta \mathrm{n}=0 \ldots 3000 \mathrm{rpm} \text { in } 5 \mathrm{~s} \\
& \mathrm{Ts}=2 \mathrm{Tn} \\
& \mathrm{Tr}=0.1 \mathrm{Tn} \\
& \text { Answer } \quad \mathrm{Pn}=\mathrm{Tn} \omega \mathrm{n} \\
& \mathrm{Ts}=\mathrm{Tr}+\mathrm{Ta} \text { therefore } \mathrm{Ta}=\mathrm{Ts}-\mathrm{Tr}=2 \mathrm{Tn}-0.1 \mathrm{Tn}=1.9 \mathrm{Tn} \\
& \text { therefore } \mathrm{Tn}=\frac{\mathrm{Ta}}{1.9} \\
& \mathrm{Ta}=\mathrm{J} \frac{\mathrm{~d} \omega}{\mathrm{dt}}=\frac{\mathrm{PD}^{2}}{4} \times \frac{2 \pi \mathrm{~N}}{60 \times 5}=\frac{8}{4} \times \frac{2 \pi 3000}{300}=125.6 \mathrm{Nm} \\
& \text { therefore } \mathrm{Tn}=\frac{125.6}{1.9}=66.1 \mathrm{Nm} \\
& \mathrm{Pn}=66.1 \times \frac{2 \pi 3000}{60}=20757 \mathrm{~W} \text { or } 21 \mathrm{~kW} \\
& \text { Power of motor to be controlled }=\frac{P n}{\eta}=\frac{21}{0.85}=24.5 \mathrm{~kW} \text { with efficiency } \begin{array}{c}
\eta=0.8
\end{array} \\
& \text { Pn on shaft }=5 \mathrm{~kW} \\
& \mathrm{~N}=3000 \mathrm{rpm} \\
& \mathrm{Ts}=1.6 \mathrm{Tn} \\
& \mathrm{Tr}=0.8 \mathrm{Tn} \\
& \mathrm{~J} \text { machine at the motor }=0.2 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \mathrm{~J} \text { motor }=0.063 \mathrm{~kg} \mathrm{~m}^{2} \\
& \text { Answer J, total inertia }=0.2+0.063=0.263 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \omega \mathrm{n}=\frac{2 \pi \mathrm{~N}}{60}=314 \mathrm{rad} / \mathrm{s} \\
& \mathrm{Pn}=\mathrm{Tn} \omega \mathrm{n} \quad \text { or } \mathrm{Tn}=\frac{\mathrm{Pn}}{\omega \mathrm{n}}=\frac{5000}{314}=16 \mathrm{Nm} \\
& \mathrm{Ta}=\mathrm{Ts}-\mathrm{Tr}=1.6-0.8=0.8 \mathrm{Tn}=0.8 \times 16=12.8 \mathrm{Nm} \\
& \mathrm{Ta}=\mathrm{J} \frac{\mathrm{~d} \omega}{\mathrm{dt}} \quad \text { or } \mathrm{t}=\mathrm{J} \frac{\omega \mathrm{n}}{\mathrm{Ta}}=0.263 \times \frac{314}{12.8}=6.5 \mathrm{~s}
\end{aligned}
$$

Examples of theoretical applications (continued)

Determine the starting time of a wheel driven by a motor (assume that the entire mass is concentrated on the rim):

Use the following information to determine the braking time and the number of stopping revolutions:
Braking time $\mathrm{tb}=3 \mathrm{tM} \quad$ where $\mathrm{tM}=$ motor time
$\Theta a=t M \omega 0$
Braking torque $\mathrm{Tb}=3 \mathrm{Tn}$
$\mathrm{N}=1750 \mathrm{rpm}$
$\mathrm{Pn}=15 \mathrm{~kW}$
$P D^{2}=2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Answer:

$$
\begin{aligned}
& \mathrm{J}=\frac{P D^{2}}{4}=\frac{2}{4}=0.5 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \omega 0=\omega \mathrm{n}=\frac{2 \pi \mathrm{~N}}{60}=183 \mathrm{rad} / \mathrm{s} \\
& \mathrm{Tn}=\frac{\mathrm{Pn}}{\omega \mathrm{n}}=\frac{15000}{183}=82 \mathrm{Nm} \\
& \mathrm{~Tb}=3 \mathrm{Tn}=3 \times 82=246 \mathrm{Nm} \\
& \mathrm{tM}=\frac{\mathrm{J}}{\mathrm{~Tb}} \times \mathrm{d} \omega=\frac{0.5 \times 183}{246}=0.37 \mathrm{~s} \\
& \mathrm{ta}=3 \mathrm{tM}=3 \times 0.37 \neq 1 \mathrm{~s} \quad \text { where ta }=\text { stop time }
\end{aligned}
$$

Number of revolutions to stop:
$\Theta \mathrm{a}=\mathrm{tM} \omega \mathrm{o}=0.37 \times 183=67.77 \mathrm{rad}$

$$
\text { or } \frac{67.5}{2 \pi}=10 \text { revs }
$$

Use the following data to determine the $\mathrm{Tr}, \mathrm{Ts}, \mathrm{Tn}$ and Ta values of a machine:

```
A solid coil weighing 1500 kg rotating at 500 rpm , driven by a 2 kW motor rotating at 1800 rpm ,
time to implement \(=26 \mathrm{~s}\)
\(\mathrm{Ts}=2 \mathrm{Tn}\)
Check that the data is compatible
```



```
where \(K=\frac{R}{r}\)
```



```
\(\mathrm{Ta}=\mathrm{J} \frac{\mathrm{d} \omega}{\mathrm{dt}}=\frac{1.6 \times 190}{26}=11.7 \mathrm{Nm}\)
\(\mathrm{Tn}=\frac{\mathrm{Pn}}{\omega \mathrm{n}}=\frac{2000}{190}=10.5 \mathrm{Nm} \quad \omega \mathrm{n}=\frac{2 \pi \mathrm{~N}}{60}=190 \mathrm{rad} / \mathrm{s}\)
\(\mathrm{Ts}=2 \mathrm{Tn}=10.5 \times 2=21 \mathrm{Nm}\)
\(\mathrm{Tr}=\mathrm{Ts}-\mathrm{Ta}=21-11.7=9.3 \mathrm{Nm}\)
```


Basic characteristics

Depending on the speed, the torque for an asynchronous motor will vary in accordance with the square of the voltage.

$$
\begin{aligned}
& T= k o \frac{\phi^{2} R \omega g}{R^{2}+L^{2} \omega^{2} g^{2}} \text { (1) } \\
& \\
& g=\frac{\omega-\omega r}{\omega} \\
& L=k \phi^{2} \text { at } \omega g \text { constant } \\
& R=\text { rotor resistance } \\
& \phi=\text { flux } \\
& \omega g=\omega-\omega r \\
& \omega g=\text { angular speed of field in relation to rotor } \\
& \omega=\text { synchronous angular speed } \\
& \omega r=\text { rotor angular speed } \\
& g=\text { slip } \\
& p=\text { number of pairs of poles }
\end{aligned}
$$

Divide the second part by R ωg :

$$
T=k o \frac{\phi^{2}}{\frac{L^{2} \omega g}{R}+\frac{R}{\omega g}}
$$

The lower the stator voltage, the lower the torque for a given speed.
The torque increases, exceeds a maximum value and stops at synchronous speed NS. The maximum torque is defined based on (1).

The flux Φ will be proportional to U if the frequency remains constant.

$$
\mathrm{f}=\frac{\omega}{2 \pi} \text { therefore } \mathrm{T}=K \mathrm{U}^{2}
$$

The product of the two expressions with the new denominator is constant. The value of the denominator is minimum and that of the torque maximum if:

$$
\frac{R}{\omega g}=\frac{L^{2} \omega g}{R} \text { or } R^{2}=L^{2} \omega^{2} g^{2} \text { where } \omega g=\frac{R}{L}
$$

The maximum value becomes:

$$
\mathrm{T}=\mathrm{ko} \frac{\phi^{2}}{2 \mathrm{~L}}
$$

which is independent of $\omega \mathrm{g}$ and R .
The operation of the motor is stable above the speed corresponding to the maximum torque. Below this, the motor is unable to drive the load and stalls.

Technical appendices

Electronic speed drive
Cage asynchronous motors

Cage asynchronous motors (continued)

Basic characteristics (continued)

 Current
 - Is = starting current
 - In = nominal current
 Torque
 - Ts = starting torque
 - Tm = maximum torque
 - $\mathrm{Tn}=$ nominal torque
 Speed
 - Ns = synchronous speed
 $$
N s=\frac{60 f}{p}
$$

- $\mathrm{Nn}=$ nominal motor speed, corresponds to the speed of the rotor for the nominal motor load
gn = nominal slip
$\mathrm{gn}=\frac{\mathrm{Ns}-\mathrm{Nn}}{\mathrm{Ns}}$
$N n=N s(1-g n)$

Power

- mechanical
(useful output power on shaft)
$\mathrm{PU}=\mathrm{T} \omega$
- electrical
(electrical motor power)
$P E=\frac{P U}{\eta}$
$P E=U I \sqrt{3} \cos \varphi$
U = supply voltage
I = rms current drawn by the motor
$\operatorname{Cos} \varphi=$ power factor

The torque/speed characteristic of single cage asynchronous motors (see curves below) indicates a low starting torque.
Sins

To improve starting torque, modern motors have double cage or deep slot rotors. These include motors used with frequency inverters.
Resistive cage motors are sometimes used when the speed range is relatively limited and the torque increases with the square of the speed. This is the case with fans connected to grading controllers.

Operation at variable frequency
Supplied with power by a frequency inverter, the operating characteristics of a constant load asynchronous motor are as follows:

Below 5 Hz,

 $s \omega$ becomes dominant and the starting overtorque is limited naturally.Between 5 and 50 Hz , the supply voltage has a ratio $\mathrm{U}=\mathrm{kf}$.
Therefore, the flux remains constant for the same number of slipped revolutions $\omega \mathrm{g}$ and the torque does not change. It follows that the torque characteristics for all frequencies will remain parallel with those at 50 Hz .

Operating conditions
The drive or frequency inverter has been designed to continuously supply the nominal current of the standardised power motor to which it is connected. The curve provides a typical illustration of the useful torque (Tu) which a self-cooled motor can supply continuously for the various display speeds between fmin and fn.

fmin = between 1 and 5 Hz depending on the type of drive
fn = nominal output frequency: $50 / 60 \mathrm{~Hz}$
$\mathrm{Tm}=$ maximum torque
Tn = nominal motor torque
$\mathrm{Tu}=$ continuous useful torque

For operation in continuous operation, the recommended torque Tu may vary between 0.8 and 0.95 Tn depending on the type of drive.
For operation in transient operation, the maximum torque Tm may vary between
1.3 and 1.75 Tn depending on the type of drive.

In both cases, observe the operating guidelines for each product, which can be found in the catalogue.

Technical appendices

Electronic speed drive
Cage asynchronous motors

Operation at variable voltage

Squirrel cage asynchronous motor
$\mathrm{Un}=100 \%$
$\mathrm{U} 2=85 \%$
$\mathrm{U} 1=65 \%$

Resistive cage motor

Wound rotor asynchronous motor

R increased from R1 to R3
Curve 4

Application on a load whose resistive torque is parabolic (ventilation).

Reducing the stator voltage reduces the available torque and operation continues based on the characteristics for decreasing torque (curve 1).

For example, when changing from 1 to 3 , the speed drops from N maximum to N 2 (curve 2).

Above this, there is a risk of stalling because in 4, operation possible at Pi reaches the instability limit.

Even a slight increase in the value of Tr will cause the speed to drop. The motor torque Tm will fall below the resistive torque Tr, which will cause the speed drop to increase up to P3. At this point, Tm will return to a value equal to Tr and the motor will stabilise.

The possible operating conditions described above can be avoided by using tricks to obtain the maximum torque at a very low frequency.

For example, T max can be obtained for:

$$
\omega g=\frac{R}{L}
$$

In order to increase $\omega \mathrm{s}$, the angular speed of the fields in relation to the rotor, simply increase the rotor resistance R. This will cause an increase in slip at maximum torque, thus increasing the operational stability zone of the motor.

The most common methods are: - using a resistive cage motor (curve 3),

- using an appropriately ventilated wound rotor motor (curve 4) with external rotor resistors.

Curves $\operatorname{Tm}=f(N)$ as a function of the resistance R introduced into the rotor circuit and at constant stator voltage.

Pulse width modulator (PWM)

The motor is supplied with power by a variable amplitude and frequency voltage wave. Every half-wave comprises a series of pulses of fixed amplitude and variable width.

1 Fixed a.c./d.c. converter generally comprising one diode bridge
2 Filter comprising one capacitor bank
3 a.c./d.c. pulse width modulator which can be used as: a transistor commutator,

- a GTO commutator (thyristor with built-in extinction circuit),
- a thyristor commutator with an extinction circuit.

The shape of the voltage and curren signals in the motor phases is illustrated in the diagrams opposite.

This principle is used in Altivar drives, whose operating characteristics are described below by way of example.

In the drive, the PWM sinewave commutator comprises 6 transistors and 6 "freewheel" diodes.

Today, these components are IGBTs.
This inverter bridge has been designed to supply the motor with a variable amplitude and frequency three-phase a.c. voltage system.

The frequency variation in the voltage applied to the motor is obtained by varying the frequency of the control signals of transistors 1 to 6 .

In order to eliminate torque transients, a special type of transistor control can be used to eliminate very low order harmonics. The resulting current is close to the sine wave.

The voltage variation principle consists of modulating each base peak in order to obtain a voltage with an average value lower than that of the filtered d.c. voltage on each of the peaks.

Technical appendices

Electronic speed drive
Application examples

Selecting a drive on a conveyor belt

A conveyor belt whose load is more or less constant must operate in a speed range between 1 and 3, which corresponds to a motor speed of 480 to 1440 rpm . The resistive torque at the motor is 7 Nm .

Answer

P useful required by the conveyor $=T \omega n=\frac{T 2 \pi N}{60}=\frac{7 \times 6.28 \times 1440}{60}=1055 \mathrm{~W}$ P useful to be supplied by the motor $=\frac{P \text { motor }}{n \text { gearbox }}=\frac{1055}{0.9}=1180 \mathrm{~W}$

Determining the frequency at low speed

For $480 \mathrm{rpm}, \mathrm{f}=\frac{50}{3}=17 \mathrm{~Hz}$
On the torque curve (below), the derating to be taken into account is 0.8 .
Motor power $=\frac{1180}{0.8}=1475 \mathrm{~W}$

The motor to be selected is a standard motor with a power rating that is immediately above 1.5 kW and supplied with power by a 1.5 kW Altivar drive.

Selecting a drive on a fan

Control of a fan at variable speed with a maximum flow rate of $50,000 \mathrm{~m}^{3} / \mathrm{h}$ at a pressure of 245 pascals and a speed of 3000 rpm with efficiency of 0.68 .

Defining the motor

Maximum useful output power drawn by the fan:

$$
\begin{aligned}
& \mathrm{Pu}=\frac{\mathrm{Q} \times \mathrm{M} \times \mathrm{P}}{\eta} \\
& \mathrm{Pu}=\frac{50000 \times 1.293 \times 245}{3600 \times 0.68}=6470 \mathrm{~W}
\end{aligned}
$$

$\mathrm{Q}=$ air flow in $\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{M}=$ air mass in $\mathrm{kg} / \mathrm{m}^{3}$
$\mathrm{P}=$ pressure in pascal or $\mathrm{N} / \mathrm{m}^{2}$

Defining the drive

Using an Altivar frequency inverter to power the motor requires the intended speed to be derated by 0.9.

$$
\mathrm{Pm}=\frac{\mathrm{Pu}}{0.9}=\frac{6470}{0.9}=7188 \mathrm{~W}
$$

or a standardised 7.5 kW motor.
The drive selected should be the next highest rating, or, in this example, a 7.5 kW Altivar drive.

Types of current drawn by the drives

The currents drawn by the variable speed drives are not sinusoidal. The shape of these currents is illustrated in the curves below for different types of drive.

Single phase Altivar drive

Three-phase Altivar drive (with additional line choke)

These currents are therefore the result of the superimposition of a fundamental current (at the line frequency) and harmonic currents.

Technical appendices
 Electronic speed drive
 Harmonics

Harmonics (continued)

Disturbance caused by harmonics
 The presence of harmonics in supply systems can cause numerous problems:
 - Overloading and aging of reactive power compensation capacitors
 - Overloading of neutral conductors due to the accumulation of third order harmonics generated by single phase loads
 - Distortion of the supply voltage which may disturb sensitive loads
 - Overloading of distribution networks due to an increase in the rms current
 ■ Overloading, vibration and aging of alternators, transformers, motors
 - Interference on telephone lines

These types of disturbance may have serious consequences:
■ Premature aging of and irreparable damage to equipment

- Oversizing of installations
- Accidental tripping and downtime of installations

All of these consequences have a considerable economic impact: costs incurred due to the oversizing of equipment or reduced service life, additional energy losses and loss of productivity.

Standards and recommendations

The most important documents are as follows:

- IEC 61000-3-2

Electromagnetic compatibility; limits for harmonic current emissions (equipment input current ≤ 16 A per phase).
This standard applies to electrical and electronic devices designed to be connected to low-voltage public distribution supplies.
Limits for equipment with power ratings $>1 \mathrm{~kW}$ used in professional applications are currently being developed.
Variable speed drives are therefore not generally subject to the requirements of this standard.

- IEC 61000-3-4 technical report

Electromagnetic compatibility; limitation of emissions of harmonic currents in lowvoltage power supply systems for equipment with a rated current greater than 16 A The recommendations contained in this document are valid for electrical or electronic equipment with a nominal current greater than 16 A designed to be connected to 50 or 60 Hz public supplies with a maximum voltage equal to 240 V (single phase) or 600 V (three-phase).
The purpose of this technical report is to provide recommendations for the connection of equipment which generates harmonics.
Variable speed drives, when used with line chokes, generally comply with the limits prescribed in this document. If they do not, means of reducing harmonics must be used throughout the installation or a special agreement must be reached with the electricity supplier.

Electronic speed drive
Harmonics

Harmonics

(reduction of harmonic currents)

Line chokes

Line chokes are an inexpensive solution which can be applied to each device individually in order to reduce the harmonics emitted by Altivar drives.

The inductances are calculated so that the value of the rms current drawn by the drive will not exceed that of the nominal current of the motor connected to the line supply.

The inductance values are defined to create a voltage drop between 3% and 5% of the nominal line voltage. Values higher than this will cause loss of torque at 50 Hz .

The use of chokes is also recommended in particular under the following circumstances:

- Line supply with significant disturbance from other equipment (interference, overvoltages)

■ Line supply with voltage unbalance between phases $>1.8 \%$ of the nominal voltage

- Drive supplied with power by a line with very low impedance (in the vicinity of power transformers 10 times more powerful than the drive rating)
- Installation of a large number of frequency inverters on the same line
- Reduction of overload in capacitors, if the installation has a bank to correct the power factor
- Total power of all drives greater than 10% of the power of the installation

Filter solutions

The use of line chokes alone to reduce harmonic current emissions may not be enough to ensure the correct operation of the installation or to conform to strict harmonic distortion limits.

Filter solutions must also be provided if the power of all drives exceeds 20% to 30% of the subscribed demand of the installation.

A filter may be installed for a drive, a group of drives or an entire installation. Three types of filter are available:

- Passive filters
- Active sinewave compensators

■ Hybrid filters

Technical appendices

Electronic speed drive
Harmonics

Harmonics (continued)

Passive filters

The principle is based on "trapping" the harmonic currents in the L-C circuits connected on the harmonic orders to be eliminated. The filter is "stepped" - each step corresponds to a harmonic order. The fifth to seventh orders are most often filtered.

The filter is selected on the basis of the harmonics generated and the line characteristics.

This type of filter can also be used to reduce harmonic distortion already present in the electrical supply provided by the utility.

Technical appendices
Electronic speed drive
Harmonics

Harmonics (continued)

Active Sinewave ${ }^{\text {TM }}$ compensators

Connected in parallel to the load and the line, these compensators measure the harmonic currents emitted by the load and generate opposing harmonic currents (lca).

The advantages are:

- No dependency on the load or line characteristics
- Auto-adaptation

Is = Ich + Ica

Technical appendices

Electronic speed drive
Harmonics

Harmonics (continued)

Hybrid filters
 The two previous types of device can be combined within a single device, creating a hybrid filter. This new filter solution enables the benefits of existing solutions to be combined in order to cover a wide range of power and performance.
 - Passive filter:
 - reactive power compensation,
 \square high current filtering capacity.
 - Active compensator:
 \square filtering on a broad frequency band.

Nominal load
current of cage asynchronous motors

4-pole $50 / 60 \mathrm{~Hz}$ three-phase motors															
Power		$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	220 V	$\begin{aligned} & 230 \mathrm{~V} \\ & \text { (1) } \end{aligned}$	380 V	400 V	415 V	$\begin{aligned} & 433 / \\ & 440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & 500 / \\ & 525 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & (1) \\ & \hline \end{aligned}$	660 V	690 V	750 V	1000 V
KW	HP	A	A	A	A	A	A	A	A	A	A	A	A	A	A
0.37	0.5	2	1.8	2	1.03	0.98	-	0.99	1	1	0.8	0.6	-	-	0.4
0.55	0.75	3	2.75	2.8	1.6	1.5	-	1.36	1.4	1.21	1.1	0.9	-	-	0.6
0.75	1	3.8	3.5	3.6	2	1.9	2	1.68	1.8	1.5	1.4	1.1	-	-	0.75
1.1	1.5	5	4.4	5.2	2.6	2.5	2.5	2.37	2.6	2	2.1	1.5	-	-	1
1.5	2	6.8	6.1	6.8	3.5	3.4	3.5	3.06	3.4	2.6	2.7	2	-	-	1.3
2.2	3	9.6	8.7	9.6	5	4.8	5	4.42	4.8	3.8	3.9	2.8	-	-	1.9
3	-	12.6	11.5	-	6.6	6.3	6.5	5.77	-	5	-	3.8	3.5	-	2.5
-	5	-	-	15.2	-	-	-	-	7.6	-	6.1	-	-	-	3
4	-	16.2	14.5	-	8.5	8.1	8.4	7.9	-	6.5	-	4.9	4.9	-	3.3
5.5	7.5	22	20	22	11.5	11	11	10.4	11	9	9	6.6	6.7	-	4.5
7.5	10	28.8	27	28	15.5	14.8	14	13.7	14	12	11	6.9	9	-	6
9	-	36	32	-	18.5	18.1	17	16.9	-	13.9	-	10.6	10.5	-	7
11	15	42	39	42	22	21	21	20.1	21	18.4	17	14	12.1	11	9
15	20	57	52	54	30	28.5	28	26.5	27	23	22	17.3	16.5	15	12
18.5	25	70	64	68	37	35	35	32.8	34	28.5	27	21.9	20.2	18.5	14.5
22	30	84	75	80	44	42	40	39	40	33	32	25.4	24.2	22	17
30	40	114	103	104	60	57	55	51.5	52	45	41	54.6	33	30	23
37	50	138	126	130	72	69	66	64	65	55	52	42	40	36	28
45	60	162	150	154	85	81	80	76	77	65	62	49	46.8	42	33
55	75	200	182	192	105	100	100	90	96	80	77	61	58	52	40
75	100	270	240	248	138	131	135	125	124	105	99	82	75.7	69	53
90	125	330	295	312	170	162	165	146	156	129	125	98	94	85	65
110	150	400	356	360	205	195	200	178	180	156	144	118	113	103	78
132	-	480	425	-	245	233	240	215	-	187	-	140	135	123	90
-	200	520	472	480	273	222	260	236	240	207	192	152	-	136	100
160	-	560	520	-	300	285	280	256	-	220	-	170	165	150	115
-	250	-	-	600	-	-	-	-	300	-	240	200	-	-	138
200	-	680	626	-	370	352	340	321	-	281	-	215	203	185	150
220	300	770	700	720	408	388	385	353	360	310	288	235	224	204	160
250	350	850	800	840	460	437	425	401	420	360	336	274	253	230	200
280	-	-	-	-	528	-	-	-	-	-	-	-	-	-	220
315	-	1070	990	-	584	555	535	505	-	445	-	337	321	292	239
-	450	-	-	1080	-	-	-	-	540	-	432	-	-	-	250
355	-	-	1150	-	635	605	580	549	-	500	-	370	350	318	262
-	500	-	-	1200	-	-	-	-	600	-	480	-	-	-	273
400	-	-	1250	-	710	675	650	611	-	540	-	410	390	356	288
450	600	-	-	1440	-	-	-	-	720	-	576	-	-	-	320
500	-	-	1570	-	900	855	820	780	-	680	-	515	494	450	350
560	-	-	1760	-	1000	950	920	870	-	760	-	575	549	500	380
630	-	-	1980	-	1100	1045	1020	965	-	850	-	645	605	550	425
710	-	-	-	-	1260	1200	1140	1075	-	960	-	725	694	630	480
800	1090	-	-	-	1450	-	1320	1250	-	1100	-	830	790	-	550
900	1220	-	-	-	1610	-	1470	1390	-	1220	-	925	880	-	610

(1) NEC-compliant values (NEC - National Electrical Code).

These values have been provided by way of example and will vary depending on the type of motor, its polarity and the manufacturer.

Substituting starters
 ATS 23, ATS 23P
 Old/new equivalence tables (1)

These tables of equivalence can be used:

- to substitute devices on the basis of line voltage and motor power,
- to check the dimensions and position of connection terminals.

The solutions offered are based on the equivalence between simple applications. For complex applications, check compatibility in the corresponding catalogue.

Old starters

Reference	Dimensions HxLxD mm	Position of the connection terminals
ATS 23 or ATS 23P starters		
Line voltage 230... 415 V , 3-phase		
ATS 23 or ATS 23P		
U70N	$202 \times 171 \times 142$	top and bottom
D12N	$227 \times 171 \times 142$	top and bottom
D16N	$252 \times 171 \times 162$	top and bottom
D30N	$302 \times 171 \times 162$	top and bottom
D44N	$340 \times 238 \times 254$	top and bottom
D72N	$340 \times 238 \times 254$	top and bottom
C10N	$390 \times 238 \times 254$	top and bottom
C15N	$440 \times 238 \times 254$	top and bottom
C24N	$685 \times 374 \times 269$	bottom
C30N	$685 \times 374 \times 269$	bottom
C41N	$950 \times 401 \times 353$	bottom
C58N	$950 \times 401 \times 353$	bottom
C82N	$1012 \times 766 \times 353$	bottom
M12N	$1012 \times 766 \times 353$	bottom
Line voltage 208..0.500 V, 3-phase		
U70N	$202 \times 171 \times 142$	top and bottom
D12N	$227 \times 171 \times 142$	top and bottom
D16N	$252 \times 171 \times 162$	top and bottom
D30N	$302 \times 171 \times 162$	top and bottom
D44N	$340 \times 238 \times 254$	top and bottom
D72N	$340 \times 238 \times 254$	top and bottom
C10N	$390 \times 238 \times 254$	top and bottom
C15N	$440 \times 238 \times 254$	top and bottom
C24N	$685 \times 374 \times 269$	bottom
C30N	$685 \times 374 \times 269$	bottom
C41N	$950 \times 401 \times 353$	bottom
C58N	$950 \times 401 \times 353$	bottom
C82N	$1012 \times 766 \times 353$	bottom
M12N	$1012 \times 766 \times 353$	bottom

Replaced by

Reference	Dimensions	Position of the connection
	HxLxD	terminals

ATS 48 starters
Line voltage 230 .. 415 V , 3-phase

ATS 48D17Q	$275 \times 160 \times 190$	top and bottom
ATS 48D17Q	$275 \times 160 \times 190$	top and bottom
ATS 48D17Q	$275 \times 160 \times 190$	top and bottom
ATS 48D32Q	$275 \times 160 \times 190$	top and bottom
ATS 48D47Q	$275 \times 160 \times 190$	top and bottom
ATS 48D75Q	$290 \times 190 \times 235$	top and bottom
ATS 48C11Q	$290 \times 190 \times 235$	top and bottom
ATS 48C14Q	$340 \times 200 \times 265$	top and bottom
ATS 48C25Q	$380 \times 320 \times 265$	bottom
ATS 48C32Q	$380 \times 320 \times 265$	bottom
ATS 48C41Q	$670 \times 400 \times 300$	bottom
ATS 48C59Q	$670 \times 400 \times 300$	bottom
ATS 48M10Q	$890 \times 770 \times 315$	bottom
ATS 48M12Q	$890 \times 770 \times 315$	bottom
Line voltage 208..690 V, 3-phase		
ATS 48D17Y	$275 \times 160 \times 190$	top and bottom
ATS 48D17Y	$275 \times 160 \times 190$	top and bottom
ATS 48D22Y	$275 \times 160 \times 190$	top and bottom
ATS 48D32Y	$275 \times 160 \times 190$	top and bottom
ATS 48D47Y	$275 \times 160 \times 190$	top and bottom
ATS 48D75Y	$290 \times 190 \times 235$	top and bottom
ATS 48C11Y	$290 \times 190 \times 235$	top and bottom
ATS 48C17Y	$340 \times 200 \times 265$	top and bottom
ATS 48C25Y	$380 \times 320 \times 265$	bottom
ATS 48C32Y	$380 \times 320 \times 265$	bottom
ATS 48C48Y	$670 \times 400 \times 300$	bottom
ATS 48C66Y	$670 \times 400 \times 300$	bottom
ATS 48M10Y	$890 \times 770 \times 315$	bottom
ATS 48M12Y	$890 \times 770 \times 315$	bottom

[^34]

ATS 46

Old starters
$\left.\begin{array}{lll}\text { Reference } & \begin{array}{l}\text { Dimensions } \\ \text { H x L x D } \\ \text { mm }\end{array} & \begin{array}{l}\text { Position of the } \\ \text { connection } \\ \text { terminals }\end{array} \\ \text { ATS 46 starters } \\ \text { Line voltage 230..415 V, 3-phase }\end{array}\right]$.

ATS 48

Replaced by

Reference	Dimensions HxLxD mm	Position of the connection terminals
ATS 48 starters		
Line voltage 230..415 V, 3-phase		
ATS 48D17Q	$275 \times 160 \times 190$	top and bottom
ATS 48D22Q	$275 \times 160 \times 190$	top and bottom
ATS 48D32Q	$275 \times 160 \times 190$	top and bottom
ATS 48D38Q	$275 \times 160 \times 190$	top and bottom
ATS 48D47Q	$275 \times 160 \times 190$	top and bottom
ATS 48D62Q	$290 \times 190 \times 235$	top and bottom
ATS 48D75Q	$290 \times 190 \times 235$	top and bottom
ATS 48D88Q	$290 \times 190 \times 235$	top and bottom
ATS 48C11Q	$290 \times 190 \times 235$	top and bottom
ATS 48C14Q	$340 \times 200 \times 265$	top and bottom
ATS 48C17Q	$340 \times 200 \times 265$	top and bottom
ATS 48C21Q	$380 \times 320 \times 265$	top and bottom
ATS 48C25Q	$380 \times 320 \times 265$	top and bottom
ATS 48C32Q	$380 \times 320 \times 265$	top and bottom
ATS 48C41Q	$670 \times 400 \times 300$	top and bottom
ATS 48C48Q	$670 \times 400 \times 300$	top and bottom
ATS 48C59Q	$670 \times 400 \times 300$	top and bottom
ATS 48C66Q	$670 \times 400 \times 300$	top and bottom
ATS 48C79Q	$890 \times 770 \times 315$	top and bottom
ATS 48M10Q	$890 \times 770 \times 315$	top and bottom
ATS 48M12Q	$890 \times 770 \times 315$	top and bottom

Line voltage 208.. 690 V , 3-phase

ATS 48D17Y	$275 \times 160 \times 190$	top and bottom
ATS 48D22Y	$275 \times 160 \times 190$	top and bottom
ATS 48D32Y	$275 \times 160 \times 190$	top and bottom
ATS 48D38Y	$275 \times 160 \times 190$	top and bottom
ATS 48D47Y	$275 \times 160 \times 190$	top and bottom
ATS 48D62Y	$290 \times 190 \times 235$	top and bottom
ATS 48D75Y	$290 \times 190 \times 235$	top and bottom
ATS 48D88Y	$290 \times 190 \times 235$	top and bottom
ATS 48C11Y	$290 \times 190 \times 235$	top and bottom
ATS 48C14Y	$340 \times 200 \times 265$	top and bottom
ATS 48C17Y	$340 \times 200 \times 265$	top and bottom
ATS 48C21Y	$380 \times 320 \times 265$	top and bottom
ATS 48C25Y	$380 \times 320 \times 265$	top and bottom
ATS 48C32Y	$380 \times 320 \times 265$	top and bottom
ATS 48C41Y	$670 \times 400 \times 300$	top and bottom
ATS 48C48Y	$670 \times 400 \times 300$	top and bottom
ATS 48C59Y	$670 \times 400 \times 300$	top and bottom
ATS 48C66Y	$670 \times 400 \times 300$	top and bottom
ATS 48C79Y	$890 \times 770 \times 315$	top and bottom
ATS 48M10Y	$890 \times 770 \times 315$	top and bottom
ATS 48M12Y	$890 \times 770 \times 315$	top and bottom

ATS 4
(1) For additional information, please consult your Regional Sales Office.

Substituting variable speed drives

ATV 08, ATV 16
Old/new equivalence tables (1)

These tables of equivalence can be used:

- to substitute devices on the basis of line voltage and motor power,
- to check the dimensions and position of connection terminals.

The solutions offered are based on the equivalence between simple applications (Forward, Reverse, Speed reference for $0 \ldots 10 \mathrm{~V}$). For complex applications, check compatibility in the corresponding catalogue.

ATV 08

ATV 11

ATV 16

ATV 58

Old drives

Reference	\mathbf{P} motor kW	Dimensions $\mathbf{H} \mathbf{x L} \mathbf{L x} \mathbf{D}$ $\mathbf{m m}$	Position of the connection terminals
ATV 08 drives			
Line voltage 200...240 V, single phase			

ATV 16 drives (without application-specific option card)
Line voltage 230 V , single phase

(1) For additional information, please consult your Regional Sales Office.
(2) Drive supplied with fan.
(3) ATV 31 and ATV 58 drives do not have a separate control power supply.
(4) Additional EMC input filters, see page 2/47.

Substituting variable speed drives

ATV 18, ATV 66

Old/new equivalence tables (1)

ATV 18

ATV 66

ATV 58

Old drives

Reference	P motor kW	Dimensions HxLxD mm	Position of the connection terminals
ATV 18 drives			

Line voltage 230 V , single phase
ATV 18U09M2 $0.37 \quad 182 \times 112 \times 121$ bottom

ATV 18U18M2	0.75	$182 \times 112 \times 121$	bottom
ATV 18U29M2	1.5	$184 \times 149 \times 145$	bottom
ATV 18U41M2	2.2	$215 \times 185 \times 158$	bottom

Line voltage 230 V, 3-phase

ATV 18U54M2	3	$215 \times 185 \times 158$	bottom
ATV 18U72M2	4	$215 \times 185 \times 158$	bottom
ATV 18U90M2	5.5	$300 \times 210 \times 170$	bottom
ATV 18D12M2	7.5	$300 \times 210 \times 170$	bottom
Line voltage 400	V, 3-phase		

Replaced by

Reference	P motor	Dimensions $\mathrm{H} \times \mathrm{LxD}$	Position of the connection
	kW	mm	terminals

ATV 11 or ATV 31 drives (2)

Line voltage 200... 240 V , single phase

ATV 11HU09M2E	0,37	$142 \times 72 \times 125$	top and bottom
ATV 31HO37M2	0,37	$145 \times 72 \times 130$	bottom
ATV 11HU18M2E	0,75	$142 \times 72 \times 138$	top and bottom
ATV 31HO75M2	0,75	$145 \times 72 \times 140$	bottom
ATV 11HU29M2E	1,5	$142 \times 117 \times 156$	top and bottom
ATV 31HU15M2	1,5	$143 \times 105 \times 150$	bottom
ATV 11HU41M2E	2,2	$142 \times 117 \times 156$	top and bottom
ATV 31HU22M2	2,2	$184 \times 140 \times 150$	bottom

TV 31 UU2 202
Line voltage 200... 240 V , 3-phase (3)

ATV 31HU30M3X	3	$184 \times 140 \times 150$	bottom
ATV 31HU40M3X	4	$184 \times 140 \times 150$	bottom
ATV 31HU55M3X	5,5	$232 \times 180 \times 170$	bottom
ATV 31HU75M3X	7,5	$232 \times 180 \times 170$	bottom

Line voltage $380 \ldots 500 \mathrm{~V}$, 3-phase

ATV 31HO75N4	0,75	$143 \times 105 \times 150$	bottom
ATV 31HU15N4	1,5	$143 \times 105 \times 150$	bottom
ATV 31HU22N4	2,2	$184 \times 140 \times 150$	bottom
ATV 31HU30N4	3	$184 \times 140 \times 150$	bottom
ATV 31HU40N4	4	$184 \times 140 \times 150$	bottom
ATV 31HU55N4	5,5	$232 \times 180 \times 170$	bottom
ATV 31HU75N4	7,5	$232 \times 180 \times 170$	bottom
ATV 31HD11N4	11	$330 \times 245 \times 190$	bottom
ATV 31HD15N4	15	$330 \times 245 \times 190$	bottom

ATV 58 (2) and ATV 68 drives
Line voltage $200 \ldots 240 \mathrm{~V}, 3$-phase
High torque application

ATV 58HU29M2	1.5	$230 \times 150 \times 184$	bottom
ATV 58HU29M2	1.5	$230 \times 150 \times 184$	bottom
ATV 58HU41M2	2.2	$230 \times 150 \times 184$	bottom
ATV 58HU72M2	4	$286 \times 175 \times 184$	bottom
ATV 58HU90M2	5.5	$325 \times 230 \times 210$	bottom
ATV 58HD12M2	7.5	$325 \times 230 \times 210$	bottom
ATV 58HD16M2X	11	$550 \times 240 \times 283$	bottom
ATV 58HD23M2X	15	$550 \times 240 \times 283$	bottom
ATV 58HD33M2X	22	$650 \times 350 \times 304$	bottom
ATV 58HD46M2X	30	$650 \times 350 \times 304$	bottom

Line voltage $380 \ldots 500 \mathrm{~V}, 3$-phase
High torque application

ATV 58HU18N4	0.75	$230 \times 150 \times 184$	bottom
ATV 58HU29N4	1.5	$230 \times 150 \times 184$	bottom
ATV 58HU41N4	2.2	$230 \times 150 \times 184$	bottom
ATV 58HU54N4	3	$286 \times 175 \times 184$	bottom
ATV 58HU72N4	4	$286 \times 175 \times 184$	bottom
ATV 58HU90N4	5.5	$286 \times 175 \times 184$	bottom
ATV 58HD12N4	7.5	$325 \times 230 \times 210$	bottom
ATV 58HD16N4	11	$325 \times 230 \times 210$	bottom
ATV 58HD23N4	15	$415 \times 230 \times 210$	bottom
ATV 58HD33N4	22	$550 \times 240 \times 283$	bottom
ATV 58HD46N4	30	$550 \times 240 \times 283$	bottom
ATV 58HD54N4	37	$650 \times 350 \times 304$	bottom
ATV 58HD64N4	45	$650 \times 350 \times 304$	bottom
ATV 58HD79N4	55	$650 \times 350 \times 304$	bottom
ATV 68C10N4	75	$600 \times 346 \times 355$	bottom
ATV 68C13N4	90	$1200 \times 396 \times 425$ bottom	
ATV 68C15N4	110	$1200 \times 396 \times 425$ bottom	
ATV 68C19N4	132	$1200 \times 396 \times 425$ bottom	
ATV 68C23N4	160	$1300 \times 705 \times 425$ bottom	
ATV 68C28N4	200	$1300 \times 705 \times 425$ bottom	
ATV 68C33N4	250	$1300 \times 705 \times 425$ bottom	

(1) For additional information, please consult your Regional Sales Office.
(2) ATV 31 and ATV 58 drives do not have a separate control power supply.
(3) Additional EMC input filters, see page 2/47.

Substituting variable speed drives

ATV 66
Old/new equivalence tables (1)

ATV 66

ATV 38

ATV 68

These tables of equivalence can be used:

- to substitute devices on the basis of line voltage and motor power,
- to check the dimensions and position of connection terminals.

The solutions offered are based on the equivalence between simple applications (Forward, Reverse, Speed reference for $0 \ldots 10 \mathrm{~V}$). For complex applications, check compatibility in the corresponding catalogue.

Old drives

Reference	P motor kW	Dimensions $\mathbf{H \times L \times D}$ $\mathbf{m m}$	Position of the connection terminals
ATV 66 drives			
Line voltage 230 Variable torque			
ATphase			
ATV 66U41M2	0.75	$295 \times 200 \times 165$	bottom
ATV 66U41M2	1.5	$295 \times 200 \times 165$	bottom
ATV 66U41M2	2.2	$295 \times 200 \times 165$	bottom
ATV 66U41M2	3	$295 \times 200 \times 165$	bottom
ATV 66U72M2	5.5	$325 \times 234 \times 195$	bottom
ATV 66U90M2	7.5	$325 \times 234 \times 195$	bottom
ATV 66D12M2	11	$415 \times 234 \times 245$	bottom
ATV 66D23M2	15	$600 \times 240 \times 280$	bottom
ATV 66D23M2	18.5	$600 \times 240 \times 280$	bottom
ATV 66D33M2	30	$600 \times 240 \times 280$	bottom
ATV 66D46M2	37	$650 \times 350 \times 300$	bottom

Line voltage 400 V , 3-phase
Variable torque application

ATV 66U41N4	0.75	$295 \times 200 \times 165$	bottom
ATV 66U41N4	1.5	$295 \times 200 \times 165$	bottom
ATV 66U41N4	2.2	$295 \times 200 \times 165$	bottom
ATV 66U41N4	3	$295 \times 200 \times 165$	bottom
ATV 66U54N4	4	$295 \times 200 \times 165$	bottom
ATV 66U72N4	5.5	$295 \times 200 \times 165$	bottom
ATV 66U90N4	7.5	$325 \times 234 \times 195$	bottom
ATV 66D12N4	11	$325 \times 234 \times 195$	bottom
ATV 66D16N4	15	$415 \times 234 \times 245$	bottom
ATV 66D23N4	18.5	$415 \times 234 \times 245$	bottom
ATV 66D33N4	22	$600 \times 240 \times 280$	bottom
ATV 66D33N4	30	$600 \times 240 \times 280$	bottom
ATV 66D46N4	37	$600 \times 240 \times 285$	bottom
ATV 66D54N4	45	$650 \times 350 \times 300$	bottom
ATV 66D64N4	55	$650 \times 350 \times 300$	bottom
ATV 66D79N4	75	$650 \times 350 \times 300$	bottom
ATV 66C10N4	90	$980 \times 585 \times 392$	bottom
ATV 66C13N4	110	$980 \times 585 \times 392$	bottom
ATV 66C15N4	132	$980 \times 585 \times 392$	bottom
ATV 66C23N4	160	$1127 \times 960 \times 507$	bottom
ATV 66C23N4	200	$1127 \times 960 \times 507$	bottom
ATV 66C28N4	220	$1127 \times 960 \times 507$	bottom
ATV 66C31N4	250	$1127 \times 960 \times 207$	bottom

Replaced by

Reference	P motor	Dimensions $\mathrm{H} \times \mathrm{LxD}$	Position of the connection
	kW	mm	terminals

ATV 38 and ATV 68 drives
Line voltage $200 . . .240 \mathrm{~V}$, 3-phase
Variable torque application

ATV 38HU29M2	0.75	$230 \times 150 \times 184$	bottom
ATV 38HU29M2	1.5	$230 \times 150 \times 184$	bottom
ATV 38HU41M2	2.2	$230 \times 150 \times 184$	bottom
ATV 38HU72M2	3	$286 \times 175 \times 184$	bottom
ATV 38HU90M2	5.5	$286 \times 175 \times 184$	bottom
ATV 38HD12M2	7.5	$325 \times 230 \times 210$	bottom
ATV 38HD16M2X	11	$550 \times 240 \times 283$	bottom
ATV 38HD16M2X	15	$550 \times 240 \times 283$	bottom
ATV 38HD28M2X	18.5	$550 \times 350 \times 304$	bottom
ATV 38HD33M2X	30	$650 \times 350 \times 304$	bottom
ATV 38HD46M2X	37	$650 \times 350 \times 304$	bottom

Line voltage $380 . . .500 \mathrm{~V}$, 3 -phase
Variable torque application
$\begin{array}{llll}\text { ATV 38HU18N4 } & 0.75 & 230 \times 150 \times 184 & \text { bottom }\end{array}$
ATV 38HU29N4 $\quad 15 \quad 230 \times 150 \times 184$ bottom

ATV 38HU41N4	2.2	$230 \times 150 \times 184$	bottom

ATV 38HU54N4	3	$286 \times 175 \times 184$	bottom
ATV 38HU72N4	4	$286 \times 175 \times 184$	bottom

ATV 38HU9ON4	5.5	$286 \times 175 \times 184$	bottom

ATV 38HD12N4	7.5	$325 \times 230 \times 210$	bottom

ATV 38HD16N4 $11 \quad 325 \times 230 \times 210$ bottom

| ATV 38HD23N4 | 15 | $415 \times 230 \times 210$ | bottom |
| :--- | :--- | :--- | :--- | :--- |

ATV 38HD28N4 $22 \quad 550 \times 240 \times 283$ bottom
ATV 38HD28N4 $22 \quad 550 \times 240 \times 283$ bottom

ATV 38HD33N4	30	$550 \times 240 \times 283$	bottom
ATV 38HD46N4	37	$550 \times 240 \times 283$	bottom

ATV 38HD46N4 $\quad 37 \quad 550 \times 240 \times 283$ bottom
ATV 38HD54N4 $45 \quad 650 \times 350 \times 304$ bottom
ATV 38HD64N4 $55 \quad 650 \times 350 \times 304$ bottom
ATV 38HD79N4 $75 \quad 650 \times 350 \times 304$ bottom

ATV 68C10N4	90	$600 \times 346 \times 355$	bottom
ATV 68C13N4	110	$1200 \times 396 \times 425$	bottom

ATV 68C15N4 $\quad 132 \quad 1200 \times 396 \times 425$ bottom

ATV 68C19N4	160	$1200 \times 396 \times 425$	bottom

ATV 68C23N4	200	$1300 \times 705 \times 425$	bottom
ATV 68C28N4	250	$1300 \times 705 \times 425$	bottom

ATV 68C28N4 $250 \quad 1300 \times 705 \times 425$ bottom

[^35]
Substituting variable speed drives

ATV 452

Old/new equivalence tables (1)

	Old drives				Replaced by				
	Reference	$\begin{aligned} & \text { P } \\ & \text { motor } \end{aligned}$ kW	Dimensions HxLxD mm	Position of the connection terminals	Reference	$\begin{aligned} & \mathbf{P} \\ & \text { motor } \end{aligned}$ kW	Dimensions HxLxD mm	Position of the connection terminals	
C	ATV 452 drives				ATV 31 (2), ATV 38, ATV 58 or ATV 68 drives				
咊	Line voltage 230 V , 3-phase Constant torque application				Line voltage 200...230/240 V, 3-phase				
$\frac{\text { प- }{ }_{\text {SERIE }} 452}{}$	ATV 452075M	0.75	$382 \times 239 \times 170$	top and bottom	ATV 58HU29M2 ATV 31HU15M3X	$\begin{aligned} & 1,5 \\ & 1,5 \end{aligned}$	$\begin{aligned} & 230 \times 150 \times 184 \\ & 143 \times 105 \times 130 \end{aligned}$	bottom	
	ATV 452U22M	2.2	$382 \times 239 \times 170$	top and bottom	ATV 58HU41M2 ATV 31HU22M3X	$\begin{aligned} & 2,2 \\ & 2,2 \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \times 150 \times 184 \\ & 143 \times 105 \times 130 \end{aligned}$	bottom	
	ATV 452U22M	4	$402 \times 239 \times 192$	top and bottom	ATV 31HU40M3X ATV 58HU72M2	4	$184 \times 140 \times 150$	bottom bottom	
						4	$286 \times 175 \times 184$		
	ATV 452U22M	5.5	$405 \times 234 \times 268$	top and bottom	ATV 31HU55M3X ATV 58HU90M2	5,5	$232 \times 180 \times 170$	bottom bottom	
						5,5	$325 \times 230 \times 210$		
	ATV 452U22M	7.5	$442 \times 239 \times 192$	top and bottom	ATV 31HU75M3X	7,5	$232 \times 180 \times 170$	bottom bottom	
					ATV 58HD12M2	7,5	$325 \times 230 \times 210$		
ATV 452	ATV 452D22M	11	$555 \times 234 \times 268$	top and bottom	ATV 31HD11M3X	11	$330 \times 245 \times 190$	bottom	
	ATV 452D22M	15	$595 \times 234 \times 268$	top and bottom	ATV 31HD15M3X	15	$330 \times 245 \times 190$	bottom	
	Line voltage 400 V , 3-phase Constant torque application				Line voltage $380 . . .500 \mathrm{~V}$, 3 -phase High torque application				
	ATV 452075M	0.75	$382 \times 239 \times 170$	top and bottom	ATV 31HO75N4	0,75	$143 \times 105 \times 150$	bottom	
					ATV 58HU18N4	0,75	$230 \times 150 \times 184$	bottom	
	ATV 452U15	1.5	$382 \times 239 \times 170$	top and bottom	ATV 31HU15N4	1,5	$143 \times 105 \times 150$	bottom bottom	
					ATV 58HU29N4	1,5	$230 \times 150 \times 184$		
	ATV 452U22	2.2	$402 \times 239 \times 192$	top and bottom	ATV 31HU22N4	2,2	$184 \times 140 \times 150$	bottom	
					ATV 58HU41N4	2,2	$230 \times 150 \times 184$	bottom	
	ATV 452U30	3	$402 \times 239 \times 192$	top and bottom	ATV 31HU30N4	3	$184 \times 140 \times 150$	bottom bottom	
					ATV 58HU54N4	3	$286 \times 175 \times 184$		
	ATV 452U40	4	$402 \times 239 \times 192$	top and bottom	ATV 31HU40N4	4	$184 \times 140 \times 150$	bottom bottom	
					ATV 58HU72N4	4	$286 \times 175 \times 184$		
	ATV 452U55	5.5	$442 \times 239 \times 192$	top and bottom	ATV 31HU55N4	5,5	$232 \times 180 \times 170$	bottom	
					ATV 58HU90N4	5,5	$286 \times 175 \times 184$	bottom	
ATV 38	ATV 452U75	7.5	$405 \times 234 \times 268$	top and bottom	ATV 31HU75N4	7,5	$232 \times 180 \times 170$	bottom	
					ATV 58HD12N4	7,5	$325 \times 230 \times 210$	bottom	
	ATV 452D11	11	$555 \times 234 \times 268$	top and bottom	ATV 31HD11N4	11	$330 \times 245 \times 190$	bottom	
					ATV 58HD16N4	11	$325 \times 230 \times 210$	bottom	
	ATV 452D15	15	$595 \times 234 \times 268$	top and bottom	ATV 31HD15N4	15	$330 \times 245 \times 190$	bottom bottom	
					ATV 58HD23N4	15	$415 \times 230 \times 210$		
	ATV 452D22	22	$595 \times 234 \times 268$ top and bottom		ATV 58HD33N4 ATV 58HD46N4	22	$550 \times 240 \times 283$	bottom	
	ATV 452D30	30	$880 \times 234 \times 268$ top and bottom			30	$550 \times 240 \times 283$ bottom		
	ATV 452D37	37	$860 \times 484 \times 365$ top and bottom		ATV 58HD54N4	37	$650 \times 350 \times 304$ bottom		
	ATV 452D55	55	$1040 \times 484 \times 365$ top and bottom		ATV 58HD79N4	55	$650 \times 350 \times 304$ bottom		
	ATV 452D75	75	$1188 \times 595 \times 365$ top and bottom		ATV 68C10N4	75	$600 \times 346 \times 355$	bottom	
ATV 58	ATV 452D90	90	$1188 \times 595 \times 365$ top and bottom			90	$1200 \times 396 \times 425$	bottom	
	Line voltage 400 V , 3-phase Variable torque application				Line voltage $380 . . .500 \mathrm{~V}$, 3-phase High torque and standard torque application (ATV 31), variable torque application (ATV 38)				
	ATV 452VU11	1.1	$382 \times 239 \times 170$	top and bottom	ATV 31HU15N4 ATV 38HU29N4	$\begin{aligned} & 1,5 \\ & 1,5 \end{aligned}$	$\begin{aligned} & 143 \times 105 \times 150 \\ & 230 \times 150 \times 184 \end{aligned}$	bottom bottom	
	ATV 452VU15	1.5	$382 \times 239 \times 170$ top and bottom		ATV 31HU15N4 ATV 38HU29N4	$\begin{aligned} & 1,5 \\ & 1,5 \end{aligned}$	$\begin{aligned} & 143 \times 105 \times 150 \\ & 230 \times 150 \times 184 \end{aligned}$	bottom bottom	
	ATV 452VU30	3	$402 \times 239 \times 192$ top and bottom		ATV 31HU30N4 ATV 38HU54N4	3	$\begin{aligned} & 184 \times 140 \times 150 \\ & 286 \times 175 \times 184 \end{aligned}$	bottom bottom	
	ATV 452VU40	4	$402 \times 239 \times 192$ top and bottom		ATV 31HU40N4 ATV 38HU72N4	4	$184 \times 140 \times 150$	bottom	
					4	$286 \times 175 \times 184$	bottom		
	ATV 452VU55	5.5	$402 \times 239 \times 192$ top and bottom			ATV 31HU55N4 ATV 38HU90N4	5,5	$232 \times 180 \times 170$	bottom
					5,5		$286 \times 175 \times 184$	bottom	
	ATV 452VD11	11	$405 \times 234 \times 268$ top and bottom		ATV 31HD11N4 ATV 38HD16N4	11	$330 \times 245 \times 190$	bottom	
Altivar 68 0-					11	$325 \times 230 \times 210$	bottom		
	ATV 452VD15	15	$595 \times 234 \times 268$ top and bottom			ATV 31HD15N4	15	$330 \times 245 \times 190$	bottom
					ATV 38HD23N4	15	$415 \times 230 \times 210$	bottom	
TV	ATV 452VD22	22	$595 \times 234 \times 268$	top and bottom	ATV 38HD28N4	22	$550 \times 240 \times 283$	bottom	
ATV 68	ATV 452VD37	37	$880 \times 234 \times 268$	top and bottom	ATV 38HD46N4	37	$550 \times 240 \times 283$	bottom	
	ATV 452VD45	45	$880 \times 484 \times 365$	top and bottom	ATV 38HD54N4	45	$650 \times 350 \times 304$	bottom	
	ATV 452VD75	75	$1040 \times 484 \times 365$	top and bottom	ATV 38HD79N4	75	$650 \times 350 \times 304$	bottom	
	ATV 452VD90	90	$1188 \times 595 \times 365$	top and bottom	ATV 68C10N4	90	$600 \times 346 \times 355$	bottom	
	ATV 452VC11	110	$1188 \times 595 \times 365$	top and bottom	ATV 68C13N4	110	$1200 \times 396 \times 425$	bottom	
	(1) For additiona (2) Additional EM	ormation input filters	please consult s, see page $2 / 4$	your Regional Sa	Office.				

6 - Services

Technical information

■ Protective treatment according to climatic environment page $6 / 2$
■ Product standards and approvals . page 6/4
■ Degrees of protection provided by enclosures page 6/6
Index
■ Product reference index

Schneider Electric worldwide

- Addresses

Technical information

Protective treatment

according to climatic environment

Depending on the climatic and environmental conditions in which the equipment is placed, Schneider Electric can offer specially adapted products to meet your requirements.

In order to make the correct choice of protective finish, two points should be remembered :

- The prevailing climate of the country is never the only criterion.
- Only the atmosphere in the immediate vicinity of the equipment need be considered.

All climates treatment "TC"

This is the standard treatment for the Telemecanique brand equipment and is suitable for the vast majority of applications.
It is the equivalent of treatments described as "Klimafest", "Climateproof", "Total tropicalisation" or "Super tropicalisation" and meets the same requirements, in particular :

- Publication UTE C 63-100 (method I), successive cycles of humid heat at :
$+40^{\circ} \mathrm{C}$ and 95% relative humidity.
- DIN 50016 - Variations of ambient conditions within a climatic chamber :
$+23^{\circ} \mathrm{C}$ and 83% relative humidity,
$+40^{\circ} \mathrm{C}$ and 92% relative humidity.
It also meets the requirements of the following marine classification authorities : BV-LROS-GL-DNV-RINA.

Characteristics

- Steel components are usually treated with zinc chromate and, when they have a mechanical function, they may also be painted.
- Insulating materials are selected for their high electrical, dielectric and mechanical characteristics.
- Metal enclosures have a stoved paint finish, applied over a primary phosphate protective coat, or are galvanised (e.g. some prefabricated busbar trunking components).

Limits for use of "TC" (All climates) treatment

- "TC" treatment is suitable for the following temperatures and humidity :

Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	20	40	50
Relative humidity	$(\%)$	95	80	50

- It may also be used where the above limits are only exceeded accidentally or for very short periods, or where temperature variations are not sufficient or fast enough to cause heavy condensation or dripping water on the equipment.
"TC" treatment is therefore suitable for all latitudes, including tropical and equatorial regions, where the equipment is mounted in normal, ventilated industrial locations. Being sheltered from external climatic conditions, temperature variations are small, the risk of condensation is minimised and the risk of dripping water is virtually non-existent.

Extension of use of "TC" (All climates) treatment

In cases where the humidity around the equipment exceeds the conditions described above, where the equipment, in tropical regions, is mounted outdoors, or where it is placed in a very humid location (laundries, sugar refineries, steam rooms, etc.), "TC" treatment can still be used if the following precautions are taken :

- The enclosure in which the equipment is mounted must be protected with a "TH" finish (see next page) and must be well ventilated to avoid condensation and dripping water (e.g. enclosure base plate mounted on spacers).
- Components mounted inside the enclosure must have a "TC" finish.
- If the equipment is to be switched off for long periods, a heater must be provided (0.2 to 0.5 kW per square decimetre of enclosure), switched on automatically when the equipment is turned off. This heater keeps the inside of the enclosure at a temperature slightly higher than the outside surrounding temperature, thereby avoiding any risk of condensation and dripping water (the heat produced by the equipment itself in normal running is sufficient to provide this temperature difference).
- For pilot devices, the use of "TC" treatment can be extended to outdoor use provided the enclosure is made of light alloys, zinc alloys or plastic material. In this case, it is essential to ensure that the degree of protection against penetration of liquids and solid objects is suitable for the applications involved.

Technical information

Protective treatment
according to climatic environment

"TH" treatment for hot and humid environments

This treatment is for hot and humid atmospheres where installations are subject to condensation, dripping water and the risk of fungi.

Plastic insulating components are also resistant to attacks from insects such as termites and cockroaches. These properties have led to this treatment being described as "Tropical Finish", but this does not mean that all equipment installed in tropical and equatorial regions must systematically have undergone "TH" treatment. On the other hand, certain operating conditions in temperate climates may well require the use of "TH" treated equipment (see limitations for use of "TC" treatment).

Special characteristics of "TH" treatment

- All insulating components are made of materials which are either resistant to fungi or treated with a fungicide, and which have increased resistance to creepage (Standards IEC 112, NF C 26-220, DIN 5348).
- Metal enclosures receive a top-coat of stoved, fungicidal paint, applied over a rust inhibiting undercoat. Components with "TH" treatment may be subject to a surcharge (1). Please consult your Regional Sales Office.
(1) A large number of the Telemecanique brand products are "TH" treated as standard and are, therefore, not subject to a surcharge.

Location	Environmental conditions	Duty cycle	Internal heating of enclosure when not in use	Type of climate	Protective trea of components	atment of enclosure
Indoors	No dripping water or condensation	Unimportant	Unnecessary	Unimportant	"TC"	"TC"
	Presence of dripping water or condensation	Frequent switching off for periods of more than 1 day	No	Temperate Equatorial	$\begin{array}{\|c} \hline \text { "TC" } \\ \hline \text { "TH" } \\ \hline \end{array}$	$\begin{aligned} & \text { "TH" } \\ & \hline \text { "TH" } \\ & \hline \end{aligned}$
			Yes	Unimportant	"TC"	"TH"
		Continuous	Unnecessary	Unimportant	"TC"	"TH"
Outdoors (sheltered)	No dripping water or dew	Unimportant	Unnecessary	Temperate Equatorial	$\begin{array}{\|c} \hline \text { "TC" } \\ \hline \text { "TH" } \\ \hline \end{array}$	$\begin{aligned} & \text { "TC" } \\ & \hline \text { "TH" } \end{aligned}$
Exposed outdoors or near the sea	Frequent and regular presence of dripping water or dew	Frequent switching off for periods of more than 1 day	No	Temperate Equatorial	$\begin{aligned} & \text { "TC" } \\ & \hline \text { "TH" } \end{aligned}$	$\begin{gathered} \text { "TH" } \\ \hline \text { "TH" } \end{gathered}$
			Yes	Unimportant	"TC"	"TH"
		Continuous	Unnecessary	Unimportant	"TC"	"TH"

These treatments cover, in particular, the applications defined by methods I and II of guide UTE C 63-100.

Special precautions for electronic equipment

Electronic products always meet the requirements of "TC" treatment. A number of them are "TH" treated as standard.
Some electronic products (for example : programmable controllers, flush mountable controllers CCX and flush mountable operator terminals XBT) necessitate the use of an enclosure providing a degree of protection to at least IP 54, as defined by the standards IEC 664 and NF C 20 040, for use in industrial applications or in environmental conditions requiring a "TH" treatment.

These electronic products, including flush mountable products, must have a degree of protection to at least IP 20 (either provided by the enclosure itself or following installation) for restricted access locations where the degree of pollution does not exceed 2 (a test booth not containing machinery or other dust producing activities, for example).

Special treatments

For highly corrosive industrial environments, Schneider Electric is able to offer special protective treatments. Please consult your Regional Sales Office.

Technical information

Product standards and approvals

Standardisation

Conformity to standards

The Telemecanique brand products satisfy, in the majority of cases, national (for example: BS in Great Britain, NF in France, DIN in Germany), European (for example: CENELEC) or international (IEC) standards. These product standards precisely define the performance of the designated products (such as IEC 60947 for low voltage equipment).
When used correctly, as designated by the manufacturer and in accordance with regulations and correct practices, these products will allow assembled equipment, machine systems or installations to conform to their appropriate standards (for example: IEC 60204, relating to electrical equipment used on industrial machines).
Schneider Electric is able to provide proof of conformity of its production to the standards it has chosen to comply with, through its quality assurance system.
On request, and depending on the situation, Schneider Electric can provide the following:

- a declaration of conformity,
- a certificate of conformity (ASEFA/LOVAG),
- an approval certificate or agreement, in the countries where this procedure is required or for particular specifications, such as those existing in the merchant navy.

Code	Standards body		Country
	Name	Abbreviation	
ANSI	American National Standards Institute	ANSI	USA
BS	British Standards Institution	BSI	Great Britain
CEI	Comitato Elettrotecnico Italiano	CEI	Italy
DIN/VDE	Verband Deutscher Electrotechniker	VDE	Germany
EN	Comité Européen de Normalisation Electrotechnique	CENELEC	Europe
GOST	Gosudarstvenne Komitet Standartov	GOST	Russia
IEC	International Electrotechnical Commission	IEC	Worldwide
JIS	Japanese Industrial Standard	JISC	Japan
NBN	Institut Belge de Normalisation	IBN	Belgium
NEN	Nederlands Normalisatie Institut	NNI	Netherlands
NF	Union Technique de lElectricité	UTE	France
SAA	Standards Association of Australia	SAA	Australia
UNE	Asociacion Española de Normalizacion y Certificacion	AENOR	Spain

European EN standards

These are technical specifications established in conjunction with, and with approval of, the relative bodies within the various CENELEC member countries (European Union, European Free Trade Association and many central and eastern European countries having «member» or «affiliated» status). Arrived at through the principle of consensus, the European standards are the result of a weighted majority vote. Such adopted standards are then integrated into the national collection of standards, and contradictory national standards are withdrawn.
The European standards are now incorporated within the French standards and carry the prefix NF EN. Under the "Technical Union of Electricity" (UTE), the French version of the corresponding European standard carries a double notation: European reference (NF EN ...) and classification (C ...).
Therefore, the standard NF EN 60947-4-1 relating to motor contactors and starters, effectively constitutes the French version of the European standard EN 60947-4-1 and carries the UTE classification C 63-110.
This standard is identical to the British standard BS EN 60947-4-1 or the German standard DIN EN 60947-4-1.
Whenever reasonably practical, European standards reflect the international standards (IEC).
With regard to automation system components and distribution equipment, in addition to complying with the requirements of French NF standards, Telemecanique brand components conform to the standards of all other major industrial countries.

Regulations

European Directives

Opening up of European markets assumes harmonisation of the regulations pertaining to each member country of the European Union.
The purpose of the European Directive is to eliminate obstacles hindering the free circulation of goods within the European Union, and it applies to each member country. Member countries are obliged to transcribe each Directive into their national legislation and to simultaneously withdraw any contradictory regulations. The Directives, in particular those of a technical nature which concern us, only establish the objectives to be achieved and are referred to as "essential requirements".
The manufacturer must take all the necessary measures to ensure that his products conform to the requirements of each Directive applicable to his production.
As a general rule, the manufacturer certifies conformity to the essential requirements of the Directive(s) for his product by affixing a C \in mark.
The C \in mark is affixed to Telemecanique brand products, as defined by French and European regulations.

Significance of the C \in mark

- The $c \epsilon$ mark affixed to a product signifies that the manufacturer certifies that the product conforms to the relevant European Directive(s) which concern him ; this condition must be met to allow free distrubition and circulation within the countries of the European Union of any product subject to one or move of the E.U. Directives.
- The C ϵ mark is intended solely for national market control authorities.
- The C ϵ mark must not be confused with a conformity marking.

Technical information

Product standards and approvals

European Directives (continued)

For electrical equipment, only conformity to standards signifies that the product is suitable for its designated function, and only the guarantee of an established manufacturer can provide a high level of quality assurance.
For Telemecanique brand products, one or several Directives are likely to be applicable, depending on the product, in particular:

- the Low Voltage Directive 73/23/EEC amended by Directive 93/68/EEC: the $\subset \in$ mark relating to this Directive has been compulsory since 1st January 1997.
- the Electromagnetic Compatibility Directive 89/336/EEC, amended by Directives 92/31/EEC and 93/68/EEC: the c ϵ mark on products covered by this Directive has been compulsory since 1st January 1996.

ASEFA-LOVAG certification

The function of ASEFA (Association des Stations d'Essais Française d'Appareils électriques - Association of French Testing Stations for Low Voltage Industrial Electrical Equipment) is to carry out tests of conformity to standards and to issue certificates of conformity and test reports. ASEFA laboratories are authorised by the French authorisation committee (COFRAC).
ASEFA is now a member of the European accord group LOVAG (Low Voltage Agreement Group). This means that any certificates issued by LOVAG/ASEFA are recognised by all the authorities forming the membership of the group and carry the same validity as those issued by any of the member authorities.

Quality labels

When components can be used in domestic and similar applications, it is sometimes recommended that a "Quality label" be obtained, which is a form of certification of conformity.

Code	Quality label	Country
CEBEC	Comité Electrotechnique Belge	Belgium
KEMA-KEUR	Keuring van Electrotechnische Materialen	Netherlands
NF	Union Technique de l'Electricité	France
OVE	Osterreichischer Verband für Electrotechnik	Austria
SEMKO	Svenska Electriska Materiel Kontrollanatalten	Sweden
Approvals		

In some countries, the approval of certain electrical equipment is required by law or by the market. In this case, an approval certificate is issued by the official test authority.
Each approved component must bear the relevant quality label when this is mandatory:

Code	Approval authority	Country
CSA	Canadian Standards Association	Canada
UL	Underwriters Laboratories	USA

Note on approvals issued by the Underwriters Laboratories (UL). There are two levels of approval:
"Recognized" ($\mathbf{7 4}$) The component is fully approved for inclusion in equipment built in a workshop, where the operating limits are known by the equipment manufacturer and where its use within such limits is acceptable by the Underwriters Laboratories.
The component is not approved as a "Product for general use" because its manufacturing characteristics are incomplete or its application possibilities are limited.
A "Recognized" component does not necessarily carry the approval symbol.
"Listed" (UL) The component conforms to all the requirements of the classification applicable to it and may therefore be used both as a "Product for general use" and as a component in assembled equipment.
A "Listed" component must carry the approval symbol.

Marine classification authorities

Prior approval by certain marine classification authorities is generally required for electrical equipment which is intended for use on board merchant vessels.

Code	Classification authority	Country
BV	Bureau Veritas	France
DNV	Det Norske Veritas	Norway
GL	Germanischer Lloyd	Germany
LROS	Lloyd's Register of Shipping	Great Britain
NKK	Nippon Kaiji Kyokaï	Japan
RINA	Registro Italiano Navale	Italy
RRS	Register of Shipping	Russia
Note		

For further details on a specific product, please refer to the "Characteristics" pages in this catalogue or consult your Regional Sales Office.

Technical information

Degrees of protection provided by enclosures

Degrees of protection against the penetration of solid bodies, water and personnel access to live parts

IP •・ゃ code

The IP code comprises 2 characteristic numerals (e.g. IP 55) and may include an additional letter when the actual protection of personnel against direct contact with live parts is better than that indicated by the first numeral (e.g. IP 20C).

Any characteristic numeral which is unspecified is replaced by an X (e.g. IP XXB).

The European standard EN 60529 dated October 1991, IEC publication 529 (2nd edition - November 1989), defines a coding system (IP code) for indicating the degree of protection provided by electrical equipment enclosures against accidental direct contact with live parts and against the ingress of solid foreign objects or water.
This standard does not apply to protection against the risk of explosion or conditions such as humidity, corrosive gasses, fungi or vermin.
Certain equipment is designed to be mounted on an enclosure which will contribute towards achieving the required degree of protection (example : control devices mounted on an enclosure).
Different parts of an equipment can have different degrees of protection (example : enclosure with an opening in the base).
Standard NF C 15-100 (May 1991 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.
Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

Additional letter : corresponds to protection of personnel against direct contact with live parts.

Degrees of protection against mechanical impact

IK \bullet code

The IK code comprises 2 characteristic numerals (e.g. IK 05).

2 characteristic numerals : corresponding to a value of impact energy.

043509383 174 CEV 30010 174 CEV 30010 174 CEV 30020 490 NAD 91103 490 NAD 91103 490 NAD 91104 490 NAD 91104 490 NTW00002 490 NTW00005 490 NTW00012 490 NTW00040 490 NTW00080 499 NEH00410 499 NEH04100 499 NES07100 499 NOH00510 499 NOS07100 990NAD21810 990NAD21830 990NAD21910 990NAD21930 990NAD23000

A

ABE 8S44SBB1 ATS 01N103FT ATS 01N106FT ATS 01N109FT ATS 01N112FT ATS 01N206e•
ATS 01N209•0 ATS 01N212•• ATS 01N2220• ATS 01N230LY ATS 01N232Le日 ATS 01N244*0 ATS 01N27200 ATS 01N285*e
ATS 48C11•

ATS 48C14•
ATS 48C17•
ATS 48C21• ATS 48C25•

ATS 48C32•
ATS 48C41•
ATS 48C48•
ATS 48C59•
ATS 48C66•
ATS 48C79•
ATS 48D17•

ATS 48D22•

ATS 48D32•
ATS 48D38•
ATS 48D47•
ATS 48D62•

4/12	ATS 48D75
4/5	
1/47	ATS 48D88•
2/51	
4/23	ATS 48M10•
4/25	
4/23	ATS 48M12•
4/25	ATS 48M12•
4/5	ATSU 01N206LT
4/5	ATSU 01N209LT
4/5	ATSU 01N212LT
4/5	ATSU 01N222LT
4/5	ATSU 01N232LT
4/5	ATV 11HU05eee
4/5	
4/5	ATV 11HU09•e॰
4/5	
4/5	
4/12	ATV 11HU12M2E
4/12	ATV 11HU1800¢
4/12	
4/12	ATV 11HU2900॰
4/12	
	ATV 11HU41•e७
4/15	ATV 11PU09•*॰
1/8	
1/8	ATV 11PU12M2E
1/8	ATV 11PU18eee
1/8	
1/8	ATV 31C018M2
1/8	ATV 31C037e0
1/8	ATV 31C055e॰
1/8	ATV 31C075ee
1/8	ATV 31CU110॰
1/8	ATV 31CU1500
1/8	ATV 31CU220॰
1/8	ATV 31CU30N4
1/8	ATV 31CU40N4
1/40	ATV 31H0180e॰
to 1/43	ATV 31H037-0॰
1/40	ATV 31H0550e॰
to 1/43	ATV 31H0750e॰
1/40	ATV 31HD110ee
to $1 / 43$	ATV 31HD150ee
1/40	ATV 31HU11000
to 1/43	ATV 31HU150ee
1/40	ATV 31HU22000
to 1/43	ATV 31HU300e¢
1/40	ATV 31HU4000e
to 1/43	ATV 31HU550e๑
$1 / 40$	ATV 31HU750e॰
to 1/43	ATV 31K018M2
1/40	ATV 31K037ee
to $1 / 43$	ATV 31K055ee
1/40	ATV 31KD11N4
to 1/43	ATV 31KD15N4
1/40	ATV 31KU1100
to 1/43	ATV 31KU150๑
1/40	ATV 31KU220॰
to $1 / 43$	ATV 31KU30N4
1/40	ATV 31KU40N4
to 1/43	ATV 31KU55N4
1/40	ATV 31KU75N4
to $1 / 43$	ATV 38ED05N4
1/40	ATV 38ED07N4
to 1/43	ATV 38ED09N4
1/40	ATV 38ED12N4
to 1/43	ATV 38ED16N4
	ATV 38ED23N4
	ATV 38ED25N4
	ATV 38ED28N4
	ATV 38ED33N4
to 1/43	ATV 38ED46N4

2/118	ATV 58HD23N4	2/132	ATV 68E2C43N4	2/289
2/118	ATV 58HD28M2X	2/133	ATV 68E2C53N4	2/289
2/118	ATV 58HD28N4	2/132	ATV 68E2C63N4	2/289
2/88	ATV 58HD28N4	2/132	ATV 68E5C10N4	2/289
2/88	ATV 58HD28N4X	2/133	ATV 68E5C13N4	2/289
2/88	ATV 58HD33M2X	2/133	ATV 68E5C15N4	2/289
2/88	ATV 58HD33M2X	2/133	ATV 68E5C19N4	2/289
2/88	ATV 58HD33N4	2/132	ATV 68E5C23N4	2/289
2/88	ATV 58HD33N4X	2/133	ATV 68E5C28N4	2/289
2/88	ATV 58HD46M2X	2/133	ATV 68E5C33N4	2/289
2/88	ATV 58HD46N4	2/132	ATV 68E5C43N4	2/289
2/88	ATV 58HD46N4X	2/133	ATV 68E5C53N4	2/289
2/88	ATV 58HD54N4	2/132	ATV 68E5C63N4	2/289
2/88	ATV 58HD54N4X	2/133	ATV 68EX2C10N4	2/289
2/88	ATV 58HD64N4	2/132	ATV 68EX2C13N4	2/289
2/88	ATV 58HD64N4X	2/133	ATV 68EX2C15N4	2/289
2/88	ATV 58HD79N4	2/132	ATV 68EX2C19N4	2/289
2/88	ATV 58HD79N4X	2/133	ATV 68EX2C23N4	2/289
2/88	ATV 58HU09M2	2/132	ATV 68EX2C28N4	2/289
2/88	ATV 58HU18M2	2/132	ATV 68EX2C33N4	2/289
2/88	ATV 58HU18N4	2/132	ATV 68EX2C43N4	2/289
2/88	ATV 58HU29M2	2/132	ATV 68EX2C53N4	2/289
2/88	ATV 58HU29N4	2/132	ATV 68EX2C63N4	2/289
2/88	ATV 58HU41M2	2/132	ATV 68EX5C10N4	2/289
2/88	ATV 58HU41N4	2/132	ATV 68EX5C13N4	2/289
2/88	ATV 58HU54M2	2/132	ATV 68EX5C15N4	2/289
2/88	ATV 58HU54N4	2/132	ATV 68EX5C19N4	2/289
2/88	ATV 58HU72M2	2/132	ATV 68EX5C23N4	2/289
2/182	ATV 58HU72N4	2/132	ATV 68EX5C28N4	2/289
2/182	ATV 58HU90M2	2/132	ATV 68EX5C33N4	2/289
2/182	ATV 58HU90N4	2/132	ATV 68EX5C43N4	2/289
2/182	ATV 58PD12M2	2/134	ATV 68EX5C53N4	2/289
2/182	ATV 58PD12N4	2/134	ATV 68EX5C63N4	2/289
2/182	ATV 58PD16N4	2/134	ATV 68FC10N4	2/247
2/182	ATV 58PD23N4	2/134	ATV 68FC13N4	2/247
2/182	ATV 58PU09M2	2/134	ATV 68FC15N4	2/247
2/182	ATV 58PU18M2	2/134	ATV 68FC19N4	2/247
2/182	ATV 58PU18N4	2/134	ATV 68FC23N4	2/247
2/182	ATV 58PU29M2	2/134	ATV 68FC28N4	2/247
2/182	ATV 58PU29N4	2/134	ATV 68FC33N4	2/247
2/182	ATV 58PU41M2	2/134	ATV 68FC43N4	2/247
2/182	ATV 58PU41N4	2/134	ATV 68FC53N4	2/247
2/182	ATV 58PU54M2	2/134	ATV 68FC63N4	2/247
2/182	ATV 58PU54N4	2/134		
2/182	ATV 58PU72M2	2/134	D	
2/182	ATV 58PU72N4	2/134	DCI CD39811	2/41
2/182	ATV 58PU90M2	2/134		
2/214	ATV 58PU90N4	2/134	L	
2/214	ATV 68C10N4	2/246	LA9 F702	1/45
2/214		and 2/289	LA9 P307	1/47,
2/214	ATV 68C13N4	2/246		2/51,
2/214		and 2/289		2/143
2/214	ATV 68C15N4	2/246		and 4/25
2/214		and 2/289	LAD 8N11	1/8
2/214	ATV 68C19N4	2/246	LU9 CD1	4/23
2/214		and 2/289	LU9 GC3	1/47,
2/214	ATV 68C23N4	2/246		2/51,
		and 2/289		and 4/8
2/214	ATV 68C28N4	2/246	LUF P•	1/47,
2/214		and 2/289		2/51,
2/214	ATV 68C33N4	2/246		4/8
2/214		and 2/289		and 4/23
2/214	ATV 68C43N4	2/246		
2/214		and 2/289	N	
2/214	ATV 68C53N4	2/246	NS100HMA	2/62
2/214		and 2/289	NS80HMA	2/62
2/214	ATV 68C63N4	2/246		to 2/65
2/214		and 2/289		
2/214	ATV 68E2C10N4	2/289	R	
2/214	ATV 68E2C13N4	2/289	RHZ 66	1/8
2/132	ATV 68E2C15N4	2/289		
2/132	ATV 68E2C19N4	2/289		
2/133	ATV 68E2C23N4	2/289	T	
2/132	ATV 68E2C28N4	2/289	TSX CSA •00	1/47, 2/51
2/133	ATV 68E2C33N4	2/289		and 4/18

TSX FP ACC12	4/23	VW3 A664e๑	2/49,	VW3 A8 306 Re॰	1/47,
TSX SCA ©๑	1/47,		2/95		2/51,
	2/51		and 2/153		4/18
	and 4/18	VW3 A66501	2/45,	VW3 A8 306 TF*॰	and 4/23
			2/49,		1/47,
V			2/91		2/51,
VVDED301064	2/259		and 2/149		and 4/18
VW1 RZD101	4/21	VW3 A66502	2/45,	VW3 A8104	3/3
VW3 A58103	2/138		2/49,	VW3 A8105	3/3
VW3 A11301	2/15		2/91	VW3 A8106	2/235
VW3 A11401	2/15		and 2/149		and $3 / 3$
VW3 A11402	2/15	VW3 A66503	and 2/149	VW3 A8111	and $3 / 3$
VW3 A11403	2/15		2/45,	VW3 CAN CARRe•	2/51
VW3 A11404	2/15		2/49,	VW3 CAN TAP2	2/51
VW3 A11701	2/15		2/91	VW3 G4104	1/24
VW3 A11811	2/15		and 2/149	VW3 G48101	1/45
VW3 A11821	2/15	VW3 A66504	2/45,	VW3 P07 306 R10	1/47,
VW3 A11831	2/15		2/49,		2/51
VW3 A11851	2/15		2/91		and 4/25
	and 2/41		and 2/149	VZ1 L004M010	2/45
VW3 A11852	$2 / 15$ $2 / 41$	VW3 A66505	2/45		and 2/149
VW3 A31101	2/41 2/47		2/49	VZ1 L004M010	2/45
VW3 A3145•	2/49		and 2/153	VZ1 L007UM50	2/45
VW3 A318e॰	2/41	VW3 A66506	2/49		and 2/149
VW3 A58101	2/89		2/95	VZ1 L015UM17T	1/45
	and 2/138		and 2/153	VZ1 L018UM20	2/45
VW3 A58103	2/89	VW3 A66507	2/95		and 2/149
VW3 A581131	2/235		and 2/153	VZ1 L030U800T	1/45
VW3 A582e¢	2/141	VW3 A66704	2/43	VZ1 L040U600T	1/45
VW3 A58301	4/8		and 2/147	VZ1 L070U350T	1/45
	and 2/143	VW3 A68180	2/261	VZ1 L150U170T	1/45
VW3 A58301 A	4/8	VW3 A68190	2/261	VZ1 L250U100T	1/45
VW3 A58302	2/143	VW3 A68201	2/258	VZ1 L325U075T	1/45
	and 4/12	VW3 A68301	2/259	VZ1 L530U045T	1/45
VW3 A58303			and 4/8	VZ1 LM10U024T	1/45
	4/19,	VW3 A68302	2/259	VZ1 LM14U016T	1/45
	and 4/21		and 4/12		
VW3 A58304E	2/143	VW3 A68303	2/259	X	
VW3 A58305	2/143		and 4/18	XZ CB10201	$4 / 15$
	and 4/15	VW3 A68306	2/259	XZ CB11001	$4 / 15$
VW3 A58306	2/89,		and 4/18 2/259	XZ CG0122	4/15
	2/139	VW3 A68307 VW3 A68313	2/259		
	and 4/19		2/259		
VW3 A58307	2/143		and 4/18		
VW3 A58308	2/143	VW3 A68331	2/260		
VW3 A58309	2/143	VW3 A684•๑	2/93		
VW3 A58310	2/143		and 2/250		
VW3 A58311	2/143	VW3 A6850•	2/91		
	and 4/8		and 2/249		
VW3 A58312PU	2/143	VW3 A6855•	2/95		
VW3 A58354U	2/143		and 2/251		
VW3 A5840^	2/93	VW3 A6870.๑	2/253		
	and 2/151	VW3 A688・セ	2/260		
VW3 A5845•	2/49,		and 2/261		
	2/95	VW3 A68E-0.	2/290		
	and 2/153	VW3 A8 306	1/47,		
VW3 A5850•	2/149		2/51,		
VW3 A5860•	2/136		and 4/18		
VW3 A5870•	2/15,	VW3 A8 306 D30	1/47,		
	2/43		2/51,		
	and 2/146		4/18		
VW3 A5873	2/15,		4/23		
	2/43		and 4/25		
	and 2/147	VW3 A8 306 DRe	1/47,		
VW3 A5880•	2/135		2/51,		
VW3 A5881•	2/137		and 4/18		
VW3 A5882•	2/90	VW3 A8 306 R	1/47,		
	and 2/136		2/51,		
VW3 A5885•	2/90		and 4/18		
VW3 A5886•	2/119	VW3 A8 306 RC	1/47,		
	and 2/183		2/51,		
			and 4/18		

Schneider Electric worldwide

Up-dated: 30-07-2003

Afghanistan	Contacts are assured by	Schneider Electric India		
Albania	Contacts are assured by	Schneider Electric Austria		
Algeria	- Schneider Electric	voie A Lot C22 Zone industrielle Rouiba - Alger	$\begin{aligned} & \hline \text { Tel. : +213 } 21929702 \text { à } 09 \\ & \text { Fax : +213 } 21929700 \text { à } 01 \end{aligned}$	
Andorra	Contacts are assured by	Schneider Electric France		
Angola	Contacts are assured by	Schneider Electric South Africa		
Anguilla	Contacts are assured by	Schneider Electric Dominican Rep.		
Antartica	Contacts are assured by	Schneider Electric Brazil		
Antigua \& Barbuda	Contacts are assured by	Schneider Electric Dominican Rep.		
Argentina	- Schneider Argentina	Viamonte 2850-1678 Caseros (provincia Buenos Aires)	$\begin{aligned} & \text { Tel.: +54 } 17168888 \\ & \text { Fax: +54 } 17168833 \end{aligned}$	www.schneider-electric.com.ar
Armenia	Contacts are assured by	Schneider Electric Russian Fed.		
Aruba	Contacts are assured by	Schneider Electric Dominican Rep.		
Australia	Schneider Electric (Australia) Pty. Limited	2 Solent Circuit Norwest Business Park Baulkham Hill _ NSW 2153	Tel.: +61 298512800 Fax: +61 296298340	www.schneider.com.au
Austria	- Schneider Austria Ges.m.b.H.	Birostrasse 11 1239 Wien	$\begin{aligned} & \text { Tel.: + +431610540 } \\ & \text { Fax: +431 } 6105454 \end{aligned}$	www.schneider-electric.at
Azerbaijan	Contacts are assured by	Schneider Electric Russian Fed.		
Bahamas	- Schneider Electric	Union Village PO Box 3901 - Nassau	$\begin{aligned} & \text { Tel. : + } 12423274291 \\ & \text { Fax : +1 } 2423274291 \end{aligned}$	www.squared.com
Bahrain	- Schneider Electric	Floor 1 - Juma Building Abu Horaira Avenue PO Box 355-304 Manama	$\begin{aligned} & \text { Tel.: +97 } 3227897 \\ & \text { Fax: +97 } 3218313 \end{aligned}$	
Bangladesh	Contacts are assured by	Schneider Electric India		
Barbados	Contacts are assured by	Schneider Electric Dominican Rep.		
Belarus	- Schneider Electric Industries SA	Prospect Macherova 5, of. 202 220004 Minsk	$\begin{aligned} & \text { Tel. : +375 } 172237550 \\ & \text { Fax : +375 } 172239761 \end{aligned}$	
Belgium	- Schneider Electric nv/sa	$\begin{aligned} & \text { Dieweg } 3 \\ & \text { B - } 1180 \text { Brussels } \end{aligned}$	$\begin{aligned} & \text { Tel.: +3223737711 } \\ & \text { Fax: +3223753858 } \end{aligned}$	www.schneider-electric.be
Belize	Contacts are assured by	Schneider Electric USA		
Benin	Contacts are assured by	Schneider Electric Ivory Coast		
Bermuda	Contacts are assured by	Schneider Electric Dominican Rep.		
Bhutan	Contacts are assured by	Schneider Electric India		
Bolivia	Contacts are assured by	Schneider Electric Chile		
Bosnia and Herzegovina	Contacts are assured by	Schneider Electric Croatia		
Botswana	Contacts are assured by	Schneider Electric South Africa		
Bouvet island	Contacts are assured by	Schneider Electric Dominican Rep.		
Brazil	- Schneider Electric Brazil Ltda.	Avenida Das Nações Unidas 23223 Jurubatuba - CEP 04795-907 São Paulo-SP	$\begin{aligned} & \text { Tel.: +55 } 55245233 \\ & \text { Fax: +55 } 55225134 \end{aligned}$	www.schneider-electric.com.br
Brunei (Darussalam)	Contacts are assured by	Schneider Electric Singapore		
Bulgaria	- Schneider Electric	Expo 2000, Boulevard Vaptzarov 1407 Sofiav	$\begin{aligned} & \text { Tel.: +3592 } 91942 \\ & \text { Fax: +3592 } 9624439 \end{aligned}$	www.schneiderelectric.bg
Burkina Faso	Contacts are assured by	Schneider Electric Ivory Coast		
Burundi	Contacts are assured by	Schneider Electric Kenya		
Cambodia	Contacts are assured by	Schneider Electric Viet Nam		
Cameroon	- Schneider Electric Cameroon	166, rue de l'Hôtel de Ville BP12087 - Douala	$\begin{aligned} & \text { Tel.: +237343 } 3884 \\ & \text { Fax: +2373431194 } \end{aligned}$	
Canada	- Schneider Canada	19, Waterman Avenue M4 B1Y2 Toronto - Ontario	$\begin{aligned} & \text { Tel.: +1 } 4167528020 \\ & \text { Fax: +1 } 4167524203 \end{aligned}$	www.schneider-electric.ca
Cape Verde	Contacts are assured by	Schneider Electric Senegal		
Caribee	Contacts are assured by	Schneider Electric Dominican Rep.		
Cayman islands	Contacts are assured by	Schneider Electric Dominican Rep.		
Central African Republic	Contacts are assured by	Schneider Electric Cameroon		
Chad	Contacts are assured by	Schneider Electric Cameroon		
Chile	- Schneider Electric Chile S.A.	Avda. Pdte Ed. Frei Montalva, 6001-31 Conchali - Santiago	$\begin{aligned} & \text { Tel.: }+5624443000 \\ & \text { Fax: }+5624239335 \end{aligned}$	www.schneider-electric.co.cl
China	- Schneider Beijing	Landmark bldg-Room 1801 8 North Dong Sanhuan Rd Chaoyang District 100004 Beijing	$\begin{aligned} & \text { Tel.: +86 } 1065906907 \\ & \text { Fax: +86 } 1065900013 \end{aligned}$	www.schneider-electric.com.cn

Schneider Electric worldwide

Up-dated: 30-07-2003

Christmas island	Contacts are assured by	Schneider Electric Australia		
Cocos (Keeling) islands	Contacts are assured by	Schneider Electric Australia		
Colombia	```Schneider Electric de Colombia S.A.```	Calle 45A \#102-48 Bogota DC	$\begin{aligned} & \text { Tel.: +57 } 14269700 \\ & \text { Fax: +57 } 14269740 \end{aligned}$	
Comoros	Contacts are assured by	Schneider Electric la Reunion		
Congo	Contacts are assured by	Schneider Electric Cameroon		
Cook islands	Contacts are assured by	Schneider Electric Australia		
Costa Rica	- Schneider Centroamérica Ltda.	1.5 kmts oeste de la Embajada Americana, Pavas, San José, Costa Rica C.A. Apartado: 4123-1000 San Jose	$\begin{aligned} & \text { Tel.: +506 232-60-55 } \\ & \text { Fax: +506 232-04-26 } \end{aligned}$	www.schneider-ca.com
Croatia	- Schneider Electric SA	Fallerovo Setaliste 22 HR - 10000 Zagreb	$\begin{aligned} & \text { Tel.: +385 } 1367100 \\ & \text { Fax: +385 } 1367111 \end{aligned}$	
Cuba	- Schneider Electric	Bureau de Liaison de La Havane Calle 36- N306-Apto1 Entre 3ra y 5ta Avenida Miramar Playa Habana	$\begin{aligned} & \text { Tel.: +53 } 7241559 \\ & \text { Fax: +53 } 7241217 \end{aligned}$	
Cyprus	- Schneider Electric Cyprus	28 General Timayia Avenue Kyriakos Building, Block \#A301 Larnaca 6046	$\begin{aligned} & \text { Tel.: +00357 } 24812646 \\ & \text { Fax: +00357 } 24637382 \end{aligned}$	
Czech Republic	■ Schneider Electric CZ, s.r.o.	Thámova 13 Praha 8-186 00	Tel.: +420 281088111 Fax: +420 224810849	www.schneider-electric.cz
Democratic Rep. of Congo	Contacts are assured by	Schneider Electric Cameroon		
Denmark	- Schneider Electric A/S	Baltorpbakken 14 DK-2750 Ballerup	$\begin{aligned} & \text { Tel.: +45 } 44737888 \\ & \text { Fax: +45 } 44685255 \end{aligned}$	www.schneider-electric.dk
Djibouti	Contacts are assured by	Schneider Electric Egypt		
Dominican Republic	- Schneider Electric	Calle Jacinto Manon Esq. Federico Geraldino Edificio D' Roca Plaza Suite 402, Ens. Paraiso - Santo Domingo	$\begin{aligned} & \text { Tel.: + } 18093346663 \\ & \text { Fax: +1 } 8093346668 \end{aligned}$	
Ecuador	- Schneider Electric Ecuador SA	Av.Republica del Salvador 1082 y Nac Edificio Mansion Blanca-Quito	Tel. : +593 22244242 Fax : +593 22244294	
Egypt	- Schneider Electric Egypt sae	68, El Tayaran Street Nasr City, 11371 - Cairo	$\begin{aligned} & \text { Tel.: +20 } 24010119 \\ & \text { Fax: +20 } 24016687 \end{aligned}$	www.schneider.com.eg
El Salvador	Contacts are assured by	Schneider Electric USA		
Equatorial Guinea	Contacts are assured by	Schneider Electric Cameroon		
Eritrea	Contacts are assured by	Schneider Electric Egypt		
Estonia	- Lexel Electric	Ehitajate tee 110 EE 12618 Talinn	$\begin{aligned} & \text { Tel. : +372 } 6509700 \\ & \text { Fax : +372 } 6509722 \end{aligned}$	
Ethiopia	Contacts are assured by	Schneider Electric Egypt		
Falkland islands	Contacts are assured by	Schneider Electric Brazil		
Faroe islands	Contacts are assured by	Schneider Electric Australia		
Fiji	Contacts are assured by	Schneider Electric Australia		
Finland	- Schneider Electric Oy	Sinimäentie 14 02630 Espoo	$\begin{aligned} & \text { Tel. : +35895527000 } \\ & \text { Fax : +358952700376 } \end{aligned}$	www.schneider-electric.fi
France	- Schneider Electric SA	5, rue Nadar 92500 Rueil Malmaison	$\begin{aligned} & \text { Tel.: +33 (0)1 } 41298200 \\ & \text { Fax: +33 (0)1 } 47518020 \end{aligned}$	www.schneider-electric.fr
French Polynesia	Contacts are assured by	Schneider Electric Australia		
French West Indies	Contacts are assured by	Schneider Electric Dominican Rep.		
Gabon	Contacts are assured by	Schneider Electric Cameroon		
Gambia	Contacts are assured by	Schneider Electric Senegal		
Georgia	Contacts are assured by	Schneider Electric Russian Fed.		
Germany	- Schneider Electric GmbH	Gothaer Straße 29 D-40880 Ratingen	$\begin{aligned} & \text { Tel.: +49210 } 24040 \\ & \text { Fax: +492 } 1024049256 \end{aligned}$	www.schneiderelectric.de
Ghana	- Schneider Electric Ghana	PMB Kia 3rd Floor Opeibea House Airport Commercial Center Liberation road - Accra	```Tel. : +233 21 70 11687 Fax :+233217796 22```	
Gilbraltar	Contacts are assured by	Schneider Electric Spain		
Greece	- Schneider Electric AE	14th km - RN Athens-Lamia GR - 14564 Kifissia	$\begin{aligned} & \text { Tel.: +302 } 106295200 \\ & \text { Fax: +302 } 106295210 \end{aligned}$	www.schneider-electric.com.gr
Greenland	Contacts are assured by	Schneider Electric United States		
Grenada	Contacts are assured by	Schneider Electric Dominican Rep.		
Guadeloupe	Contacts are assured by	Schneider Electric Martinique		
Guam	Contacts are assured by	Schneider Electric Australia		

Schneider Electric worldwide

Up-dated: 30-07-2003

Guatemala	Contacts are assured by	Schneider Electric United States		
Guinea-Bissau	Contacts are assured by	Schneider Electric Sénégal		
Guinea	Contacts are assured by	Schneider Electric Ivory Coast		
Guyana	Contacts are assured by	Schneider Electric United States		
Haiti	Contacts are assured by	Schneider Electric Dominican Rep.		
Heard \& Mac Donald isl.	Contacts are assured by	Schneider Electric Australia		
Honduras	Contacts are assured by	Schneider Electric United States		
Hong Kong	```Schneider Electric (Hong Kong) Ltd```	Room 3108-28, 31th Floor, Sun Hung Kai Centre, 30 Harbour Road, Wanchai	Tel.: +852 25650621 Fax: +852 28111029	
Hungary	Schneider Electric Hungária Villamossági Rt.	Fehérvári út 108-112 $\mathrm{H}-1116$ Budapest	$\begin{aligned} & \text { Tel.: +36 } 1382 \text { 26-06 } \\ & \text { Fax: +36 } 12061429 \end{aligned}$	www.schneider-electric.hu
Iceland	Contacts are assured by	Schneider Electric Denmark		
India	- Schneider Electric India	Max House, 1 Dr Jha Marg, Okhla 110020 New Dehli	Tel. : +91116318584 Tel. : +9111631 7161	www.schneiderelectric-in.com
Indonesia	- P.T. Schneider Indonesia	Ventura Building 7th Floor Jalan R.A. Kartini Kav. 26 Cilandak - 12430 Jakarta	$\begin{aligned} & \text { Tel.: +62 +21 } 7504406 \\ & \text { Fax: }+62+217504415 / 16 \end{aligned}$	www.schneider-electric.co.id
Iran (Islamic Republic of)	- Telemecanique Iran	1047 Avenue VALI ASSR P.O. Box 15875-3547 15116 Teheran	$\begin{aligned} & \text { Tel.: +98 } 218710142 \\ & \text { Fax: +98 } 218718187 \end{aligned}$	
Irak	- Schneider Electric Industries SA	38050 Grenoble Cedex 9	$\begin{aligned} & \text { Tel.: +33 } 0476605427 \\ & \text { Fax: +33 } 0476605660 \end{aligned}$	
Ireland	- Schneider Electric Ireland	Maynooth Road Cellbridge - Co. Kildare	$\begin{aligned} & \text { Tel.: +353+0 } 16012200 \\ & \text { Fax: +353+0 } 16012201 \end{aligned}$	www.schneiderelectric.ie
Italy	- Schneider Electric S.p.A.	Centro Direzionale Colleoni Palazzo Sirio - Viale Colleoni, 7 20041 Agrate Brianza (Mi)	Tel.: +39 396558111 Fax: +39396056237	www.schneiderelectric.it
Ivory Coast	Schneider Electric Afrique de l'Ouest	Rue Pierre et Marie Curie 18 BP 2027 Abidjan 18	$\begin{aligned} & \text { Tel.: +225 } 21750010 \\ & \text { Fax: +225 } 21750030 \end{aligned}$	
Jamaica	- Schneider Electric	Shop\#5, Plaza Dunrobin 30 Dunrobin Avenue - Kingstown	$\begin{aligned} & \text { Tel. : +1876 } 7554127 \\ & \text { Tel. : +931 } 8774 \end{aligned}$	
Japan	- Schneider Electric Japan Ltd	Torigoe F. Bldg 1-8-2, Torigoe Taito-Ku-111-0054 Tokyo	Tel.: +81 358353581 Fax: +81 358353585	www.schneider-electric.co.jp
Jordan	- Schneider Electric Industr. Jordan	Jordan University Street Abu Al Haj Commercial Complex 2nd Floor - Office \# 202 - Amman	Tel.: 96265167887 Fax: 9626516791	
Kazakstan	Schneider Electric Kazakhstan Liaison Office	Prospekt Abaia 157 off 9 480009 Almaty	Tel. : +7 3272509388 Tel. : +7 3272506370	
Kenya	- Schneider East Africa	Power Technics Complex Monbasa Road - PO Box 46345 Nairobi	$\begin{aligned} & \text { Tel. : +254 2.824.156 } \\ & \text { Fax : +254 2.824.157 } \end{aligned}$	
Kiribati	Contacts are assured by	Schneider Electric Australia		
Korea	- Schneider Electric Korea Ltd	3Floor, Cheil Bldg., 94-46, 7-Ka Youngdeungpodong, Youngdeungpo-ku 150-037 Seoul	$\begin{aligned} & \text { Tel. : +82 } 226309700 \\ & \text { Fax : +82 } 226309800 \end{aligned}$	www.csinfo.co.kr/schneider/
Kuwait	- Schneider Electric Kuwait	Al Gaas Tower - Sharq 2nd Floor PO Box 20092-13061 Safat	$\begin{aligned} & \text { Tel.: +965 } 2407546 \\ & \text { Fax: +965 } 2407506 \end{aligned}$	
Kyrgyz Republic	Contacts are assured by	Schneider Electric Russian Fed.		
Laos	Contacts are assured by	Schneider Electric Thailand		
Latvia	- Lexel Electric	60A A.Deglava str. LV1035 Riga	$\begin{aligned} & \text { Tel. : +371 } 78023 \text { 74/75 } \\ & \text { Fax : +371 } 7546280 \end{aligned}$	
Lebanon	- Schneider Electric Liban	Tabaris, Avenue Charles Malek Immeuble Ashada, 8 P.O. Box 166223 - Beyrouth	Tel. : +961 1204620 Tel. : +961 1203119	
Lesotho	Contacts are assured by	Schneider Electric South Africa		
Liberia	Contacts are assured by	Schneider Electric Ghana		
Libya	Contacts are assured by	Schneider Electric Tunisia		
Liechtenstein	Contacts are assured by	Schneider Electric Switzerland		
Lithuania	- Lexel Electric	44, Verkiu str. LT-2012 Vilnius	```Tel. : +370 278 59 59/61 Fax : +370 278 5960```	
Loro Sae	Contacts are assured by	Schneider Electric Australia		
Luxembourg	- Schneider Electric Industrie SAS	Agence de Metz 1, Rue Graham Bell - BP n ${ }^{\circ} 35190$ 57075 Metz cedex 3 - France	Tel.: 330387390603 Fax: 330387742596	www.schneider-electric.fr
Macau	Contacts are assured by	Schneider Electric China		

Schneider Electric worldwide

Up-dated: 30-07-2003

Macedonia	Contacts are assured by	Schneider Electric Bulgaria		
Madagascar	Contacts are assured by	Schneider Electric la Reunion		
Malawi	Contacts are assured by	Schneider Electric South Africa		
Malaysia	Schneider Electric (Malaysia) Sdn Bhd	No. 11 Jalan U1/19, Seksyen U1 Hicom-Glenmarie Industrial Park 40150 Shah Alam Selangor Darul Ehsan	$\begin{aligned} & \text { Tel. : (603) } 78836333 \\ & \text { Fax : (603) } 78836188 \end{aligned}$	www.schneiderelectric.com.my
Maldives	Contacts are assured by	Schneider Electric Reunion		
Mali	Contacts are assured by	Schneider Electric Senegal		
Malta	Contacts are assured by	Schneider Electric Tunisia		
Marshall islands	Contacts are assured by	Schneider Electric Australia		
Martinique	- Schneider Electric	Schneider Electric Immeuble Cottrell - ZI de la Lézarde 97232 Le Lamentin	$\begin{aligned} & \text { Tel.: +05 } 96510600 \\ & \text { Fax: +05 } 96511126 \end{aligned}$	
Mauritania	Contacts are assured by	Schneider Electric Senegal		
Mauritius	- Schneider Electric	Route côtière Calodyne - Mauritius	Tel.: 2302821883 Fax: 2302821884	
Mayotte	Contacts are assured by	Schneider Electric Reunion		
Mexico	- Groupe Schneider Mexico	Calz. Rojo Gomez N ${ }^{\circ}$ 1121-A Col. Guadalupe del Moral México, D.F. - C.P. 09300	$\begin{aligned} & \text { Tel.: +525 } 6863000 \\ & \text { Fax: +525 } 6862409 \end{aligned}$	www.schneiderelectric.com.mx
Micronesia	Contacts are assured by	Schneider Electric Australia		
Moldova	Contacts are assured by	Schneider Electric Romania		
Monaco	Contacts are assured by	Schneider Electric France		
Mongolia	Contacts are assured by	Schneider Electric Russian Fed.		
Montserrat	Contacts are assured by	Schneider Electric Dominican Rep.		
Morocco	- Schneider Electric Morocco	26, rue Ibnou Khalikane Quartier Palmiers 20100 Casablanca	Tel.: +212 2990848 to 57 Fax: +212 2990867 and 69	www.schneider.co.ma
Mozambique	Contacts are assured by	Schneider Electric South Africa		
Myanmar	Contacts are assured by	Schneider Electric Singapore		
Namibia	Contacts are assured by	Schneider Electric South Africa		
Nauru	Contacts are assured by	Schneider Electric Australia		
Nepal	Contacts are assured by	Schneider Electric India		
Netherlands	- Schneider Electric BV	Waarderweg 40 - Postbus 836 2003 RV Haarlem	$\begin{aligned} & \text { Tel.: +31 } 235124124 \\ & \text { Fax: +31 } 235124100 \end{aligned}$	www.schneider-electric.nl
Netherlands Antilles	Contacts are assured by	Schneider Electric Dominican Rep.		
New Caledonia	Contacts are assured by	Schneider Electric Australia		
New Zealand	- Schneider Electric (NZ) Ltd	14 Charann Place Avondale P.O. Box 15355 - New Lynn Auckland	$\begin{aligned} & \text { Tel. : +64 } 98290490 \\ & \text { Fax : +64 } 98290491 \end{aligned}$	www.schneider-electric.co.nz
Nicaragua	Contacts are assured by	Schneider Electric United States		
Niger	Contacts are assured by	Schneider Electric Ivory Coast		
Nigeria	- Schneider Electric Nigeria Limited	Biro plaza - 8th Floor - Plot 634 Abeyemo Alakija Street Victoria Islan - Lagos	$\begin{aligned} & \text { Tel. : +234 } 12702973 \\ & \text { Fax : +234 } 12702976 \end{aligned}$	
Niue	Contacts are assured by	Schneider Electric Australia		
Norfolk island	Contacts are assured by	Schneider Electric Australia		
North Korea	Contacts are assured by	Schneider Electric China		
Northern Mariana islands	Contacts are assured by	Schneider Electric Australia		
Norway	- Schneider Electric Norge A/S	Solgaard Skog 2 Postboks 128-1501 Moss	$\begin{aligned} & \text { Tel.: +476924 } 9700 \\ & \text { Fax: +476925 } 7871 \end{aligned}$	www.schneider-electric.no
Oman	- Schneider Electric CA	c/o Arab Development Co PO Box 439-113 Muscat	$\begin{aligned} & \text { Tel.: +968 } 7716364 \\ & \text { Fax: +968 } 7710449 \end{aligned}$	
Pakistan	- Schneider Electric Pakistan	43-L, 2nd floor, M.M. Alam Road, Gulberg II - Lahore	$\begin{aligned} & \text { Tel.: +92 } 425754471 \text { à a } 73 \\ & \text { Fax: +92 } 425754474 \end{aligned}$	
Palau	Contacts are assured by	Schneider Electric Australia		
Panama	Contacts are assured by	Schneider Electric United States		
Papua New Guinea	Contacts are assured by	Schneider Electric Australia		
Paraguay	Contacts are assured by	Schneider Electric Uruguay		
Peru	- Schneider Electric Peru S.A.	Los Telares nº231 Urb. Vulcano, Ate Lima 03	$\begin{aligned} & \text { Tel.: +511 } 3484411 \\ & \text { Fax: +511348 } 0523 \end{aligned}$	www.schneider-electric.com.pe

Schneider Electric worldwide

Up-dated: 30-07-2003

Philippines	- Schneider Electric Philippines, Inc	5th Floor, ALCO Building 391 Sen, Gil Puyat Avenue Makati 1209	$\begin{aligned} & \text { Tel. : +632 } 8966063 \\ & \text { Fax : +632 } 8967229 \end{aligned}$	
Pitcairn	Contacts are assured by	Schneider Electric Australia		
Poland	- Schneider Electric Polska Sp.zo.o.	ul. Lubinowa 4a 03-878 - Warszawa	$\begin{aligned} & \text { Tel.: +48 } 225118200 \\ & \text { Fax: +48225118210 } \end{aligned}$	www.schneider-electric.pl
Portugal	- Schneider Electric Portugal	Av.do Forte, 3 Edificio Suécia II, Piso 3-A CP 2028 Carnaxide 2795 Linda-A-Velha	$\begin{aligned} & \text { Tel.: +351 } 214165800 \\ & \text { Fax: +351 } 214165857 \end{aligned}$	www.schneiderelectric.pt
Puerto Rico	Contacts are assured by	Schneider Electric United States		
Qatar	- Schneider Electric Qatar Branch	c/o Khalifa BinFahred AI Thani Trad.and Co-P.O. Box 4484 Doha	$\begin{aligned} & \text { Tel.: }+974424358 \\ & \text { Fax: }+974424358 \end{aligned}$	
Reunion	- Schneider Electric	Immeuble Futura, 190, rue des 2 canons BP 646-97497 Sainte Clothilde	$\begin{aligned} & \text { Tel.: +262 } 281428 \\ & \text { Fax: +262 } 283937 \end{aligned}$	
Romania	- Schneider Electric	Bd Ficusului ${ }^{\circ} 42$ Apimondia, Corp.A, et.1, Sector 1 Bucuresti	$\begin{aligned} & \text { Tel.: + +401 } 2030650 \\ & \text { Fax: +401 } 2321598 \end{aligned}$	www.schneider-electric.ro
Russian Federation	- Schneider Electric ZAO	Enisseyskaya 37 129281 Moscow	$\begin{aligned} & \text { Tel.: +7095 } 7974000 \\ & \text { Fax: +7095 } 7974003 \end{aligned}$	www.schneider-electric.ru
Rwanda	Contacts are assured by	Schneider Electric Kenya		
Samoa	Contacts are assured by	Schneider Electric Australia		
San Marino	Contacts are assured by	Schneider Electric Italy		
Sandwich \& Georgia island	Contacts are assured by	Schneider Electric Australia		
Sao Tome \& Principe	Contacts are assured by	Schneider Electric Senegal		
Saudi Arabia	- Schneider Electric	Second Industrial City P.O. Box 89249-11682 Riyadh	$\begin{aligned} & \text { Tel.: +966 } 12651515 \\ & \text { Fax: +966 } 12651860 \end{aligned}$	
Senegal	- Schneider Electric Sénégal	BP 15952 - Dakar-Fann Rond point N'Gor - Dakar	$\begin{aligned} & \text { Tel.: +221 } 8206805 \\ & \text { Fax: +221 } 8205850 \end{aligned}$	
Seychelles	Contacts are assured by	Schneider Electric Reunion		
Sierra Leone	Contacts are assured by	Schneider Electric Ghana		
Singapore	- Schneider Electric Singapore Pte Ltd	10 Ang Mo Kio Street 65 \#02-17/20 TechPoint Singapore 569059	$\begin{aligned} & \text { Tel.: + } 654847877 \\ & \text { Fax: +65 } 4847800 \end{aligned}$	www.schneider-electric.com.sg
Slovak Republic	- Schneider Electric Slovakia spol	Borekova 10 SK-821 06 Bratislava	$\begin{aligned} & \text { Tel. : +02 } 45524010 \text { and } 4030 \\ & \text { Fax : }+0245524000 \end{aligned}$	www.schneider-electric.sk
Slovenia	- Schneider Electric, d.o.o.	Dunasjka 47 1000 Ljubljana	$\begin{aligned} & \text { Tel. : +386 } 12363555 \\ & \text { Fax : +386 1 } 2363559 \end{aligned}$	www.schneider-electric.si
Solomon islands	Contacts are assured by	Schneider Electric Australia		
Somalia	Contacts are assured by	Schneider Electric Egypt		
South Africa	Schneider Electric South Africa (PTY) Ltd	Private Bag X139 Halfway House 1685 - Midrand.	$\begin{aligned} & \text { Tel.: +27 } 112546400 \\ & \text { Fax: +27 } 113158830 \end{aligned}$	www.schneider-electric.co.za
Spain	- Schneider Electric España, S.A.	PI. Dr. Letamendi, 5-7 08007 Barcelona	Tel.: +34 934843100 Fax: +34 934843308	www.schneiderelectric.es
Sri Lanka	- Schneider Electric Industries SA	Liaison office SRI Lanka Level 3B Valiant towers 46/7 Nawam Mawatha-Colombo 2	Tel. : +9477485489	www.schneiderelectric-in.com
St Helena	Contacts are assured by	Schneider Electric Italy		
St Kitts \& Nevis	Contacts are assured by	Schneider Electric Dominican Rep.		
St Lucia	Contacts are assured by	Schneider Electric Dominican Rep.		
St Pierre et Miquelon	Contacts are assured by	Schneider Electric Dominican Rep.		
St Vincent \& Grenadines	Contacts are assured by	Schneider Electric Dominican Rep.		
Sudan	Contacts are assured by	Schneider Electric Egypt		
Suriname	Contacts are assured by	Schneider Electric United States		
Svalbard \& Jan Mayen isl.	Contacts are assured by	Schneider Electric Denmark		
Swaziland	Contacts are assured by	Schneider Electric South Africa		
Sweden	- Schneider Electric AB	Djupdalsvägen 17/19 19129 Sollentuna	$\begin{aligned} & \text { Tel.: + +4686238400 } \\ & \text { Fax: +4686238485 } \end{aligned}$	www.schneider-electric.se
Switzerland	Schneider Electric (Switzerland) S.A.	Schermenwaldstrasse 11 CH-3063 Ittigen	Tel.: +41319173333 Fax: +41319173355	www.schneider-electric.ch
Syrian Arab Republic	- Schneider Electric Syria	Elba Street - Malki Gheibeh and Qassas bldg, 1st floor PO Box 33876-Damascus	$\begin{aligned} & \text { Tel. : +963 } 1137498800 \\ & \text { Fax : +963 } 113717559 \end{aligned}$	

Schneider Electric worldwide

Up-dated: 30-07-2003

Taiwan, Republic of China	- Schneider Electric Taiwan Co Ltd	2FI., N37, Ji-Hu Road, Nei-Hu Dist., Taipei 114	$\begin{aligned} & \text { Tel. : +886 } 287516388 \\ & \text { Fax : +886 } 287516389 \end{aligned}$	www.schneider-electric.com.tw
Tajikistan	Contacts are assured by	Schneider Electric Russian Fed.		
Tanzania, United Rep. of	Contacts are assured by	Schneider Electric Kenya		
Thailand	- Schneider (Thailand) Ltd	20th Floor Richmond Building 75 Sukhumvit 26 Road, Klongtoey Bangkok 10110	$\begin{aligned} & \text { Tel.: +662 } 2049888 \\ & \text { Fax: +662 } 2049816 \end{aligned}$	www.schneider-electric.co.th
Togo	Contacts are assured by	Schneider Electric Ivory Coast		
Tokelau	Contacts are assured by	Schneider Electric Australia		
Tonga	Contacts are assured by	Schneider Electric Australia		
Trinidad \& Tobago	- Schneider Electric	6, 1st Street West Ext. Beaulieu Avenue Trincity Trinidad West Indies	Tel.: 18686404204 Fax: 18686404204	
Tunisia	- Schneider Electric Tunisia	Rue du Lac Oubeira 1053 Les Berges du Lac - Tunis	$\begin{aligned} & \text { Tel.: +216 } 71960477 \\ & \text { Fax: +216 } 71960342 \end{aligned}$	
Turkey	Schneider Elektrik Sanayi Ve Ticaret A.S.	Tütüncü Mehmet Efendi Cad. ${ }^{\circ}: 110$ Kat 1-2-81080 Göztepe - Istanbul	$\begin{aligned} & \text { Tel.: +90 } 2163869570 \\ & \text { Fax: +90 } 2163863875 \end{aligned}$	www.schneiderelectric.com.tr
Turkmenistan	```Schneider Electric Turkmenistan Liaison Office```	rue Neitralny Turkmenistan 28, off.326/327 74000 Achgabad	$\begin{aligned} & \text { Tel. : +993 } 12462952 \\ & \text { Fax : +993 } 12462952 \end{aligned}$	
Turks \& Caicos islands	Contacts are assured by	Schneider Electric Dominican Rep.		
Tuvalu	Contacts are assured by	Schneider Electric Australia		
Uganda	Contacts are assured by	Schneider Electric Kenya		
Ukraine	- Schneider Electric	Rue Krechtchalik 2 252601 Kiev	$\begin{aligned} & \text { Tel.: +380 } 444620425 \\ & \text { Fax: +380 } 444620424 \end{aligned}$	www.schneider-electric.com.ua
United Arab Emirates	- Schneider Electric Abu Dhabi	PO Box 29580 Office Floor 2/Lulu Street Al Marina Plaza Tower Abu Dhabi	$\begin{aligned} & \text { Tel.: +97126 } 339444 \\ & \text { Fax: +9712 } 6316606 \end{aligned}$	
United Kingdom	- Schneider Electric Ltd	Braywick House East Windsor Road - Maidenhead Berkshire SL6 1 DN	Tel.: +44 (0)1 628508500 Fax: +44 (0) 1628508508	www.schneider.co.uk
United States	- Schneider Electric	North American Division 1415 Roselle Road Palatine - IL 60067	$\begin{aligned} & \text { Tel.: +1 } 8473972600 \\ & \text { Fax: +1 } 8479257500 \end{aligned}$	www.squared.com
Uruguay	- Schneider Electric Uruguay S.A.	Ramon Masini 3190 Montevideo	$\begin{aligned} & \text { Tel. : +59 } 827072392 \\ & \text { Fax : +59 } 827072184 \end{aligned}$	
Uzbekistan	Contacts are assured by	Schneider Electric Russian Fed.		
Vanuatu	Contacts are assured by	Schneider Electric Australia		
Vatican city St./Holy See	Contacts are assured by	Schneider Electric Italy		
Venezuela	- Schneider Mg SD TE, S.A	Calle 162/ Piso 2 Edificio Centro Cynamid La Urbina, 1070-75319 Caracas	$\begin{aligned} & \text { Tel.: +58 } 22411344 \\ & \text { Fax: +58 } 22436009 \end{aligned}$	www.schneider-electric.com.ve
Viet Nam	R.R.O. of Schneider Electric Industries S.A.S. in Viet Nam	Unit 2.9, 2nd Floor, e-Town Building 364 Cong Hoa Street Tan Binh District - Ho Chi Minh City	$\begin{aligned} & \text { Tel.: +84 } 88103103 \\ & \text { Fax: +84 } 88120477 \end{aligned}$	
Virgin islands	Contacts are assured by	Schneider Electric Dominican Rep.		
Wallis \& Futuna islands	Contacts are assured by	Schneider Electric Australia		
Western Sahara	Contacts are assured by	Schneider Electric Morocco		
Yemen	Contacts are assured by	Schneider Electric U.A.E.		
Yugoslavia	Schneider Electric Jugoslavija d.o.o.	Ratarski put 27d 11186 Belgrade	$\begin{aligned} & \text { Tel.: +38111 } 192414 \\ & \text { Fax: +38111 } 107125 \end{aligned}$	
Zambia	- Schneider Zambia	Zambia Office c/o Matipi Craft Center Building Plot 1036 - Accra Road PO Box 22792 - Kitwe	$\begin{aligned} & \text { Tel.: +260 } 2222252 \\ & \text { Fax: +260 } 2228389 \end{aligned}$	
Zimbabwe	- Schneider Electric	Zimbabwe Liaison Office 75A Second Street (corner Livingstone Avenue) Harare	$\begin{aligned} & \text { Tel.: +263 } 4707 \text { 179/180 } \\ & \text { Fax: +263 } 4707176 \end{aligned}$	

[^0]: (1) For type 2 coordination.

[^1]: (1) Standard motor power ratings, HP power ratings indicated according to standard UL 508.
 (2) Depending on the configuration of the chosen TeSys model U starter, replace the \bullet with A for standard, B for expandable, and M for multifunction.

[^2]: A1: Soft start/soft stop unit

[^3]: Dimensions:

[^4]: (1) Protective covers can be fitted to the power terminals of ATS 48C14• to C32• starters. ATS 48C41• to 48M12• starters have protection on the front panel and on the sides.
 (2) Starters located 1 m away. The noise levels may change depending on the characteristics of the fans.

[^5]: (1) Please consult our "Modicon Premium automation platform" and "Modicon TSX Micro automation platform" catalogues.

[^6]: Presentation:
 page 1/46

[^7]: Monitoring the parameters with PowerSuite on PPC

[^8]: （1）Pulse width modulation

[^9]: (1) Line voltage 230 V
 (2) The current value is given for a 4 kHz switching frequency. If operation above 4 kHz needs to be continuous, the nominal drive current should be derated by 10% for $8 \mathrm{kHz}, 20 \%$ for 12 kHz and 30% for 16 kHz .
 (3) For 60 seconds.
 (4) Drive supplied with an integrated EMC filter which cannot be disconnected.
 (5) With integrated fan.

[^10]: (1) These power ratings are for a maximum switching frequency of 4 kHz , in continuous operation. The switching frequency is adjustable from 2 to 16 kHz .
 Above 4 kHz , derate the nominal drive current. The nominal motor current should not exceed this value: see derating curve on page 2/60.
 (2) Typical value for a 4-pole motor and a maximum switching frequency of 4 kHz , with no additional line choke, for the max. prospective line current.
 (3) If line Isc is greater than the values in the table, add line chokes (see page 2/45).
 (4) To order a drive intended for wire guiding applications, add a \boldsymbol{T} to the end of the reference.
 (5) Nominal supply voltages, min. U1, max. U2 (200-240 V; 380-500 V).

[^11]: (1) Please consult our specialist catalogues.

[^12]: Note: the HF equipotential ground connection between the drive, motor and cable shielding does not remove the need to connect the PE protective conductors (green-yellow) to the appropriate terminals on each unit.
 If using an additional input filter, it should be mounted beneath the drive and connected directly to the line supply via an unshielded cable. Link 3 on the drive is then

[^13]: GV2 L
 +C1K
 $+$
 ATV 31C00000

[^14]: Monitoring the different parameters with the oscilloscope function in PowerSuite for PC

[^15]: Calculating the drive rating:
 \ln drive $>\ln 1+\ln 2=\ldots \ln x$

[^16]: Dimensions

[^17]: (1) Filter performance is ensured if the cable lengths between the motor and the drive given in the above table are not exceeded. If motors are connected in parallel, it is the total length that should be taken into account. If a cable longer than that recommended is used, the filters may overheat.
 (2) For frequencies greater than 4 kHz or cable lengths longer than 100 m , please consult your Regional Sales Office.

[^18]: HSP: high speed
 The curve coefficient is fixed, with $\mathrm{t} 2=0.6 \mathrm{xt1}$.
 where t 1 = set ramp time

[^19]: （1）In most cases this filter is unnecessary as the ready－assembled drive can be located very close to the motor．

[^20]: See pages $3 / 2$ and $3 / 3$.

[^21]: (1) For power ratings $\leq 250 \mathrm{~W}$, derate the motor by 20% instead of 50% at very low frequencies.
 (2) The nominal frequency of the motor and the maximum output frequency can be adjusted
 (1) For power ratings $\leq 250 \mathrm{~W}$, derate the motor by 20% instead of 50% at very low frequenci
 (2) The nominal frequency of the motor and the maximum output frequency can be adjusted between 40 and 500 Hz .
 Caution: check the mechanical overspeed characteristics of the selected motor with the manufacturer.

[^22]: NS8OHMA
 LC1 D
 $\stackrel{+}{A T V} 58$

[^23]: (1) For these speed drives use the air exchanger mounting kit: see page 2/135.

[^24]: - The arrow indicates which function has priority.
 \uparrow
 Example: the "fast stop" function has priority over the
 "d.c. injection braking" function.

[^25]: (1) Except for specific customer cards VW3-A5821•

[^26]: LI1: forward
 LIx: reverse
 Lly: + speed
 Lly : + speed
 LIz:- speed

[^27]: (1) Chokes are supplied with 2 additional mounting brackets for mounting on a vertical support.

[^28]: (1) For longer cables, please consult your Regional Sales Office. Choke performance is ensured by not exceeding the

[^29]: (1) On the 1st I/O extension card, input DI5 is assigned to locking the drive

[^30]: (1) For the ATV-68•10N4 drive, the DC bus is directly accessible on the power terminals.

[^31]: 1) Compatible from version V2.3 ie08 of the ATV 58 drive.
 (2) Please consult our "Modicon Premium and PL7 software" catalogue.
 (3) At 100 Mbps, connection of the VW3 A58310 communication card on the Ethernet network via a switch only authorises data exchange in Half Duplex.
[^32]: (1) Library on CD-ROM containing:

 - manuals and quick reference guides for starters and speed drives,
 - user's manuals for communication gateways.

[^33]: (1) Please consult our "Modicon Premium and PL7 software" catalogue.

[^34]: (1) For additional information, please consult your Regional Sales Office.

[^35]: (1) For additional information, please consult your Regional Sales Office.

