

Manuale d'installazione e uso

Installation and user manual

Vogliamo farvi risparmiare tempo e denaro!

Vi assicuriamo che la completa lettura di questo manuale vi garantirà una corretta installazione ed un sicuro utilizzo del prodotto descritto.

We wish to save you time and money!

We can assure you that the thorough reading of this manual will guarantee correct installation and safe use of the product described.

AVVERTENZE IMPORTANTI / IMPORTANT WARNING

PRIMA DI INSTALLARE O INTERVENIRE SULL'APPARECCHIO, LEGGERE ATTENTAMENTE E SEGUIRE LE ISTRUZIONI CONTENUTE IN QUESTO MANUALE.

Questa apparecchiatura è stata costruita per funzionare senza rischi per gli scopi prefissati purché:

• l'installazione, la conduzione e la manutenzione siano eseguite secondo le istruzioni contenute in questo manuale;

• le condizioni dell'ambiente e della tensione di alimentazione rientrino tra quelle specificate.

Ogni utilizzo diverso da questo e l'apporto di modifiche, non espressamente autorizzate dal costruttore, sono da intendersi impropri.

La responsabilità di lesioni o danni causati da uso improprio ricadrà esclusivamente sull'utilizzatore. Si osservi che questa scheda contiene componenti elettrici sotto tensione e quindi tutte le operazioni di servizio o manutenzione devono essere condotte da personale esperto e qualificato, cosciente delle necessarie precauzioni. Prima di accedere alle parti interne sezionare l'apparecchiatura dalla rete elettrica. Smaltimento delle parti

La scheda è composta da parti in metallo e da parti in plastica. Tutte queste parti vanno smaltite secondo le Normative locali in materia di smaltimento.

BEFORE INSTALLING OR OPERATING ON THE DEVICE, READ CAREFULLY THE INSTRUCTIONS ON THIS MANUAL

This instrument has been designed to operate without risks only if:

• installation, operation and maintenance are performed according to the instructions of this manual;

• environmental conditions and supply voltage fall within the values indicated here below.

Any different use or changes, which have not been authorized by the manufacturer previously, are considered improper. Responsibility for injuries or damages caused by improper use will fall exclusively on the user.

Be careful: voltage is present in some electrical components of this instrument, thus all the service or maintenance operations must be done only by expert and skilled personnel, aware of the necessary precautions to be taken. Before accessing the internal parts, cut off the power supply.

Disposal of the instrument

The controller is made up of metal and plastic parts. All these components must be disposed of according to the environmental protection laws in force in your own country.

INDICE

INTRO	ODUZIONE	1
1.	CARATTERISTICHE GENERALI	1
2.	ARCHITETTURA HARDWARE	2
2.1	Codici	2
2.2	Descrizione	2
3.	INSTALLAZIONE	4
3.1	Connessione al pCOB	4
3.2	Connessione al pCO ^{2,1,XS}	4
3.3	Connessione alla rete LonWorks®	5
4.	IMPOSTAZIONI PCO	6
5.	PROGRAMMAZIONE DELLA SCHEDA DI INTERFACCIA	7
5.1	Costruzione del programma personalizzato per l'applicazione pCO	7
5.2	Descrizione delle variabili non standard	9
6.	IL PROGRAMMA DI TEST	11
6.1	File allegati	11
6.2	Come si usa il programma di test per pCO e pCO ²	11
6.3	Programma di test: variabili di scambio tra pCO e rete LonWorks®	11
7.	CARATTERISTICHE TECNICHE	13
8.	APPENDICE A	14

INTRODUZIONE

Le schede d'interfaccia seriale per reti LonWorks® sono una opzione dei controllori elettronici della serie pCO Sistema (da qui in avanti pCO) che permettono la connessione diretta di quest'ultimi ad una rete LonWorks®.

L'utilizzo di queste schede presuppone la conoscenza e l'utilizzo degli strumenti d'installazione e manutenzione delle reti LonWorks®.

1. CARATTERISTICHE GENERALI

AVVERTENZA IMPORTANTE: per essere operativa, la scheda deve essere programmata in funzione dell'applicativo installato sul pCO.

Il programma da installare nella scheda può corrispondere ad un profilo LonMark® standard (contattare Carel per conoscere i profili LonMark® disponibili) oppure può essere un profilo realizzato su specifica dell'utente (profilo personalizzato).

La programmazione della scheda è effettuata in fabbrica nel caso di profili LonMark®. Va invece effettuata sul campo nel caso di profili personalizzati. Anche in questo caso è però possibile richiedere a Carel la pre-programmazione delle schede e la conseguente creazione di un codice personalizzato. Per informazioni commerciali contattare Carel.

Per la generazione di un profilo personalizzato e per la programmazione sul campo della scheda l'utente deve seguire i seguenti passi (descritti in dettaglio in **Programmazione della scheda d'interfaccia**):

- 1. compilazione di una tabella che definisce le variabili di scambio tra pCO e rete LonWorks® secondo le specifiche desiderate;
- 2. invio della tabella a Carel. In base a tale tabella, Carel produrrà il profilo personalizzato (file NXE) che sarà restituito al cliente;
- 3. caricamento del profilo personalizato nella memoria dell'interfaccia mediante LonMaker[™] o altri strumenti di installazione e manutenzione delle reti LonWorks[®].

Non conoscendo a priori l'applicativo che verrà installato sul pCO, le schede d'interfaccia sono prodotte con una programmazione minima che consente solo il caricamento sul campo del profilo LonWorks® e la gestione di tre variabili non standard descritte in **Programmazione della scheda d'interfaccia**.

AVVERTENZA IMPORTANTE. Il software applicativo installato nel pCO deve possedere le caratteristiche descritte in **Adattamento del software applicativo**.

Le schede sono disponibili in due modelli per ciascun modello del controllore pCO e si differenziano per il tipo d'interfaccia verso la rete LonWorks®.

2. ARCHITETTURA HARDWARE

2.1 Codici

Dal 03/03/2003 le schede di interfaccia LonWorks hanno assunto dei nuovi codici di vendita come di seguito indicato:

	1	
NUOVO CODICE	VECCHIO CODICE	DESCRIZIONE
per pCO		
PCOB0000F0	PCOSERFTTL	interfaccia con FTT-10A 78 kbs (TP/FT-10
PCOB0000R0	PCOSER485L	interfaccia con RS485 39 kbs (TP/485-39)
per pCO ²		
PCO20000F0	PCO20LFTT0	interfaccia con FTT-10A 78 kbs (TP/FT-10
PCO20000R0	PCO20L4850	interfaccia con RS485 39 kbs (TP/485-39)

per pCO ¹ , pCO ^C , pCO ^{XS}		
PCO10000F0	PCO10LFTT0	interfaccia con FTT-10A 78 kbs (TP/FT-10
PCO10000R0	PCO10L4850	interfaccia con RS485 39 kbs (TP/485-39)
		Tab. 2.1.1

2.2 Descrizione

2.2.1 Canali fisici

A seconda del modello le schede consentono l'interfacciamento con due canali fisici TP/FT-10 e TP-RS485-39 descritti nella letteratura LonWorks®.

PCO*****F0 utilizzano un transceiver Echelon® FTT-10, approvato per essere usato sul canale TP/FT-10.

Tale canale è caratterizzato dalle seguenti caratteristiche principali:

- permette il collegamento di al massimo 64 nodi su un singolo segmento di rete;
- i nodi sono collegati senza alcun vincolo nella topologia: possono cioè essere connessi a stella, ad anello, su un unico bus, o con qualsiasi combinazione di queste topologie;
- velocità di comunicazione: 78.125 kbps;
- massima distanza (cavo Belden 85102): 500 m se il collegamento tra i nodi è a topologia libera; 2700 m il collegamento è a bus con doppia terminazione di linea.

Per ulteriori dettagli si rimanda alla documentazione ufficiale LonWorks® FTT-10° Free Topology Transceiver User's Guide.

PCO*****R0 utilizzano un transceiver che soddisfa le specifiche EIA RS485. In particolare:

- il numero massimo di nodi è 256 (l'impedenza di ingresso del transceiver è 1/8 di carico unitario);
- il collegamento dei nodi può essere effettuato solo su un unico bus;
- la velocità di comunicazione utilizzata dal transceiver è di 39 kbps;
- massima distanza (cavo 22AWG Livello IV): 1200 m.

Per ulteriori dettagli si rimanda al documento della Electronic Industries Association (1983) EIA RS-485 Standard, e alla documentazione ufficiale LonWorks® Twisted Pair Control Module User's Guide.

2.2.2 Planimetria schede

Fig. 2.2.2.1 - PCOB0000*0

Fig. 2.2.2.2 - PCO20000*0, PCO10000*0

- 1. connettore verso pCO;
- 2. morsettiera verso rete LonWorks® (GND, A, B);
- 3. service pin;
- 4. LED verde di service;
- 5. LED rosso di anomalia.

Per come attivare il service pin vedi Connessione alla rete LonWorks®.

2.2.3 Significato e funzione dei LED

Il LED verde di service:

- segnala lo stato del nodo come da protocollo LonWorks®: hardware guasto: sempre ON o sempre OFF; nodo configurato (funzionamento normale): ½ secondo ON, poi sempre OFF; nodo NON configurato: lampeggiante a ½ Hz; nodo senza programma applicativo: 1 s ON, 2 s OFF, poi sempre OFF; nodo in reset continuo: lampeggiante;
- rimane acceso durante l'attivazione del service pin;
- rimane acceso per un secondo in caso di ricezione di un comando WINK da rete (vedi **Connessione alla rete LonWorks**®).

Il LED rosso di anomalia:

• segnala problemi di connessione tra scheda e pCO.

AVVERTENZA

In caso d'accensione del LED rosso, verificare di aver seguito scrupolosamente le indicazioni descritte in **Installazione** (IN PARTICOLARE DI AVERE IMPOSTATO IL BAUD RATE DI COMUNICAZIONE DEL PCO A <u>4800 BAUD</u>).

3. INSTALLAZIONE

AVVERTENZE IMPORTANTI: precauzioni nel maneggiare la scheda.

I danneggiamenti elettrici che si verificano sui componenti elettronici avvengono quasi sempre a causa delle scariche elettrostatiche indotte dall'operatore. È quindi necessario prendere adeguati accorgimenti per queste categorie di componenti, ed in particolare:

- prima di maneggiare qualsiasi componente elettronico o scheda, toccare una messa a terra (il fatto stesso di evitare di toccare un componente non è sufficiente in quanto una scarica di 10000 V, tensione molto facile da raggiungere con l'elettricità statica, innesca un arco di circa 1 cm);
- i materiali devono rimanere per quanto possibile all'interno delle loro confezioni originali. Se necessario, prelevare la scheda da una confezione e trasferire il prodotto in un imballo antistatico senza toccare con le mani i lati della scheda su cui sono montati i componenti elettronici;
- evitare nel modo più assoluto di utilizzare sacchetti in plastica, polistirolo o spugne non antistatiche;
- evitare nel modo più assoluto il passaggio diretto tra operatori (per evitare fenomeni di induzione elettrostatica e conseguenti scariche).

3.1 Connessione al pCOB

Per collegare la scheda al pCOB:

- togliere l'alimentazione al pCOB;
- inserire la scheda d'interfaccia nel corrispondente connettore; la scheda deve essere infilata nelle apposite guide (i due fori) che si trovano ai lati dei contatti;
- durante il montaggio, assicurarsi che la scheda d'interfaccia sia perfettamente verticale rispetto al pCOB per evitare di danneggiare i contatti;
- il connettore a pettine sul pCOB deve essere inserito perfettamente nel connettore presente sulla scheda d'interfaccia.
- ridare alimentazione al pCOB; se la seriale di supervisione del pCOB è stata impostata per funzionare a 4800 baud, il led rosso sulla scheda si accenderà per qualche secondo e si spegnerà subito dopo, indicando un corretto funzionamento.

3.2 Connessione al pCO^{2,1,XS}

Con riferimento alle Figg. 3.2.1 ÷ 3.2.4, l'inserimento della scheda nel pCO si ottiene secondo questa procedura:

- 1. togliere l'alimentazione al pCO;
- 2. con un cacciavite, togliere lo sportellino serial card (vedi Fig. 3.2.1);
- 3. con un tronchesino, eliminare dallo sportellino la parte plastica prefratturata, ottenendo il foro corrispondente all'uscita del connettore a 3 vie (vedi Fig. 3.2.2);
- 4. inserire la scheda opzionale nel corrispondente connettore a pettine, inizialmente tenendola obliqua e curando poi che essa sia ben inserita e sia in battuta sui due appoggi plastici solidali al contenitore del pCO (vedi Fig. 3.2.3);
- 5. richiudere lo sportellino facendo combaciare il connettore esposto della scheda seriale con il foro eseguito sullo sportellino (vedi Fig. 3.2.4).
- ridare alimentazione al pCO; se la seriale di supervisione del pCO è stata impostata per utilizzare il protocollo Carel a 4800 baud, il led rosso sulla scheda si accenderà per qualche secondo e si spegnerà subito dopo, indicando un corretto funzionamento.

Fig. 3.1.1

3.3 Connessione alla rete LonWorks®

La connessione fisica alla rete LonWorks® si ottiene tramite il connettore a morsetti estraibili presente sulla scheda e deve essere eseguita come da indicazioni e specifiche di Echelon®. Per ulteriori informazioni relative all'installazione, alla manutenzione, alla sezione ed al tipo di cavo si rimanda alla letteratura LonWorks®.

3.3.1 Service Pin

Per attivare il *service pin* è sufficiente cortocircuitare per un istante i due *pin* presenti sulla scheda (vedi fig. 2.2.2.1 e 2.2.2.2 n.3) con la punta di un cacciavite o simile.

L'attivazione del *service pin*, è riservata solo alla fase d'installazione del nodo. Quando il *pin* è attivato, il nodo invia un messaggio *broadcast* in rete LonWorks® contenente le informazioni necessarie per essere identificato.

3.3.2 L'evento WINK

Sulla rete LonWorks® un generico supervisore può inviare ad un nodo specifico il comando di WINK.

In questo modo viene generato un evento a cui l'applicativo su quel nodo può rispondere con una qualsiasi azione che il programmatore decide di intraprendere.

Nel caso specifico l'interfaccia accende per un secondo il LED di *service*, rendendo quindi possibile una verifica del corretto funzionamento della connessione tra interfaccia e rete LonWorks®.

4. Impostazioni pCO

Sul pCOB va impostato solo il baudrate della comunicazione seriale a 4800 baud.

Sul pCO2,1,XS va impostato anche il protocollo Carel sulla seriale di supervisione.

L'indirizzo seriale del pCO non è rilevante in quanto viene automaticamente riconosciuto dalla scheda di interfaccia.

4.1.1 Adattamento del software applicativo (rivolto a sviluppatori EasyTools)

Il software applicativo installato nel pCO deve possedere le seguenti caratteristiche:

- gestire la variabile di sistema INI BAUD SPV per l'impostazione della velocità di comunicazione con la scheda di interfaccia a 4800 baud:
- trasmettere alla supervisione con gli atomi Ra_IO_L, RaOut_L, RI_IO_L, RiOut_L le variabili del nel pCO che si vogliono rendere disponibili in rete LonWorks®;
- garantire la corrispondenza tra il range delle variabili del pCO che si vogliono rendere disponibili in rete LonWorks® e il range del tipo SNVT ad esse associato (vedi Costruzione del programma personalizzato per l'applicazione pCO).

Quest'ultimo punto necessita di un ulteriore approfondimento.

E' infatti necessario che il pCO moltiplichi/divida le variabili inviate/ricevute al/dal supervisore per un fattore di correzione che dipende dal tipo di variabile SNVT ad esse associato.

Questo implica che il programmatore EasyTools deve conoscere le associazioni tra variabili Carel e SNVT, già in fase di scrittura del software applicativo.

In questo caso sono d'aiuto le indicazioni dettate dai profili funzionali LonMark[®] per le applicazioni HVAC, da cui si traggono infatti le seguenti associazioni per le grandezze di uso più comune:

Grandezza Misurata	SNVT associata	Risoluzione
Temperatura	(105) SNVT_temp_p	0.01°C
Umidità	(81) SNVT_lev_percent	0.005%
Pressione	(30) SNVT_press	0.1kPa
Tempo	(107) SNVT_time_sec	0.1s
Contatori	(8) SNVT_cont	1
Stati digitali	(95) SNVT_switch	1
		Tab 4111

Tab.4.1.1.1

Per le variabili INTERE Carel (risoluzione 1) associate ai tipi SNVT_cont e SNVT_switch e per le variabili ANALOGICHE Carel (risoluzione 0.1) associate ai tipi SNVT_press e SNVT_time_sec non ci sono conversioni da effettuare poiché utilizzano la stessa risoluzione sia nell'ambiente Carel che in quello LonWorks.

Pertanto potrebbero essere gestite con gli atomi tradizionali R*IN/R*OUT.

Quando però la risoluzione delle variabili pCO e di quelle LonWorks[®] associate non coincide, vanno effettuate delle conversioni sulle variabili che vanno o arrivano dalla rete LonWorks®.

Per facilitare e gestire in modo corretto le conversioni dei dati da e verso la rete LonWorks[®] sono stati creati degli appositi macroblocchi in sostituzione dei tradizionali atomi R*IN/R*OUT.

I nuovi macroblocchi si chiamano RAOUT_L, RIOUT_L, RA_IO_L, RI_IO_L e permettono di impostare il fattore di conversione e la sua abilitazione.

Per ulteriori dettagli si rimanda alla letteratura EasyTools.

ESEMPIO

Grandezza Misurata	Tipo di var. Carel	Esempio di Misura	Valore in rete Carel	Risoluzione Carel	SNVT associata	Risoluzione LonWorks®	Valore in rete LonWorks®	Fattore conversione
Temperatura	ANA	10,2°C	102	0.1°C	105 - SNVT_temp_p	0.01°C	1020	10
Umidità	ANA	50,4%	504	0.1%	81 -	0.005%	10800	20
Unnunta	INT	55%	55	1%	SNVT_lev_percent	0.003%	11000	200
Drassiona	ANA	15,3kPa	153	0.1kPa	20 SNUT proce	0.1kDo	153	1
Flessione	INT	13kPa	13	1kPa	50 - SINV I_pless	0.1KFa	130	10
Tompo	ANA	600,5s	6005	0.1s	107 -	0.1c	6005	1
Tempo	INT	15s	15	1s	SNVT_time_sec	0.18	150	10
Contatori	INT	33	33	1	8 - SNVT_cont	1	33	1
Stati digitali	DIG	1	1	1	95 - SNVT_switch	1	1	1

5. PROGRAMMAZIONE DELLA SCHEDA DI INTERFACCIA

Per essere operativa, la scheda deve essere programmata in funzione dell'applicativo installato sul pCO.

Il programma risiede nella memoria flash del Neuron[®] Chip, il componente elettronico che gestisce il protocollo delle reti LonWorks[®], il LonTalkTM. La programmazione di tale memoria può essere effettuata direttamente dall'utente via rete LonWorks[®], utilizzando i sistemi di installazione e manutenzione tipo LonMakerTM.

Il programma da scaricare nella scheda può corrispondere ad un profilo LonMark® standard (contattare Carel per conoscere i profili LonMark® disponibili) oppure può essere un profilo realizzato su specifica dell'utente (profilo personalizzato).

La programmazione della scheda è effettuata in fabbrica nel caso di profili LonMark®. Va invece effettuata sul campo nel caso di profili personalizzati. Anche in questo caso è però possibile richiedere a Carel la pre-programmazione delle schede e la conseguente creazione di un codice personalizzato. Per informazioni commerciali contattare Carel.

5.1 Costruzione del programma personalizzato per l'applicazione pCO

5.1.1 Variabili di rete

L'interfaccia tra pCO e rete LonWorks® è in grado di gestire fino a 62 variabili di rete.

Di queste 62 variabili:

- 59 possono essere direttamente associate ad altrettante variabili definite nell'applicativo pCO. E' cura dell'utilizzatore specificare l'associazione desiderata, nonché il tipo di variabile e la direzione (vedi **Tabella di "cross-reference"**). In base alle specifiche fornite, verrà creato da Carel il file che l'utente scaricherà nella scheda interfaccia.
- Le rimanenti 3 variabili sono riservate alla gestione dell'interfaccia stessa. Sono variabili non standard che permettono la visibilità di tutte le variabili definite nell'applicativo pCO (vedi **Descrizione delle variabili non standard**).

5.1.2 Tabella di "cross-reference"

Il primo passo è la compilazione da parte dell'utente di una tabella a 5 colonne come quella illustrata di seguito, che definisce le variabili di scambio tra pCO e rete LonWorks® secondo le specifiche desiderate:

Tipo	Indice pCO	Nome NV	Tipo NV	Direzione
ANL	1	nvoAnalog1	105	output
ANL	2	nviAnalog2	81	input
ANL	3			
	•••	•••		
ANL	207	nviAnalog207	39	input
INT	1	nviInteger1	8	input
	•••	•••		
INT	207	nvoInteger207	81	output
DGT	1	nvoDigital1	95	output
DGT	207	nvoDigital207	95	output

Tab. 5.1.2.1

La tabella non compilata NV_TABLE.XLS per Microsoft Excel è disponibile all'indirizzo http://ksa.carel.com, nell'area "Free Download".

Le colonne **Tipo** e **Indice pCO** sono fisse.

- La colonna Tipo indica il tipo di variabile del pCO (ANL per analogica, INT per intera e DGT per digitale).
- La colonna *Indice pCO* indica l'indice Carel corrispondente a quella variabile.

AVVERTENZA: il significato delle variabili, l'indice corrispondente e la loro disponibilità in rete è funzione dell'applicativo installato su pCO.

L'*Indice pCO* può variare da 1 a 207 per tipo. Nella generica tabella quindi sono presenti in tutto 207*3 = 621 righe, corrispondenti allo spazio indirizzabile del pCO; solo le variabili trasmesse in rete (con gli atomi R*IN/R*OUT) sono però a disposizione dell'utente per la personalizzazione.

La tabella che descrive il significato, il tipo e l'indice (*Indice pCO*) delle variabili disponibili in rete si trova nel manuale dell'applicativo stesso alla voce **Database del supervisore**.

Le altre colonne **Nome NV**, **Tipo NV**, **Direzione**, vanno compilate (in Tab. 5.1.2.1 sono riportati in corsivo degli esempi di come possono essere compilate).

• *Nome NV* specifica il nome (MAX. 16 caratteri, senza spazi e senza punti) che si vuole associare alla variabile di rete e che verrà usata come interfaccia LonWorks® verso l'esterno.

Al nome di una variabile di rete può essere premesso il relativo codice (nvi, nvo) descrivente la categoria di memorizzazione, come definito sotto. Per compattezza, è preferibile non utilizzare "underscore" e tutti i caratteri sono in

genere minuscoli, tranne il primo. Tipicamente si seguono le seguenti convenzioni:

network variable input: nviXxxxxxxxxx

network variable output: nvoXxxxxxxxxx

A causa della limitazione di 16 caratteri per i nomi delle variabili di rete è quasi d'obbligo usare delle abbreviazioni. Può quindi essere d'aiuto la seguente lista che ne rappresenta le più tipiche:

Actual	Act	Minimum	Min
Calendar	Cal	Parts-per-million	Ppm
Clear	Clr	Object	Obj
Continuous	Cont	Output	Out
Delay	Dly	Position	Pos
Device	Dev	Range	Rnge
Discrete	Disc	Request	Req
Electric	Elec	Rate	Rt
Feedback	Fb	Resistance	Res
Floating-point	f	Source	Src
Frequency	Freq	Standby	Stby
Hardware	Hw	String	Str
Increment	Inc	Table	Tbl
Inhibit	Inh	Time	Т
Input	In	Translation	Trans
Level	Lev	Volume	Vol
Maximum	Max	Watt-hour	Whr
Micrometer	Micr		

Tab. 5.1.2.2

- *Tipo NV* indica il tipo inteso come numero specificato dalla tabella SNVT, *Standard Network Variables Types*, che identifica la grandezza fisica e il formato della variabile di rete. Gli Standard Network Variable Types (SNVT) facilitano l'interoperabilità fornendo una ben definita interfaccia per la comunicazione tra nodi di differenti costruttori. Un nodo, infatti, può essere installato in una rete e connesso logicamente ad altri nodi attraverso le variabili di rete purché i tipi di dati coincidano.
- **AVVERTENZA**: la lista dei tipi di variabile SNVT gestiti dall'interfaccia e dettagli sulla loro definizione è contenuta nell'**appendice A**. Il numero corrispondente al tipo di variabile desiderato contenuto nella prima colonna (SNVT number) è quello da inserire nella tabella da compilare (*Tipo NV*).
- *Direzione* indica la direzione in input o output della variabile:
 - come <u>input</u>, dal punto di vista del pCO, si definiscono valori che vengono acquisiti dal bus LonWorks® e poi copiati nella memoria del pCO;

con <u>output</u>, al contrario, si specificano le variabili di rete che esportano sul bus LonWorks® i valori che il pCO genera al suo interno.

ESEMPIO: Supponiamo che si voglia rendere disponibile in rete LonWorks® la misura effettuata dal pCO della temperatura ambiente (variabile di sola lettura) e che nel particolare applicativo installato nel pCO questa sia rappresentata dalla variabile analogica con indirizzo 1. La prima riga della tabella va compilata con i seguenti valori:

Nome NV: inserire un nome a piacere che descriva la variabile agli altri nodi in rete; es. nvoRoomTemp

Tipo NV: 105 (SNVT_temp_p)

Direzione: output

Quindi:

Tipo	Indice pCO	Nome NV	Tipo NV	Direzione
ANL	1	nvoRoomTemp	105	output
	•••			

Supponiamo poi che si voglia rendere disponibile in rete LonWorks® anche il set point della temperatura ambiente (variabile di lettura/scrittura) e che questo sia rappresentato dalla variabile analogica con indice 13. La tabella va compilata nel seguente modo, creando due variabili LonWorks® corrispondenti allo stesso indice pCO:

ANL	13	nviSetpoint	105	input
ANL	13	nvoSetpoint	105	output

Una volta costruita la tabella, riempiendo le sole righe che interessano (se ne hanno a disposizione al massimo 59 perché 3 sono riservate e 62 è il numero massimo previsto dal protocollo LonTalkTM) l'utente può cancellare le righe inutilizzate e consegnare la tabella alla Carel che provvederà alla generazione del profilo corrispondente.

L'applicazione verrà riconsegnata all'utente dell'interfaccia come file avente un nome definito da Carel ed estensione .NXE.

L'utente dovrà quindi riversare il file .NXE nella memoria della scheda d'interfaccia utilizzando sistemi di installazione e manutenzione delle reti LonWorks®, come LonMakerTM o NodeBuilder® e rendere quindi il nodo in grado di operare.

Oltre al file .NXE, verrà consegnato anche un file con estensione .XIF (*External Interface File*), che contiene le informazioni di base sul nodo e che viene usato da uno strumento di gestione della rete per la configurazione del nodo stesso;

Riassumendo, i passi che l'utente deve compiere sono i seguenti:

- 1. compilazione della tabella che definisce le variabili di scambio tra pCO e rete LonWorks® secondo le specifiche desiderate;
- 2. invio della tabella a Carel. In base a tale tabella, Carel produrrà i corrispondenti file applicativi .NXE e .XIF che saranno restituiti al cliente;
- 3. caricamento del file .NXE in questione nella memoria dell'interfaccia mediante LonMaker™ o altri strumenti di installazione e manutenzione delle reti LonWorks®.

5.2 Descrizione delle variabili non standard

Le seguenti tre variabili sono variabili non standard che vengono utilizzate per comunicare al pCO dei particolari comandi e per verificarne l'esito. Tali comandi hanno lo scopo di permettere la visibilità in rete LonWorks® di tutte le varibili definite nell'applicativo pCO, superando i limiti fisici della memoria del Neuron® Chip che consente l'indirizzamento di al massimo 62 varialbili di rete.

5.2.1 xif_data

Consente la lettura dello stato dell'interfaccia, e la verifica delle operazioni di scrittura o lettura intraprese. Viene trasmessa solo in caso di variazione di uno dei suoi campi:

network output struct {

-	-
unsigned long	sfw_idnt;
unsigned short	pco_addr;
unsigned short	xif_stat;
unsigned short	xif_flag;

} xif_data;

sfw_idnt: versione software.

E' codificata in forma esadecimale con le prime due cifre rappresentanti i numeri di versione prima del punto, e le restanti due i numeri dopo il punto. Nel caso della versione 1.00 l'identificativo è quindi 0x0100.

pco_addr: indirizzo del pCO.

Al reset è nullo, poi assume il valore impostato sul pCO e letto nella fase iniziale.

xif_stat: stato dell'interfaccia.

Può assumere i seguenti valori:

0: connessione a pCO e acquisizione dell'indirizzo (fase immediatamente successiva al reset),

1: connessione a pCO attivata,

2: acquisizione iniziale di tutte le variabili pCO,

3: funzionamento normale

Gli stati 0 ed 1 sono molto rapidi, mentre lo stato 2 può durare alcuni secondi in funzione del numero di variabili lato pCO. A regime l'interfaccia si porta nello stato 3.

xif_flag: acknowledge della scrittura su pCO.

Viene posto a 0 in seguito ad una scrittura di una variabile pCO da rete LonWorks®.

Viene posto ad 1 quando il pCO conferma l'avvenuta scrittura. Il protocollo LonTalkTM assicura infatti il trasporto del dato dal nodo di partenza al nodo costituito dall'interfaccia, mentre il trasporto dall'interfaccia al pCO è a carico dell'interfaccia stessa.

5.2.2 wr_cmnd

Consente di ottenere informazioni sullo stato dell'interfaccia e di scrivere o leggere qualsiasi variabile del pCO. I suoi campi sono raccolti nella seguente struttura:

network input struct {

unsigned short	cmnd;
unsigned char	type;
unsigned short	indx;
signed long	data;

} wr_cmnd;

cmnd: comando richiesto.

Sono previsti i seguenti comandi:

- 0: propagazione forzata della variabile *xif_data* (utile per esaminare lo stato dell'interfaccia). In questo caso gli altri campi sono privi di significato e non vengono utilizzati.
- 1: scrittura di una qualsiasi variabile del pCO.
- 2: lettura di una qualsiasi variabile del pCO. In questo caso il campo data viene ignorato. In seguito alla ricezione di questo comando il valore corrente della variabile ed ogni sua successiva variazione verrà rispecchiato nella variabile *rd_prmt*.

type: tipo della variabile pCO in scrittura o lettura (A, I, o D), **indx**: indice della variabile pCO in scrittura o lettura (da 1 a 207), **data**: valore della variabile pCO in scrittura (da –32767 a 32767).

5.2.3 rd_prmt

Consente di leggere il valore corrente di una qualsiasi variabile pCO (selezionata mediante *wr_cmnd*) ed ogni sua successiva variazione. Viene trasmessa solo in caso di variazione di uno dei suoi campi:

network output struct {

stat;
type;
indx;
data;

} rd_prmt;

stat: stato relativo alla lettura della variabile da pCO.

- I possibili valori sono:
- 0: lettura in corso, quindi il campo data è privo di significato (immediatamente successivo alla ricezione di un comando di lettura tramite *wr_cmnd*)
- 1: lettura disponibile; nel campo data è contenuto il valore corrente della variabile.
- 2: lettura non riuscita (il pCO non risponde alla richiesta). Questa condizione può verificarsi se la variabile selezionata non è stata definita nell'applicativo pCO.

type: tipo della variabile pCO in lettura (A, I, o D),

indx: indice della variabile pCO in lettura (da 1 a 207),

data: valore della variabile pCO (da -32767 a 32767).

Il valore viene aggiornato ad ogni variazione della variabile.

6. IL PROGRAMMA DI TEST

E' disponibile una applicazione di test per il pCO e pCO² che via rete LonWorks® permette di:

- visualizzare lo stato di tutti gli ingressi del controllore,
- settare tutte le uscite,
- settare il valore di alcune variabili.

AVVERTENZA: Tutti i file descritti di seguito sono disponibili nel file PCOLON_TEST.ZIP all'indirizzo http://ksa.carel.com, nell'area "Free Download".

6.1 File allegati

I seguenti file costituiscono il programma di test e ne permettono l'utilizzo:

Per il pCO

TESTEN.BIN file binario con cui programmare la Eprom del pCO (1 MBit).

Per il pCO²

TESTEN.IUP: file della applicazione di test (interfaccia utente);

TEST.BLB: file della applicazione di test (algoritmo).

Entrambi i file vanno scaricati nel pCO² mediante il software Carel WinLoad, disponibile all'indirizzo http://ksa.carel.com, nell'area "Free Download". Per l'uso di WinLoad si rimanda alla documentazione tecnica allegata al programma.

Per l'interfaccia tra pCO e LonWorks® (cod. PCO*0000F0)

001_F_12.NXE:	Applicativo da scaricare nell'interfaccia mediante LonMaker TM o strumenti simili;
001_F_12.XIF:	External Interface File, contenente le informazioni di base sul nodo;

6.2 Come si usa il programma di test per pCO e pCO²

Premere il tasto MENU sul terminale del pCO per selezionare il loop di maschere che si vuole visualizzare a display; la scelta è possibile tra:

- il loop delle maschere di informazione,
- il loop delle maschere di Input/Output,
- il loop delle maschere di configurazione.

Quando il cursore è nella parte in alto a sinistra del display, premere UP/DOWN per scorrere le maschere del loop corrente. Quando il cursore NON è nella parte in alto a sinistra del display, premere UP/DOWN per cambiare il valore del campo corrente. Premere ENTER per muovere il cursore e confermare il valore.

6.3 Programma di test: variabili di scambio tra pCO e rete LonWorks®

6.3.1 Variabili standard

Tipo	Indice pCO	Nome NV	Tipo NV	Direzione	Descrizione
ANL	1	nvoAnalogInput1	105	output	Valore ingresso analogico n.1
ANL	2	nvoAnalogInput2	105	output	Valore ingresso analogico n.2
ANL	3	nvoAnalogInput3	105	output	Valore ingresso analogico n.3
ANL	4	nvoAnalogInput4	105	output	Valore ingresso analogico n.4
ANL	5	nvoAnalogInput5	105	output	Valore ingresso analogico n.5
ANL	6	nvoAnalogInput6	105	output	Valore ingresso analogico n.6
ANL	7	nvoAnalogInput7	105	output	Valore ingresso analogico n.7
ANL	8	nvoAnalogInput8	105	output	Valore ingresso analogico n.8
ANL	9	nvoAnalogInput9	105	output	Valore ingresso analogico n.9
ANL	10	nvoAnalogInput10	105	output	Valore ingresso analogico n.10
ANL	11	nviAnalogOutput1	8	input	Valore uscita analogica n.1 (0=0 Volt, 1000=10 Volt)
ANL	12	nviAnalogOutput2	8	input	Valore uscita analogica n.2 (0=0 Volt, 1000=10 Volt)
ANL	13	nviAnalogOutput3	8	input	Valore uscita analogica n.3 (0=0 Volt, 1000=10 Volt)
ANL	14	nviAnalogOutput4	8	input	Valore uscita analogica n.4 (0=0 Volt, 1000=10 Volt)
ANL	15	nviAnalogOutput5	8	input	Valore uscita analogica n.5 (0=0 Volt, 1000=10 Volt)
ANL	16	nviAnalogOutput6	8	input	Valore uscita analogica n.6 (0=0 Volt, 1000=10 Volt)

Tipo	Indice pCO	Nome NV	Tipo NV	Direzione	Descrizione
INT	1	nviInteger1	9	input	Parametro generico n.1 (range -32768/+32767)
INT	2	nviInteger2	9	input	Parametro generico n.2 (range -32768/+32767)
INT	3	nviInteger3	9	input	Parametro generico n.3 (range -32768/+32767)
INT	4	nviInteger4	9	input	Parametro generico n.4 (range -32768/+32767)
INT	5	nviInteger5	9	input	Parametro generico n.5 (range -32768/+32767)
INT	6	nviInteger6	9	input	Parametro generico n.6 (range -32768/+32767)
DGT	1	nvoDigInput1	95	output	Stato ingresso digitale n. 1 (0: chiuso, 1: aperto)
DGT	2	nvoDigInput2	95	output	Stato ingresso digitale n. 2 (0: chiuso, 1: aperto)
DGT	3	nvoDigInput3	95	output	Stato ingresso digitale n. 3 (0: chiuso, 1: aperto)
DGT	4	nvoDigInput4	95	output	Stato ingresso digitale n. 4 (0: chiuso, 1: aperto)
DGT	5	nvoDigInput5	95	output	Stato ingresso digitale n. 5 (0: chiuso, 1: aperto)
DGT	6	nvoDigInput6	95	output	Stato ingresso digitale n. 6 (0: chiuso, 1: aperto)
DGT	7	nvoDigInput7	95	output	Stato ingresso digitale n. 7 (0: chiuso, 1: aperto)
DGT	8	nvoDigInput8	95	output	Stato ingresso digitale n. 8 (0: chiuso, 1: aperto)
DGT	9	nvoDigInput9	95	output	Stato ingresso digitale n. 9 (0: chiuso, 1: aperto)
DGT	10	nvoDigInput10	95	output	Stato ingresso digitale n. 10 (0: chiuso, 1: aperto)
DGT	11	nvoDigInput11	95	output	Stato ingresso digitale n. 11 (0: chiuso, 1: aperto)
DGT	12	nvoDigInput12	95	output	Stato ingresso digitale n. 12 (0: chiuso, 1: aperto)
DGT	13	nvoDigInput13	95	output	Stato ingresso digitale n. 13 (0: chiuso, 1: aperto)
DGT	14	nvoDigInput14	95	output	Stato ingresso digitale n. 14 (0: chiuso, 1: aperto)
DGT	15	nvoDigInput15	95	output	Stato ingresso digitale n. 15 (0: chiuso, 1: aperto)
DGT	16	nvoDigInput16	95	output	Stato ingresso digitale n. 16 (0: chiuso, 1: aperto)
DGT	17	nvoDigInput17	95	output	Stato ingresso digitale n. 17 (0: chiuso, 1: aperto)
DGT	18	nvoDigInput18	95	output	Stato ingresso digitale n. 18 (0: chiuso, 1: aperto)
DGT	21	nviDigOutput1	95	input	Stato uscita dig. n. 1 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	22	nviDigOutput2	95	input	Stato uscita dig. n. 2 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	23	nviDigOutput3	95	input	Stato uscita dig. n. 3 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	24	nviDigOutput4	95	input	Stato uscita dig. n. 4 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	25	nviDigOutput5	95	input	Stato uscita dig. n. 5 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	26	nviDigOutput6	95	input	Stato uscita dig. n. 6 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	27	nviDigOutput7	95	input	Stato uscita dig. n. 7 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	28	nviDigOutput8	95	input	Stato uscita dig. n. 8 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	29	nviDigOutput9	95	input	Stato uscita dig. n. 9 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	30	nviDigOutput10	95	input	Stato uscita dig. n. 10 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	31	nviDigOutput11	95	input	Stato uscita dig. n. 11 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	32	nviDigOutput12	95	input	Stato uscita dig. n. 12 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	33	nviDigOutput13	95	input	Stato uscita dig. n. 13 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	34	nviDigOutput14	95	input	Stato uscita dig. n. 14 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	35	nviDigOutput15	95	input	Stato uscita dig. n. 15 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	36	nviDigOutput16	95	input	Stato uscita dig. n. 16 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	37	nviDigOutput17	95	input	Stato uscita dig. n. 17 (0: aperta/non eccitata, 1: chiusa/eccitata)
DGT	38	nviDigOutput18	95	input	Stato uscita dig. n. 18 (0: aperta/non eccitata, 1: chiusa/eccitata)

Tab. 6.3.1.1

6.3.2 Variabili non standard

Per la descrizione delle variabili non standard vedi Descrizione delle variabili non standard.

output struct {

1		
unsigr	ned long int	sfw_idnt;
unsigr	ned char	pco_addr;
unsigr	ned char	xif_stat;
unsigr	ned char	xif_flag;
} xif_data;	// informazioni	sull'interfaccia

output struct {

unsigned char	stat;
char	type;
unsigned char	indx;
signed long int	data;
} rd_prmt; // lettura vari	abili pCO

input struct {

unsigned char	cmnd;
char	type;
unsigned char	indx;
signed long int	data;
} wr_cmnd; // lettura/scrittura	variabili pCO

7. CARATTERISTICHE TECNICHE

Alimentazione	dal pCO		
Condizioni di funzionamento	0T55 °C; 20÷80 %UR non condensante		
Condizioni di immagazzinamento	-20T70 °C; 20÷80 %UR non condensante		
Grado di inquinamento ambientale	normale		
Dimensioni (mm):	PCO20***F0 60x30x20,		
	PCO20***R0 60x30x20,		
	PCO10***F0 60x30x20,		
	PCO10***R0 60x30x20,		
	PCOB0***F0 47x44x21		
	PCOB0***R0 47x44x21		

Tab. 7.1

8. APPENDICE A

Lista delle variabili SNVT gestite dalla interfaccia Le variabili contrassegnate da una 'X' nella colonna 16 bit range non sono gestite dall'interfaccia.

SNVT	SNVT	16 bit	resolution	SNVT	pCO var. type	available
number	name	range	unit	range		range
1	SNVT amp	-32768 32767	0.1A	-3276.8 3276.7 A	analog	full
2	SNVT amp mil	-32768 32767	0.1mA	-3276.8 3276.7 mA	analog	full
3	SNVT angle	065535	0.001 rad	0.000 65.535 rad	integer	0.000 32.767 rad
4	SNVT_angle_vel	-32768 32767	0.1 rad/s	-3276.8 3276.7 rad/s	analog	full
5	SNVT_btu_kilo	065535	1 kBTU	0 65535 kBTU	integer	0 32767 kBTU
6	SNVT_btu_mega	065535	1 MBTU	0 65535 MBTU	integer	0 32767 MBTU
7	SNVT_char_ascii	0255		8bit ASCII character	integer	full
8	SNVT_count	065535		065535	integer	032767
9	SNVT_count_inc	-32768 32767		-32768 32767	integer	full
10	SNVT_date_cal	Х				
11	SNVT_date_day	0255		06, 255	integer	full
12	SNVT_date_time	Х				
13	SNVT_elec_kwh	065535	1kWh	0 65535 kWh	integer	0 32767 kWh
14	SNVT_elec_whr	065535	0.1Wh	0.0 6553.5 Wh	analog	0.0 3276.7 Wh
15	SNVT_flow	065534	1 l/s	0 65534 l/s	integer	0 32767 l/s
16	SNVT_flow_mil	065535	l ml/s	0 65535 ml/s	integer	032767 ml/s
17	SNVT_length	065535	0.1 m	0.0 6553.5 m	analog	0.0 32/6.7 m
18	SNV1_length_kilo	065535	0.1 km	0.0 6553.5 km	analog	0.0 32/6.7 km
19	SNVI_length_micr	065535	0.1 um	0.0 6553.5 um	analog	0.0 32/6./ um
20	SNVI_lengtn_mii	0000	0.1 mm	0.0 6555.5 mm	integer	0.0 32/6./ mm
21	SNVT_lev_cont	0200	0.3 %	0 4 255	integer	full
22	SNVT mass	0255	01 σ	04,233	analog	$\frac{1011}{0.0 - 3276.7 \text{ g}}$
23	SNVT mass kilo	0 65535	0.1 g	0.0 0555.5 g	analog	0.0 3276.7 kg
25	SNVT mass mega	0 65535	0.1 kg	0.0 6553.5 ton	analog	$0.0 \ \ 3276.7 \ \text{kg}$
25	SNVT mass mil	0 65535	0.1 ton	0.0 6553.5 ton	analog	0.0 3276.7 ton
20	SNVT_nower	0 65535	0.1 Mg	0.0 6553.5 W	analog	0.0 3276.7 Mg
28	SNVT power kilo	0 65535	0.1 kW	0.0 6553.5 kW	analog	0.0 3276.7 kW
29	SNVT ppm	065535	1ppm	0 65535 ppm	integer	032767 ppm
30	SNVT_press	-32768 32767	0.1 kPa	-3276.8 3276.7 kPa	analog	full
31	SNVT_res	065535	0.10hm	0.0 6553.5 ohm	analog	0.0 3276.7 ohm
32	SNVT_res_kilo	065535	0.1kohm	0.0 6553.5 kohm	analog	0.0 3276.7 kohm
33	SNVT_sound_db	-32768 32767	0.01dB	-327.68 327.67 dB	integer	full
34	SNVT_speed	065535	0.1 m/s	0.0 6553.5 m/s	analog	0.0 3276.7 m/s
35	SNVT_speed_mil	065535	0.001 m/s	0.000 65.535 m/s	integer	0.000 32.676 m/s
36	SNVT_str_asc	Х				
37	SNVT_str_int	Х				
38	SNVT_telcom	0255		020, 255	integer	full
39	SNVT_temp	065535	0.1 °C	-274.0 6279.5 °C (nota 1)	analog	-274.03002.7 °C (nota 1)
40	SNVT_time_passed	X	0.1.1	0.0		0.0
41	SNVT_vol	065535	0.11	0.0 6553.5 1	analog	0.03276.71
42	SNVT_vol_kilo	065535	0.1 kl	0.0 6553.5 kl	analog	0.0 3276.7 kl
45	SINVI_VOL_mil	065535	0.1 ml	0.0 6553.5 ml	analog	0.0 32/6./ ml
44	SINVI_VOIt	-32/08 32/6/	0.1 V	-52/0.8 52/0./ V	analog	Tull 6.11
45	SINVI_volt_dbmv	-32/08 32/0/	0.1 dB uv	-32/.08 32/.0/ dB UV	analog	Full
40	SNVT volt mil	-32100 32101	0.1 KV	-52/0.0 52/0./ KV	analog	full
4/	SNVT_volt_lilli SNVT_amp_f	-32700 32707 V	0.1 111 V	-3270.0 3270.7 IIIV	analog	1011
40	SNVT angle f	X				
50	SNVT angle vel f	X				
51	SNVT count f	X				
52	SNVT count inc f	X				
53	SNVT flow f	X				
54	SNVT_length f	X				
55	SNVT_lev cont f	X				
56	SNVT mass f	X				

57	SNVT_power_f	Х				
58	SNVT_ppm_f	Х				
59	SNVT_press_f	Х				
60	SNVT_res_f	Х				
61	SNVT_sound_db_f	Х				
62	SNVT_speed_f	Х				
63	SNVT temp f	Х				
64	SNVT time f	Х				
65	SNVT vol f	X				
66	SNVT_volt_f	X				
67	SNVT_volt_1	X				
68	SNVT_olog_whr_f					
08	SINVI_elec_will_I	Δ 0.255		0 1 255	:	£-11
69	SINV1_config_src	0255		01,255	integer	Tull
70	SNV1_color	X	0.1	0.0		0.0.00545
71	SNVT_grammage	065536	0.1 gsm	0.0 6553.6 gsm	analog	0.0 3276.7 gsm
72	SNVT_grammage_f	X				
73	SNVT_file_req	Х				
74	SNVT_file_status	Х				
75	SNVT_freq_f	Х				
76	SNVT_freq_hz	065535	0.1 Hz	0.0 6553.5 Hz	analog	0.0 3276.7 Hz
77	SNVT_freq_kilohz	065535	0.1 kHz	0.0 6553.5 kHz	analog	0.0 3276.7 kHz
78	SNVT_freq_milhz	065535	0.1 MHz	0.0 6553.5 MHz	analog	0.0 3276.7 MHz
79	SNVT lux	065535	1 lux	0 65535 lux	integer	0 32767 lux
80	SNVT ISO 7811	X				
81	SNVT lev percent	-32768 32766	0.005%	-163 840 163 830 %	integer	full
82	SNVT_nultiplier	0 65535	0.0005	0,0000 32,7675	integer	0.0000 16.3835
82	SNVT_mater	065535	1 bit	0.65535	integer	(note 2)
0.5	SINVI_state	005555 V	1 DIL	003555	Integer	(110ta 2)
84	SINVI_ume_stamp	Λ V				
85	SINVI_zerospan	X				
86	SNVT_magcard	X				
87	SNVT_elapsed_tm	Х				
88	SNVT_alarm	X				
89	SNVT_currency	Х				
90	SNVT_file_pos	Х				
91	SNVT_muldiv	Х				
92	SNVT_obj_request	Х				
93	SNVT_obj_status	Х				
94	SNVT_preset	Х				
95	SNVT_switch	01	1 bit	(note 3)	digital	
96	SNVT trans table	Х				
97	SNVT override	0255		0 2. 255	integer	full
98	SNVT pwr fact	-20000 20000	0.00005	-1 00000 1 00000	integer	full
90	SNVT pwr fact f	X	0.00000	1.00000 1.00000	mugu	1411
100	SNVT density	0 65525	0 5kg/m2	$0 32767 5 \ kg/m^2$	integer	$0 1638 3 \frac{1}{2} \frac{m^2}{m^2}$
100	SNVT donaiter f	v 05555 V	0.3Kg/1113	0 <i>32101.3</i> Kg/III3	megel	0 1030.3 Kg/1113
101	SINVI_defisity_I	Δ	1	0 65524	;	0 20767
102	SINVI_IPM	005554	1 rpm	0 05554 rpm	integer	0 52/6/ rpm
103	SINVI_hvac_emerg	0255	0.02.1	04,255	integer	ruli
104	SNVT_angle_deg	-1/999 18000	0.02 deg	-359.98 360.00 deg	integer	tull
105	SNVT_temp_p	-27317 32766	0.01°C	-273.17 327.66 °C	integer	full
106	SNVT_temp_setpt	Х				
107	SNVT_time_sec	065534	0.1 s	0.0 6553.4 s	analog	0.0 3276.7 s
108	SNVT_hvac_mode	0255		09,255	integer	full
109	SNVT_occupancy	0255		03,255	integer	full
110	SNVT_area	065534	0.0002m2	013.1068 m2	integer	06.5534 m2
111	SNVT_hvac_overid	X				
112	SNVT hvac status	Х				
113	SNVT press p	-32768 32766	1 Pa	-32768 32766 Pa	integer	full
113	SNVT address	0x4000 0xFCFF		0x4000 0xFCFF	integer	full (nota 3)
115	SNVT scene	X		on root in our or r	meger	1
115	SNVT scene of g	X X				
110	SNVT sotting				L	
11/	SINVI_Setting	Δ 0.255		0 2 255	inta	£11
118	SINVI_evap_state	0255		02,255	integer	I UII
119	SNV1_therm_mode	0255		02,255	integer	tull
120	SNVT_defr_mode	0255		02,255	integer	full

0...655.34 g/kg

0...655.34 m3/h

0..29,255

0..7,255

Carel si riserva la possibilità di apportare modifiche o cambiamenti ai propri prodotti senza alcun preavviso.

full

full

0..32767 m

0...32767 h

full

integer

integer

integer

integer

integer

05000	0.001	0.000 5.000 %	integer	full
0255		03, 255	integer	full
-32768 32766	0.5 °C/min	-16384.0 16383.0 °C/min	integer	full
0255		016, 255	integer	full
0255		08,255	integer	full
Х				
Х				
Х				
Х				
065534	1 Vac	0 65534 Vac	integer	032767 Vac
065534	1 Aac	0 65534 Aac	integer	032767 Aac
065534	0.001 NTU	0.000 65.534 NTU	integer	0,000 32,767 NTU
Х				
0255		09,255	integer	full
Х				
-32768 32766	0.01 °C	-327.68 327.66 °C	•	C 11
Х	0.01 C	-527.00 527.00 C	integer	Tull
	0.01 C	-527.08 527.00 C	integer	TUII
Х	0.01 C	-527.06 527.06 C	integer	Tull
X X	0.01 C	-527.00 527.00 C	integer	
X X X	0.01 C	-527.00 527.00 C	integer	
X X X X X	0.01 C	-527.00 527.00 C	integer	
X X X -32768 32766	0.01kJ/kg	-327.68 327.66 kJ/kg	integer	full
X X X -32768 32766 0 255	0.01 kJ/kg	-327.68 327.66 kJ/kg 0 5, 255	integer integer	full full full
X X X -32768 32766 0 255 0 255	0.01 kJ/kg	-327.68 327.66 kJ/kg 0 5, 255 0 7, 255	integer integer integer integer	full full full full

0...8, 100, 255

0...4,255

0 .. 65535 min

0...65535 h

-32.768 .. 32.767 pH

nota 1. SNVT temp: va considerato come offset da -274.0°C

nota 2. SNVT state: reversed bit mapped

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

144

145 146

147

148

149

150

151

152

153

154

155

156

157 158

159

160

161

162

163

164 165

166

SNVT_defr_term

SNVT_defr_state

SNVT_time_min

SNVT_time_hour

SNVT_chlr_status

SNVT_tod_event

SNVT_fire_test

SNVT_temp_ror

SNVT_fire_init

SNVT_fire_indcte

SNVT_time_zone

SNVT_earth_pos

SNVT_reg_val_ts

SNVT_reg_val

SNVT_volt_ac

SNVT_amp_ac

SNVT_turbidity

SNVT_turbidity_f

SNVT_hvac_type

SNVT_elec_kwh_l

SNVT_temp_diff_p SNVT_ctrl_req

SNVT_privacyzone

SNVT_ctrl_resp

SNVT_pos_ctrl

SNVT_enthalpy

SNVT_gfi_status

SNVT_motor_state

SNVT_pumpset_mn

SNVT_ex_control

SNVT_pumpset_sn

SNVT_pump_sensor

SNVT_abs_humid

 $SNVT_dev_c_mode$

SNVT_valve_mode

SNVT_flow_p

SNVT_state_64

SNVT_nv_type

SNVT_ptz

SNVT_smo_obscur

SNVT_ph

SNVT_ph_f

0..255

0..255

0...65535

0...65535

-32768 .. 32767

Х Х

Х

Х

Х

Х

0...65334

0..65334

0...255

 $0 \dots 255$

Х Х 1 min

1 h

0.001 pH

nota 3. SNVT_address: il range 0x8000 .. 0xFFFF viene mappato in -32768 .. -1 nelle variabili pCO

0.01 g/kg

0.01 m3/h

Tab. 8.1

0...327.67 g/kg

0...327.67 m3/h

full

full

integer

integer

integer

integer

CONTENTS

INTRO	ODUCTION	
1.	GENERAL CHARACTERISTICS	1
2.	HARDWARE ARCHITECTURE	2
2.1	Codes	2
2.2	Description	2
3.	INSTALLATION	4
3.1	Connection to the pCOB	4
3.2	Connection to the pCO ^{2.1,XS}	4
3.3	Connection to the LonWorks® network	5
4.	PCO SETTINGS	6
5.	PROGRAMMING THE INTERFACE BOARD	7
5.1	Creating the custom program for the pCO application	7
5.2	Description of the non-standard variables	9
6.	THE TEST PROGRAM	
6.1	Files enclosed	
6.2	How to use the test program for the pCO and pCO ²	
6.3	Test program: variables exchanged between the pCO and the LonWorks® network	11
7.	TECHNICAL SPECIFICATIONS	13
8.	APPENDIX A	14

INTRODUCTION

The serial interface boards for LonWorks® networks are optional accessories for the pCO Sistema series electronic controllers (hereinafter pCO), which allow the controllers to be connected directly to a LonWorks® network.

The use of these boards requires knowledge of and experience with the LonWorks® network installation and maintenance tools.

1. GENERAL CHARACTERISTICS

IMPORTANT WARNING: in order to become operational, the board must be programmed according to the application installed on the pCO.

The program installed on the board may correspond to a standard LonMark® profile (contact Carel for details on the LonMark® profiles available) or alternatively may be a profile made to the user's specifications (custom profile).

The board is programmed by the manufacturer when LonMark [®] profiles are used, or alternatively in the field in the case of custom profiles. In the latter case, however, upon request Carel can pre-program the boards and consequently create a custom code. For sales information, contact Carel.

To generate a custom profile and program the board in the field, the user must proceed as follows (described in detail in **Programming the interface board**):

- 1. complete a table that defines the variables exchanged between the pCO and the LonWorks® network according to the desired specifications;
- 2. send the table to Carel. Based on this table, Carel will produce the custom profile (NXE file) and send it back to the customer;
- 3. load the custom profile into the interface memory using LonMakerTM or other LonWorks[®] network installation and maintenance tools.

As the application installed on the pCO is not known in advance, the interface boards are manufactured with minimum programming so as to allow the LonWorks[®] profile to be loaded in the field and the management of three non-standard variables, as described in **Programming the interface board**.

IMPORTANT WARNING. The application software installed on the pCO must have the characteristics described in **Adapting the application software**.

Two models of the boards are available for each model of the pCO controller, and differ due to the type of interface to the LonWorks® network.

2. HARDWARE ARCHITECTURE

2.1 Codes

On 03/03/2003 the LonWorks interface boards were given new product codes, as shown below:

NEW CODE	OLD CODE	DESCRIPTION
for pCO		
PCOB0000F0	PCOSERFTTL	interface to FTT-10A 78 kbs (TP/FT-10
PCOB0000R0	PCOSER485L	interface to RS485 39 kbs (TP/485-39)
for pCO2		

for pCO2		
PCO20000F0	PCO20LFTT0	interface to FTT-10A 78 kbs (TP/FT-10
PCO20000R0	PCO20L4850	interface to RS485 39 kbs (TP/485-39)

for pCO ¹ , pCO ^C , pCO ^{XS}		
PCO10000F0	PCO10LFTT0	interface to FTT-10A 78 kbs (TP/FT-10
PCO10000R0	PCO10L4850	interface to RS485 39 kbs (TP/485-39)
		Table 2.1.1

2.2 Description

2.2.1 Physical channels

Depending on the model, the interface boards communicate via two physical channels, TP/FT-10 and TP-RS485-39, as described in the LonWorks® literature.

The **PCO*********F0** uses an Echelon® FTT-10 transceiver, approved for use on the TP/FT-10 channel.

This channel has the following main characteristics:

- allows the connection of a maximum of 64 nodes for each network segment;
- the nodes can be connected without any restrictions in the topology: that is, star, ring, on one bus only, or with any combination of these;
- communication speed: 78,125 kbps;
- maximum distance (Belden 85102 cable): 500m for connections between the nodes with free topology; 2700m for bus connections with double line terminator.

For further details, see the official LonWorks® documents FTT-10° Free Topology Transceiver User's Guide.

The PCO*****R0 uses a transceiver that satisfies the EIA RS485 specifications. In particular:

- a maximum of 256 nodes (the input impedance of the transceiver is 1/8 of unit load);
- the nodes can only be connected to one bus;
- the communication speed used by the transceiver is 39 kbps;
- the maximum distance (22AWG Level IV cable) is 1200m.

For further details, see the document issued by the Electronic Industries Association (1983) EIA RS-485 Standard, and the official LonWorks® documents Twisted Pair Control Module User's Guide.

2.2.2 Layout of the boards

Fig. 2.2.2.1 - PCOB0000*0

Fig. 2.2.2.2 - PCO20000*0, PCO10000*0

- 1. connector to the pCO;
- 2. terminal block for LonWorks® network (GND, A, B);
- 3. service pin;
- 4. green service LED;
- 5. red fault LED.

For details on the activation of the service pin, see Connection to the LonWorks® network.

2.2.3 Meanings of the LEDs

The green service LED:

- signals the status of the node, as per the LonWorks® protocol: hardware fault: always ON or always OFF; node configured (normal operation): ½ second ON, then always OFF; node NOT configured: flashing at ½ Hz; node without software application: 1 second ON, 2 seconds OFF, then always OFF; node in continuous reset: flashing;
- remains on during the activation of the *service pin*;
- remains on for one second when receiving a wink command via the network (see Connection to the LonWorks® network).

The red fault LED:

• signals problems in the connection between the board and the pCO.

WARNING

If the red LED comes on, make sure the instructions described under **Installation** have been carefully followed (IN PARTICULAR, THAT THE COMMUNICATION BAUD RATE ON THE PCO HAS BEEN SET TO <u>4800 BAUD</u>).

3. INSTALLATION

IMPORTANT WARNINGS: precautions in handling the board.

Electrical damage may occur to the electronic components as a result of electrostatic discharges from the operator. Suitable precautions must be therefore be taken when handling these components, specifically:

- before handling any electronic component or board, touch an earthed object (simply not touching the component is not enough to prevent a spike, as static electricity can produce a 10000V discharge, which can form an arc of about 1cm);
- all materials must be kept inside their original package as long as possible. If necessary, take the controller from its package and place it into antistatic packaging, without touching the back of the board;
- absolutely avoid non-antistatic plastic bags, polystyrene or sponges;
- do not pass the electronic components or boards directly to other operators (to prevent electrostatic induction and discharges).

3.1 Connection to the pCOB

To connect the board to the pCOB:

- disconnect the power supply to the pCOB;
- insert the interface board in the corresponding connector; the board must be inserted in the special guide (two holes) located on the sides of the contacts;
- during assembly, make sure that the interface board is perfectly vertical in reference to the pCOB, so as to avoid damaging the contacts;
- the plug-in connector on the pCOB must be perfectly inserted in the connector on the interface board.
- reconnect the power supply to the pCOB; if the pCOB supervisor serial communication has been set to operate at 4800 baud, the red LED on the board will come on for a few seconds and then will go off immediately, indicating correct operation.

3.2 Connection to the pCO^{2.1,XS}

With reference to Figs.. 3.2.1-3.2.4, insert the board in the pCO as follows:

- 1. disconnect the power supply to the pCO;
- 2. using a screwdriver, remove the *serial card* cover (see Fig. 3.2.1);
- 3. with cutting nippers, remove the pre-cut plastic part from the cover, thus making the opening for the 3-pin connector (see Fig. 3.2.2);
- 4. insert the optional board in the corresponding plug-in connector, initially holding it diagonally and then making sure it is properly inserted and pushed up against the two plastic supports on the case of the pCO (see Fig. 3.2.3);
- 5. close the cover again, aligning the connector on the serial board with the hole made in the cover (see Fig. 3.2.4).
- 6. reconnect the power supply to the pCO; if the pCO supervisor serial communication has been set to use the Carel protocol at 4800 baud, the red LED on the board will come on for a few seconds and then will go off immediately, indicating correct operation.

Fig. 3.1.1

3.3 Connection to the LonWorks® network

The physical connection to the LonWorks® network is performed using the connector with removable terminals fitted on the board, according to the Echelon® instructions and specifications. For further information on installation, maintenance, the cross-section and type of cable, refer to the LonWorks® literature.

3.3.1 Service pin

To activate the *service pin*, simply momentarily short-circuit the two *pins* on the board (see Fig. 2.2.2.1 and 2.2.2.2 no.3) with the tip of a screwdriver or a similar tool.

The *service pin* must only be activated during the installation of the node. When the *pin* is activated, the node sends a *broadcast* message over the LonWorks® network, containing the information required for identification.

3.3.2 WINK event

A generic supervisor can send the WINK command to a specific node on the LonWorks® network.

This generates an event that the application on the specific node can respond to with any action decided by the programmer. In this specific case, the service LED on the interface comes on for one second, thus making it possible to check the correct operation of the connection between the interface and LonWorks® network.

4. pCO settings

On the pCOB, simply set the serial communication baud rate to 4800 baud.

On the pCO2.1,XS, also set the Carel protocol on the supervisor serial connection.

The serial address of the pCO is not important, as it is automatically recognised by the interface board.

4.1.1 Adapting the application software (for EasyTools developers)

The application software installed on the pCO must have the following characteristics:

- manage the system variable INI_BAUD_SPV for setting the communication speed with the interface board to 4800 baud;
- send the variables on the pCO that are to be made available to the LonWorks® network to the supervisor, with the atoms Ra_IO_L, RaOut_L, RI_IO_L, RiOut_L;
- guarantee the correspondence between the range of the variables on the pCO to be made available to the LonWorks® network and the range of associated SNVT variables (see **Creating the custom program for the pCO application**).

The latter point requires further explanation.

In fact, the pCO must multiply/divide the variables sent to/received from the supervisor by a correction factor that depends on the type of SNVT variable associated.

This implies that the EasyTools programmer must already know the associations between the Carel and SNVT variables when writing the software application.

In this case, the indications provided by the LonMark[®] functional profiles for HVAC applications are useful, and in fact the following associations cover the more commonly-used values:

Value measured	SNVT associated	Resolution
Temperature	(105) SNVT_temp_p	0.01°C
Humidity	(81) SNVT_lev_percent	0.005%
Pressure	(30) SNVT_press	0.1kPa
Time	(107) SNVT_time_sec	0.1s
Counters	(8) SNVT_cont	1
Digital status	(95) SNVT_switch	1

For the Carel INTEGER variables (resolution 1) associated to SNVT_cont and SNVT_switch, and the Carel analogue variables (resolution 0.1) associated to SNVT_press and SNVT_time_sec, no conversion needs to be performed, as same resolution is used in both the Carel and LonWorks environments.

Therefore these can be managed with the traditional R*IN/R*OUT atoms.

When, however, the resolution of the pCO variables and the associated LonWorks[®] variables does not coincide, the variables received from or sent to the LonWorks[®] network must be converted.

To assist and correctly manage the conversion of the data from and to the LonWorks $\$ network, special macroblocks have been created to replace the traditional R*IN/R*OUT atoms.

The new macroblocks are called RAOUT_L, RIOUT_L, RA_IO_L and RI_IO_L, and allow the conversion factor to be set and the conversion enabled.

For further details, refer to the EasyTools literature.

EXAMPLE

Value measured	Type of Carel	Example	Value in Carel	Carel resolution	SNVT associated	LonWorks® resolution	Value in LonWorks®	Conversion factor
	var.		network				network	
Temperature	ANA	10.2°C	102	0.1°C	105 - SNVT_temp_p	0.01°C	1020	10
Humidity	ANA	50.4%	504	0.1%	81- 0.005%	10800	20	
Humany	INT	55%	55	1%	SNVT_lev_percent	T_lev_percent 0.003%	11000	200
Duessie	ANA	15.3kPa	153	0.1kPa	30 SNVT pross	0.1kPa	153	1
riessure	INT	13kPa	13	1kPa	50 - SINV I_pless		130	10
Time	ANA	600.5s	6005	0.1s	107 -	0.1	6005	1
Time	INT	15s	15	1s	SNVT_time_sec	0.18	150	10
Counters	INT	33	33	1	8 - SNVT_cont	1	33	1
Digital status	DIG	1	1	1	95 - SNVT_switch	1	1	1

Table 4.1.1.2

5. PROGRAMMING THE INTERFACE BOARD

In order to become operational, the board must be programmed according to the application installed on the pCO. The program resides in the flash memory of the Neuron® chip, the electronic component that manages the LonWorks® network protocol, LonTalkTM. The memory can be programmed directly by the user via the LonWorks® network, using the LonMakerTM installation and maintenance systems.

The program to be downloaded to the board may correspond to a standard LonMark® profile (contact Carel for details on the LonMark ® profiles available) or alternatively may be a profile made to the user's specifications (custom profile).

The board is programmed by the manufacturer when using standard LonMark [®] profiles, or alternatively in the field in the case of custom profiles. In the latter case, however, upon request Carel can pre-program the boards and consequently create a custom code. For sales information, contact Carel.

5.1 Creating the custom program for the pCO application

5.1.1 Network variables

The interface between the pCO and the LonWorks® network can manage up to 62 network variables. Of these 62 variables:

- 59 can be directly associated to the same number of variables defined in the pCO application. The user must specify the association, as well as the type of variable and the direction of exchange (see the "**cross-reference**" table).
- Based on the specifications provided, Carel will create the file that the user can then download to the interface board.The remaining 3 variables are reserved for the management of the interface itself. These are non-standard variables that
- manage the visibility of all the variables defined in the pCO application (see **Description of the non-standard variables**).

5.1.2 "Cross-reference" table

The first step involves the creation by the user of a table with 5 columns, as shown below, that defines the variables exchanged between the pCO and the LonWorks® network according to the desired specifications:

Туре	pCO index	NV name	NV type	Direction
ANL	1	nvoAnalog1	105	output
ANL	2	nviAnalog2	81	input
ANL	3			
ANL	207	nviAnalog207	39	input
INT	1	nviInteger1	8	input
INT	207	nvoInteger207	81	output
DGT	1	nvoDigital1	95	output
DGT	207	nvoDigital207	9 <u>5</u>	output
				Table 5 1 2 1

Table 5.1.2.1

The empty table NV_TABLE.XLS (Microsoft Excel format) is available on the web site http://ksa.carel.com, in the "Free Download" section.

The Type and pCO index columns are fixed.

- The *Type* column indicates the type of pCO variable (ANL for analogue, INT for integer and DGT per digital).
- The *pCO index* column indicates the Carel index corresponding to the variable.

WARNING: the meaning of the variables, the corresponding index and their availability on the network depends on the application installed on the pCO.

The *pCO index* may range from 1 to 207 for each type. In the generic table, there are consequently 207*3 = 621 rows, corresponding to the addressable space of the pCO; only the variables exchanged over the network (with the R*IN/R*OUT atoms) are however available to the user for customisation.

The table that describes the meaning, the type and the index (*pCO index*) of the variables available in the network is provided in the application manual, under the heading **Supervisor database**.

The other columns, **NV name**, **NV type and Direction**, must be filled in (Table 5.1.2.1 shows some examples in italics).

• *NV name* specifies the name (MAX. 16 characters, without spaces and without full stops) to be associated to the network variable and that will be used as the LonWorks[®] interface to the outside.

The name of a network variable can be prefixed by the corresponding code (nvi, nvo) describing the category, as defined below. For compactness, it is preferable not to use the underscore, and to write all the characters in lower case, except for the first letter. Typically, the conventions are as follows:

network input variable:

nviXxxxxxxxxxxxx nvoXxxxxxxxxxxx

network output variable:

Due to the limit of 16 characters for the names of the network variables, abbreviations are almost always required. The following list may be useful, representing the more typical names:

Actual	Act	Minimum	Min
Calendar	Cal	Parts-per-million	Ppm
Clear	Clr	Object	Obj
Continuous	Cont	Output	Out
Delay	Dly	Position	Pos
Device	Dev	Range	Rnge
Discrete	Disc	Request	Req
Electric	Elec	Rate	Rt
Feedback	Fb	Resistance	Res
Floating-point	f	Source	Src
Frequency	Freq	Standby	Stby
Hardware	Hw	String	Str
Increment	Inc	Table	Tbl
Inhibit	Inh	Time	Т
Input	In	Translation	Trans
Level	Lev	Volume	Vol
Maximum	Max	Watt-hour	Whr
Micrometer	Micr		
			T-L 5100

Tab. 5.1.2.2

- *NV type* indicates the type, intended as the number specified by the table SNVT, *Standard Network Variables Types*, that identifies the physical value and the format of the network variable. The Standard Network Variable Types (SNVT) simplify the exchange of variables by providing a well-defined interface for communication between nodes supplied by different manufacturers. A node can in fact be installed in a network and connected logically to others nodes using the network variables, as long as the types of data coincide.
- **WARNING**: the list of types SNVT variables managed by the interface and details regarding their definition is provided in **appendix A**. The number corresponding to the type of variable required, contained in the first column (SNVT number), must be entered in the table (*NV type*).

 Direction indicates the direction, input or output, of the variable: <u>input</u>, from the point of view of the pCO, defines values that are acquired from the LonWorks® bus and then copied to the pCO memory;

output, vice-versa, specifies the network variables that export the values generated by the pCO to the LonWorks® bus.

EXAMPLE.

To make the room temperature measured by the pCO (read-only variable), which in the specific application installed on the pCO is represented by the analogue variable with address 1, available to the LonWorks® network, enter the following values in the first row of the table:

NV name: enter a name that describes the variable to the others nodes in the network; e.g. nvoRoomTemp NV type: 105 (SNVT_temp_p)

Direction: output

Consequently:

Type	pCO index NV name		NV type	Direction
ANL	1	nvoRoomTemp	105	output
	•••			

To make the room temperature set point (read/write variable), in the specific application installed on the pCO represented by the analogue variable with address 13, available to the LonWorks® network, fill in the table as follows, creating two LonWorks® variables corresponding to the same pCO index:

ANL	13	nviSetpoint	105	input
ANL	13	nvoSetpoint	105	output
		•••		

Once the table has been completed, filling in the rows required (a maximum of 59 are available, as 3 are reserved and 62 is the maximum number envisaged by the LonTalkTM protocol), the user can delete the unused rows and send the table to Carel for the creation of the corresponding profile.

The application will be sent back to the user of the interface as a file with a name defined by Carel and with the extension .NXE.

The user must then copy the .NXE file to the memory on the interface board using the LonWorks® network installation and maintenance systems, such as LonMakerTM or NodeBuilder®, so as to render the node operational.

As well as the .NXE file, a file with the extension .XIF (*External Interface File*) will also be provided, containing the essential information on the node that is used by the network management instrument for the configuration of the node.

In summary then, this is the procedure to be followed by the user:

- 1. fill in the table that defines the variables exchanged between the pCO and the LonWorks® network, according to the desired specifications;
- 2. send the table to Carel. Based on this table, Carel will produce the corresponding application files (.NXE and .XIF), which will then be sent back to the customer;
- 3. copy the .NXE file to the memory on the interface using LonMakerTM or other LonWorks[®] network installation and maintenance tools.

5.2 Description of the non-standard variables

The following three variables are non-standard variables used to send special commands to the pCO and to check the outcome. The purpose of these commands is to enable the visibility of all the variables defined in the pCO application in the LonWorks® network, exceeding the physical memory limits of the Neuron® chip, which manages the addresses of a maximum of 62 network variables.

5.2.1 xif_data

This is used to read the status of the interface and the check the read and write operations performed. It is only sent when there is a change in one of the fields:

network output struct {

unsigned long	sfw_idnt;
unsigned short	pco_addr;
unsigned short	xif_stat;
unsigned short	xif_flag;

} xif_data;

sfw_idnt: software version.

This is codified in hexadecimal format, with the first two digits representing the numbers of the version before the decimal point, and the remaining two the numbers after the decimal point. In the case of version number 1.00, the identifier would be 0x0100.

pco_addr: address of the pCO.

When reset this is null, and then takes the value set on the pCO and read in the initialisation phase.

xif_stat: status of the interface.

This can have the following values:

0: connection to the pCO and acquisition of the address (phase immediately after the reset),

1: connection to the pCO activated,

2: initial acquisition of all the pCO variables,

3: normal operation

Status 0 and 1 are very brief, while status 2 may last a few seconds, according to the number of variables on the pCO. In normal operation the interface is in status 3.

xif_flag: acknowledge the write to the pCO.

This is set to 0 following the writing of a pCO variable via the LonWorks® network.

It is set to 1 when the pCO confirms the write. The LonTalkTM protocol in fact ensures the transmission of the data from the initial node to the node represented by the interface, while the transmission from the interface to the pCO is handled by the interface.

5.2.2 wr_cmnd

Acquires information on the status of the interface and writes or reads any pCO variable. The fields are contained in the following structure:

network input struct {

unsigned short	cmnd;
unsigned char	type;
unsigned short	indx;
signed long	data;

} wr_cmnd;

cmnd: desired command.

- The following commands are available:
- 0: forced propagation of the variable *xif_data* (useful for analysing the status of the interface). In this case, the other fields have no meaning and are not used.
- 1: write any pCO variable.
- 2: read any pCO variable. In this case, the data field is ignored. When this command is received, the current value of the variable and any subsequent variations will be mirrored in the variable *rd_prmt*.

type: type of pCO variable being written or read (A, I, or D),

indx: index of the pCO variable being written or read (from 1 to 207),

data: value of the pCO variable being written (from -32767 to 32767).

5.2.3 rd_prmt

This is used to read the current value of any pCO variable (selected using *wr_cmnd*) and any subsequent variations. It is only sent when there is a change in one of the fields:

network output struct {

unsigned short	stat;
unsigned char	type;
unsigned short	indx;
signed long	data;

} rd_prmt;

stat: status regarding the reading of the pCO variable.

The following values are possible:

- 0: reading in progress, the data field thus has no meaning (immediately following the reception of a read command using *wr_cmnd*)
- 1: reading available; the data field contains the current value of the variable.
- 2: reading not successful (the pCO does not respond to the request). This may occur if the variable selected has not been defined in the pCO application.

type: type of pCO variable being read (A, I, or D),

indx: index of the pCO variable being read (from 1 to 207),

data: value of the pCO variable (from –32767 to 32767).

The value is updated whenever the variable is changed.

6. THE TEST PROGRAM

A test program is available for the pCO and pCO², which performs the following functions via the LonWorks® network:

- displays the status of all the inputs on the controller,
- sets all the outputs,
- sets the value of certain variables.

WARNING: All the files described below are available in the file PCOLON_TEST.ZIP, on the web site http://ksa.carel.com, in the "Free Download" section.

6.1 Files enclosed

The following files are used by the test program:

For the pCO TESTEN.BIN

binary file for programming the EPROM on the pCO (1 Mbit).

For the pCO²

TESTEN.IUP: test program file (user interface);

TEST.BLB: test program file (algorithm).

Both files should be downloaded to the pCO² using the Carel WinLoad software, available at http://ksa.carel.com, in the "Free Download" section. For details on how to use WinLoad, refer to the technical documents provided with the program.

For the interface between the pCO and LonWorks® (code PCO*0000F0) $001_F_12.NXE$:Application to be copied to the interface using LonMakerTM or similar tools; $001_F_12.XIF$:External Interface File, containing the essential information on the node;

6.2 How to use the test program for the pCO and pCO^2

Press the MENU button on the pCO terminal to select the loop of screens to be displayed; the following options are available:

- the loop of information screens,
- the loop of Input/Output screens,
- the loop of configuration screens.

When the cursor is in the top left of the display, press UP/DOWN to scroll the screens in the current loop. When the cursor is NOT is in the top left of the display, press UP/DOWN to change the value of the current field. Press ENTER to move the cursor and confirm the value.

6.3 Test program: variables exchanged between the pCO and the LonWorks® network

6.3.1 Standard variables

Туре	pCO index	NV name	NV type	Direction	Description
ANL	1	nvoAnalogInput1	105	output	Value of analogue input 1
ANL	2	nvoAnalogInput2	105	output	Value of analogue input 2
ANL	3	nvoAnalogInput3	105	output	Value of analogue input 3
ANL	4	nvoAnalogInput4	105	output	Value of analogue input 4
ANL	5	nvoAnalogInput5	105	output	Value of analogue input 5
ANL	6	nvoAnalogInput6	105	output	Value of analogue input 6
ANL	7	nvoAnalogInput7	105	output	Value of analogue input 7
ANL	8	nvoAnalogInput8	105	output	Value of analogue input 8
ANL	9	nvoAnalogInput9	105	output	Value of analogue input 9
ANL	10	nvoAnalogInput10	105	output	Value of analogue input 10
ANL	11	nviAnalogOutput1	8	input	Value of analogue output 1 (0=0 Volts, 1000=10 Volts)
ANL	12	nviAnalogOutput2	8	input	Value of analogue output 2 (0=0 Volts, 1000=10 Volts)
ANL	13	nviAnalogOutput3	8	input	Value of analogue output 3 (0=0 Volts, 1000=10 Volts)
ANL	14	nviAnalogOutput4	8	input	Value of analogue output 4 (0=0 Volts, 1000=10 Volts)
ANL	15	nviAnalogOutput5	8	input	Value of analogue output 5 (0=0 Volts, 1000=10 Volts)
ANL	16	nviAnalogOutput6	8	input	Value of analogue output 6 (0=0 Volts, 1000=10 Volts)

Туре	pCO index	NV name	NV type	Direction	Description
	-				
INT	1	nviInteger1	9	input	Generic parameter 1 (range -32768/+32767)
INT	2	nviInteger2	9	input	Generic parameter 2 (range -32768/+32767)
INT	3	nviInteger3	9	input	Generic parameter 3 (range -32768/+32767)
INT	4	nviInteger4	9	input	Generic parameter 4 (range -32768/+32767)
INT	5	nviInteger5	9	input	Generic parameter 5 (range -32768/+32767)
INT	6	nviInteger6	9	input	Generic parameter 6 (range -32768/+32767)
DGT	1	nvoDigInput1	95	output	Status of digital input 1 (0: closed, 1: open)
DGT	2	nvoDigInput2	95	output	Status of digital input 2 (0: closed, 1: open)
DGT	3	nvoDigInput3	95	output	Status of digital input 3 (0: closed, 1: open)
DGT	4	nvoDigInput4	95	output	Status of digital input 4 (0: closed, 1: open)
DGT	5	nvoDigInput5	95	output	Status of digital input 5 (0: closed, 1: open)
DGT	6	nvoDigInput6	95	output	Status of digital input 6 (0: closed, 1: open)
DGT	7	nvoDigInput7	95	output	Status of digital input 7 (0: closed, 1: open)
DGT	8	nvoDigInput8	95	output	Status of digital input 8 (0: closed, 1: open)
DGT	9	nvoDigInput9	95	output	Status of digital input 9 (0: closed, 1: open)
DGT	10	nvoDigInput10	95	output	Status of digital input 10 (0: closed, 1: open)
DGT	11	nvoDigInput11	95	output	Status of digital input 11 (0: closed, 1: open)
DGT	12	nvoDigInput12	95	output	Status of digital input 12 (0: closed, 1: open)
DGT	13	nvoDigInput13	95	output	Status of digital input 13 (0: closed, 1: open)
DGT	14	nvoDigInput14	95	output	Status of digital input 14 (0: closed, 1: open)
DGT	15	nvoDigInput15	95	output	Status of digital input 15 (0: closed, 1: open)
DGT	16	nvoDigInput16	95	output	Status of digital input 16 (0: closed, 1: open)
DGT	17	nvoDigInput17	95	output	Status of digital input 17 (0: closed, 1: open)
DGT	18	nvoDigInput18	95	output	Status of digital input 18 (0: closed, 1: open)
DGT	21	nviDigOutput1	95	input	Status of digital output 1 (0: open/not energised, 1: closed/energised)
DGT	22	nviDigOutput2	95	input	Status of digital output 2 (0: open/not energised, 1: closed/energised)
DGT	23	nviDigOutput3	95	input	Status of digital output 3 (0: open/not energised, 1: closed/energised)
DGT	24	nviDigOutput4	95	input	Status of digital output 4 (0: open/not energised, 1: closed/energised)
DGT	25	nviDigOutput5	95	input	Status of digital output 5 (0: open/not energised, 1: closed/energised)
DGT	26	nviDigOutput6	95	input	Status of digital output 6 (0: open/not energised, 1: closed/energised)
DGT	27	nviDigOutput7	95	input	Status of digital output 7 (0: open/not energised, 1: closed/energised)
DGT	28	nviDigOutput8	95	input	Status of digital output 8 (0: open/not energised, 1: closed/energised)
DGT	29	nviDigOutput9	95	input	Status of digital output 9 (0: open/not energised, 1: closed/energised)
DGT	30	nviDigOutput10	95	input	Status of digital output 10 (0: open/not energised, 1: closed/energised)
DGT	31	nviDigOutput11	95	input	Status of digital output 11 (0: open/not energised, 1: closed/energised)
DGT	32	nviDigOutput12	95	input	Status of digital output 12 (0: open/not energised, 1: closed/energised)
DGT	33	nviDigOutput13	95	input	Status of digital output 13 (0: open/not energised, 1: closed/energised)
DGT	34	nviDigOutput14	95	input	Status of digital output 14 (0: open/not energised, 1: closed/energised)
DGT	35	nviDigOutput15	95	input	Status of digital output 15 (0: open/not energised, 1: closed/energised)
DGT	36	nviDigOutput16	95	input	Status of digital output 16 (0: open/not energised, 1: closed/energised)
DGT	37	nviDigOutput17	95	input	Status of digital output 17 (0: open/not energised, 1: closed/energised)
DGT	38	nviDigOutput18	95	input	Status of digital output 18 (0: open/not energised, 1: closed/energised)

Table 6.3.1.1

6.3.2 Non-standard variables

For the description of the non-standard variables, see **Description of the non-standard variables**.

output struct {							
unsigned long int sfw_idnt;							
unsigned char	pco_addr;						
unsigned char	xif_stat;						
unsigned char	xif_flag;						
} xif_data; // information on the interface							
output struct {							
unsigned char	stat;						
char	type;						
unsigned char	indx;						
signed long int	data;						
} rd_prmt; // read pCO variables							
input struct {							
unsigned char	cmnd:						
char	type:						
unsigned char	indx:						
signed long int	data:						
} wr_cmnd; // read/write pCO variables							

7. TECHNICAL SPECIFICATIONS

Power supply	from the pCO		
Operating conditions	0T55°C; 20-80% RH non-condensing		
Storage conditions	-20T70°C; 20-80% RH non-condensing		
Degree of environmental pollution	normal		
Dimensions (mm):	PCO20***F0 60x30x20,		
	PCO20***R0 60x30x20,		
	PCO10***F0 60x30x20,		
	PCO10***R0 60x30x20,		
	PCOB0***F0 47x44x21		
	PCOB0***R0 47x44x21		
	T 11 7 1		

Table 7.1

8. APPENDIX A

List of SNVT variables managed by the interface The variables marked by an 'X' in the 16 bit range column are not managed by the interface.

SNVT	SNVT	16 bit	resolution	SNVT	pCO var. type	available
number	name	range	unit	range	I J I -	range
1	SNUT omn	27769 27767	0.1.4	2076 9 2076 7 1	analogua	f.,11
2	SNVT amp mil	-32768 32767	0.1A	-52/0.0 52/0.7 A	analogue	full
2	SNVT_amp_mm	-52708 52707	0.001 rod	-3270.8 3270.7 IIIA	integer	1011 0.000 22767 rod
	SNVT_angle_vel	32768 32767	0.001 rad/s	3276.8 3276.7 rad/s	analogue	0.000 32707 Idu full
5	SNVT_aligit_ver	0 65535		0 65535 kBTU	integer	0 32767 kBTU
6	SNVT_btu_mega	0 65535	1 MBTU	0 . 65535 MBTU	integer	0 32767 MBTU
7	SNVT_otar_ascii	0255	TMDTC	8bit ASCII character	integer	full
8	SNVT count	065535		0 65535	integer	032767
9	SNVT count inc	-32768 32767		-32768 32767	integer	full
10	SNVT_date_cal	Х				
11	SNVT_date_day	0255		06,255	integer	full
12	SNVT_date_time	Х		,	0	
13	SNVT_elec_kwh	065535	1kWh	0 65535 kWh	integer	0 32767 kWh
14	SNVT_elec_whr	065535	0.1Wh	0.0 6553.5 Wh	analogue	0.0 3276.7 Wh
15	SNVT_flow	065534	1 l/s	0 65534 l/s	integer	0 32767 l/s
16	SNVT_flow_mil	065535	1 ml/s	0 65535 ml/s	integer	0 32767 ml/s
17	SNVT_length	065535	0.1 m	0.0 6553.5 m	analogue	0.0 3276.7 m
18	SNVT_length_kilo	065535	0.1 km	0.0 6553.5 km	analogue	0.0 3276.7 km
19	SNVT_length_micr	065535	0.1 um	0.0 6553.5 um	analogue	0.0 3276.7 um
20	SNVT_length_mil	065535	0.1 mm	0.0 6553.5 mm	analogue	0.0 3276.7 mm
21	SNVT_lev_cont	0200	0.5 %	0.0 100.0 %	integer	full
22	SNVT_lev_disc	0255		04, 255	integer	full
23	SNVT_mass	065535	0.1 g	0.0 6553.5 g	analogue	0.0 3276.7 g
24	SNVT_mass_kilo	065535	0.1 kg	0.0 6553.5 kg	analogue	0.0 3276.7 kg
25	SNVT_mass_mega	065535	0.1 ton	0.0 6553.5 ton	analogue	0.0 3276.7 ton
26	SNVT_mass_mil	065535	0.1 mg	0.0 6553.5 mg	analogue	0.0 32/6./ mg
27	SNVT_power	065535	0.1 W	0.0 6553.5 W	analogue	0.0 32/6./ W
28	SNVI_power_kilo	065535	0.1 KW	0.06553.5 KW	analogue	0.0 32/6.7 KW
29	SNVT press	005555 32768 32767	0.1 kPa	3276.8 3276.7 kPa	analogue	0 52707 ppili full
30	SNVT res	0 65535	0.1 KFa	$-3270.6 \dots 3270.7$ KFa	analogue	1011 0.0 3276.7 ohm
32	SNVT_res_kilo	0 . 65535	0.10hm	0.0 .6553.5 kohm	analogue	0.0 3276.7 kohm
33	SNVT_res_kild	-32768 32767	0.01dB	-327 68 327 67 dB	integer	full
34	SNVT_speed	0 65535	0.01 m/s	0.0 6553.5 m/s	analogue	0.0 3276.7 m/s
35	SNVT speed mil	065535	0.001 m/s	0.000 65.535 m/s	integer	0.000 32.676 m/s
36	SNVT str asc	X			8	
37	SNVT_str_int	Х				
38	SNVT_telcom	0255		020,255	integer	full
39	SNVT_temp	065535	<u>0.1 °</u> C	-274.0 6279.5 °C (note 1)	analogue	-274.0 3002.7 °C (note 1)
40	SNVT_time_passed	Х				
41	SNVT_vol	065535	0.11	0.0 6553.5 1	analogue	0.0 3276.7 1
42	SNVT_vol_kilo	065535	0.1 kl	0.0 6553.5 kl	analogue	0.0 3276.7 kl
43	SNVT_vol_mil	065535	0.1 ml	0.0 6553.5 ml	analogue	0.0 3276.7 ml
44	SNVT_volt	-32768 32767	0.1 V	-3276.8 3276.7 V	analogue	full
45	SNVT_volt_dbmv	-32768 32767	0.1 dB uV	-327.68 327.67 dB uV	analogue	full
46	SNVT_volt_kilo	-32768 32767	0.1 kV	-3276.8 3276.7 kV	analogue	full
47	SNVT_volt_mil	-32768 32767	0.1 mV	-3276.8 3276.7 mV	analogue	full
48	SNVT_amp_f	X				
49	SNVT_angle_f	X				
50	SNVT_angle_vel_f	X				
51	SNVT_count_f	X				
52	SNVT_count_inc_f	X				
53	SNVT_flow_f	X				
54	SINVI_length_f	X				
55 56	SNVT mass f					

57	SNVT_power_f	Х				
58	SNVT_ppm_f	Х				
59	SNVT press f	Х				
60	SNVT res f	Х				
61	SNVT sound db f	X				
62	SNVT speed f	X				
63	SNVT_speed_1	X X				
64	SNVT_time_f					
65	SNV1_une_i					
60	SINVI_VOI_I	Λ V				
66	SNV1_volt_f	X				
6/	SNVI_btu_f	X				
68	SNVT_elec_whr_t	X				
69	SNVT_config_src	0255		01,255	integer	full
70	SNVT_color	X				
71	SNVT_grammage	065536	0.1 gsm	0.0 6553.6 gsm	analogue	0.0 3276.7 gsm
72	SNVT_grammage_f	X				
73	SNVT_file_req	X				
74	SNVT_file_status	Х				
75	SNVT_freq_f	Х				
76	SNVT_freq_hz	065535	0.1 Hz	0.0 6553.5 Hz	analogue	0.0 3276.7 Hz
77	SNVT_freq_kilohz	065535	0.1 kHz	0.0 6553.5 kHz	analogue	0.0 3276.7 kHz
78	SNVT_freq_milhz	065535	0.1 MHz	0.0 6553.5 MHz	analogue	0.0 3276.7 MHz
79	SNVT_lux	065535	1 lux	0 65535 lux	integer	0 32767 lux
80	SNVT_ISO_7811	Х				
81	SNVT lev percent	-32768 32766	0.005%	-163.840 163.830 %	integer	full
82	SNVT multiplier	065535	0.0005	0.0000 32.7675	integer	0.0000 16.3835
83	SNVT state	065535	1 bit	065535	integer	(note 2)
84	SNVT time stamp	X			8	(
85	SNVT zerospan	X				
86	SNVT magcard	X				
87	SNVT elansed tm	X				
88	SNVT_elarm	X				
89	SNVT_currency	X				
00	SNVT_file_pos	X V				
90	SNVT_muldiv					
91	SNVT_illululv					
92	SINVI_ODJ_IEquest					
93	SINVI_00j_status					
94	SINVI_preset		1 1.4	(noto 2)	diaital	
95	SINVI_SWICH	01 V	1 DIL	(note 3)	uigitai	
90	SINVI_trans_table	Λ		0 2 255	• .	C 11
97	SNV1_override	0255	0.00005	02,255	integer	full
98	SNV1_pwr_fact	-20000 20000	0.00005	-1.00000 1.00000	integer	full
99	SINVI_pwr_tact_t	X	0.51 / 2	0 2276751 / 2		0 1620 21 / 2
100	SINVI_density	065535	0.5kg/m3	032/6/.5 kg/m3	integer	U 1638.3 Kg/m3
101	SINVI_density_f	X	1	0 (552)	• .	0 227/7
102	SINVI_rpm	065534	1 rpm	U 65534 rpm	integer	032/6/ rpm
103	SNVT_hvac_emerg	0255	0.02 1	04,255	integer	tull
104	SNVT_angle_deg	-1/999 18000	0.02 deg	-359.98 360.00 deg	integer	full
105	SNVT_temp_p	-27317 32766	0.01°C	-273.17 327.66 °C	integer	full
106	SNVT_temp_setpt	X				
107	SNVT_time_sec	065534	0.1 s	0.0 6553.4 s	analogue	0.0 3276.7 s
108	SNVT_hvac_mode	0255		09,255	integer	full
109	SNVT_occupancy	0255		03, 255	integer	full
110	SNVT_area	065534	0.0002m2	013.1068 m2	integer	0 6.5534 m2
111	SNVT_hvac_overid	X				
112	SNVT_hvac_status	X				
113	SNVT_press_p	-32768 32766	1 Pa	-32768 32766 Pa	integer	full
114	SNVT_address	0x4000 0xFCFF		0x4000 0xFCFF	integer	full (note 3)
115	SNVT_scene	X				
116	SNVT_scene_cfg	X				
117	SNVT_setting	X				
118	SNVT_evap_state	0255		02,255	integer	full
119	SNVT_therm_mode	0255		02,255	integer	full
				0 0 0 5 5	· · · ·	6 11

121	SNVT defr term	0255		08.100.255	integer	full
122	SNVT defr state	0255		04.255	integer	full
123	SNVT time min	065535	1 min	0 65535 min	integer	032767 m
124	SNVT time hour	065535	1 h	0 65535 h	integer	032767 h
125	SNVT ph	-32768 32767	0.001 pH	-32.768 32.767 pH	integer	full
126	SNVT_ph_f	Х		^	U	
127	SNVT_chlr_status	Х				
128	SNVT_tod_event	Х				
129	SNVT_smo_obscur	05000	0.001	0.000 5.000 %	integer	full
130	SNVT_fire_test	0255		03,255	integer	full
131	SNVT_temp_ror	-32768 32766	0.5 °C/min	-16384.0 16383.0 °C/min	integer	full
132	SNVT_fire_init	0255		016,255	integer	full
133	SNVT_fire_indcte	0255		08,255	integer	full
134	SNVT_time_zone	Х				
135	SNVT_earth_pos	Х				
136	SNVT_reg_val	Х				
137	SNVT_reg_val_ts	Х				
138	SNVT_volt_ac	065534	1 Vac	0 65534 Vac	integer	0 32767 Vac
139	SNVT_amp_ac	065534	1 Aac	0 65534 Aac	integer	0 32767 Aac
140						
141						
142						
143	SNVT_turbidity	065534	0.001 NTU	0.000 65.534 NTU	integer	0,000 32,767 NTU
144	SNVT_turbidity_f	X				
145	SNVT_hvac_type	0255		09,255	integer	full
146	SNVT_elec_kwh_l	X				
147	SNVT_temp_diff_p	-32768 32766	0.01 °C	-327.68 327.66 °C	integer	full
148	SNVT_ctrl_req	<u>X</u>				
149	SNVT_ctrl_resp	X				
150	SNVT_ptz	X				
151	SNVT_privacyzone	X				
152	SNVT_pos_ctrl	X	0.011.17	227.69.227.66114	• ,	C 11
153	SINVI_enthalpy	-32/68 32/66	0.01KJ/Kg	-32/.08 32/.06 KJ/Kg	integer	Tull
154	SINVI_gI1_status	0255		05,255	integer	Full
155	SINVI_motor_state	0255 V		01,200	integer	IUII
130	SNVT ov control					
157	SNVT numper on					
150	SNVT nump sensor					
139	SNVT abs humid	0 65334	0.01 g/kg	0 655 34 g/kg	integer	0 327.67 σ/kg
161	SNVT flow n	0 65334	0.01 g/kg	$0.655.34 \text{ m}^{3/\text{h}}$	integer	$\frac{0.327.07 \text{ g/kg}}{0.327.67 \text{ m}^{3}/\text{h}}$
167	SNVT dev c mode	0 255	5.01 III <i>J/</i> II	0 29 255	integer	fnll
163	SNVT valve mode	0255		07.255	integer	full
164	Sitt i _tuite_mode	0235		0,200	meger	1011
165	SNVT state 64	Х				
166	SNVT ny type	X				
100	1~			II		Tab 81

note 1. SNVT_temp: to be considered as an offset from -274.0°C note 2. SNVT_state: reversed bit mapped

note 3. SNVT_address: the range 0x8000 .. 0xFFFF is mapped as -32768 .. -1 in the pCO variables

Carel reserves the right to modify or change its products without prior notice.

Technology & Evolution

CAREL S.p.A. Via dell'Industria, 11 - 35020 Brugine - Padova (Italy) Tel. (+39) 049.9716611 Fax (+39) 049.9716600 <u>http://www.carel.com</u> - e-mail: <u>carel@carel.com</u>

Agency:

Cod: +030221960 Rel 2.0 dated 23 September 2003