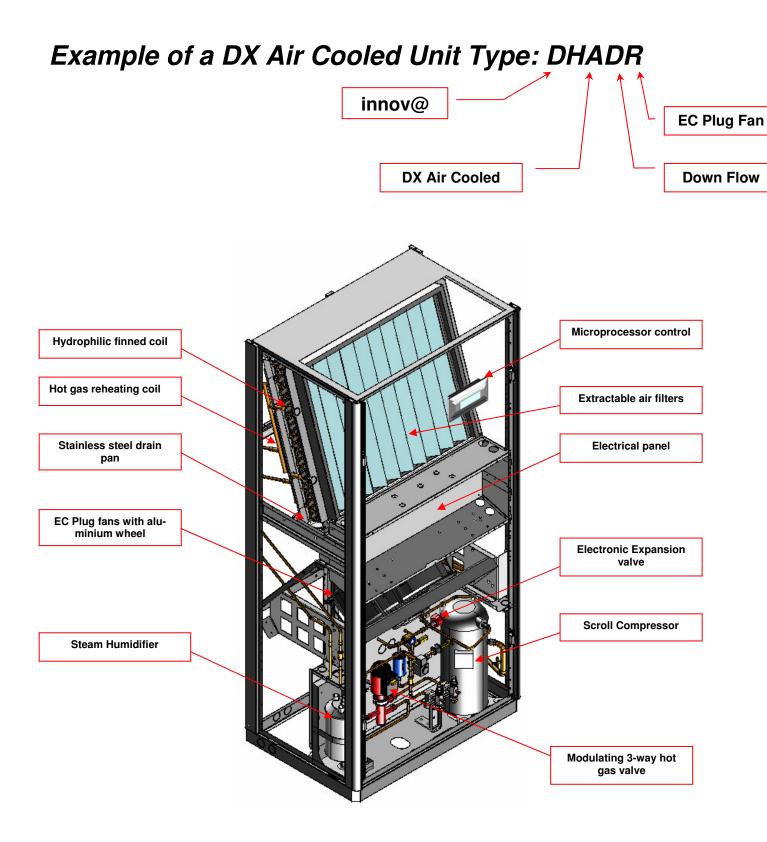
innov@

Close Control Units

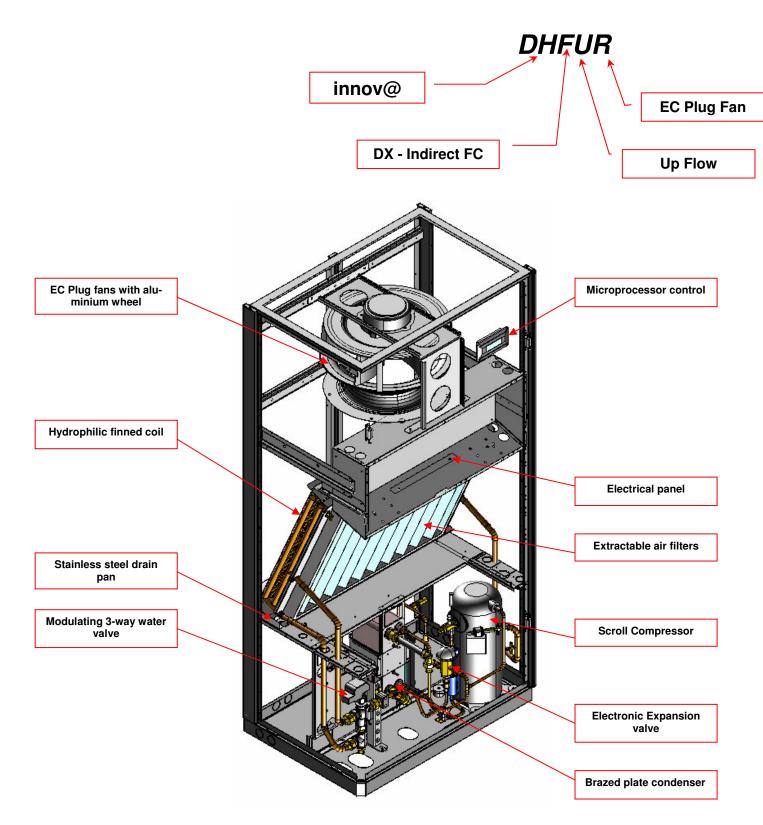
"EC Direct Driven Plug fans"

APPLICATION GUIDE

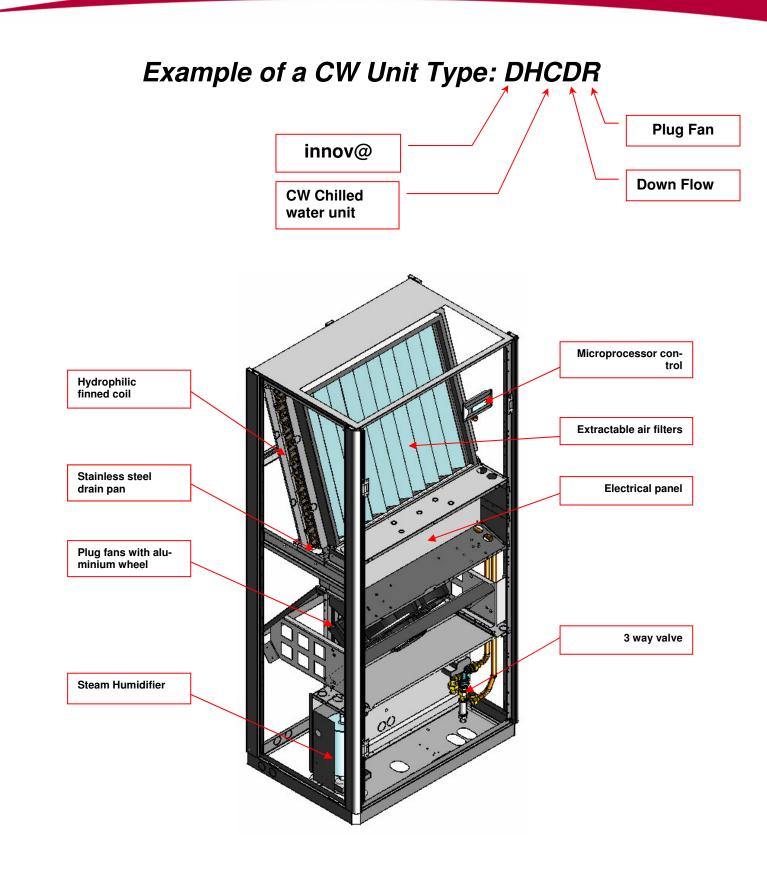


Index

General Description	
Configuration Digit	
Main characteristics & features	
Application field	
Technical section	
Range Overview	
DX Air Cooled Units Technical Data	
DX Water Cooled Units Technical Data	
CW Units Technical Data	
Remote condensers	
Remote Dry Coolers	
Correction factors	
Piping	
Interconnectivity	



General Description of the innov@ Close Control Units



Example of a DX Indirect Free-cooling Unit Type:

DIGIT for "R"version

DIGIT Configuration

The **RADIAL INNOV**@ **DH..R** range consists of 13 models with a cooling capacity ranging between 5,9 and 22,2 kW. All units are available in different air-flow configurations and in DX or CW version, according to the DIGIT configuration shown below.

Direct Expansion Unit DX

				-	-				-											
DH	Α	D	R		0	1	0	0		1	2	3	4	5	6	7	8	9	10	11
	1								1								1	1		

DH : Innov@ series

DX	Direct expansion units
Λ.	romoto air condenaed unite

- A: remote air condensed unitsW: water condensed units
- F: Indirect free cooling ("R" radial fan version only)
- D: dual cooling (Water coil + DX coil remote condensed -for "R" only)
- Q: dual cooling (Water coil + DX coil water condensed -for "R" only)
- Z: city water condensed units (T inlet <=20 °C)*

Air Flow

- D: downstream
- U: upstream
- X: displacement ("R" only)

Fans

R: EC Radial fan with backward curved blades

Cooling capacity KW / 10

(*)kindly suggested the pressostatic valve

	Configuration	
1	Power supply	-
	400V / 3 ph + N / 50Hz	3
2	Control	
-	Basic – Carel µAC	0
	Advanced (with local interface) – Carel pCO1	B
3	Refrigerant	
	R407C	0
	R407C with electronic expansion valve	1 2
	R22 R22 with electronic expansion valve	3
	hzz with electronic expansion valve	3
4	Fan	
	Brushless EC Technology (Special)	E
_		
5	Humidifier	
	No	0
	Dehumidification Dehumidification + Steam Humidifier	4
		5
6	Electrical heater	
	No	0
	Yes - 3 steps	F
_		
7	Re-heating system	-
	No	0 4
	Hot gas coil modulating On/Off (Special) Hot gas coil modulating (with advanced control) (Special)	8
	Hot gas con modulating (with advanced control) (Special) Hot water coil with 0-10V signal activated valve (Special)	7
		· ·
8	Air filtration	
-	G3 (standard)	0
	G4	Н
	F5 (Special)	Р
	G3 + clogged filter sensor	
	G4 + clogged filter sensor F5 + clogged filter sensor (Special)	Q
	ro + cioggeu inter sensor (Special)	u
9	Condensing control	
-	None	0
	Mod. fan speed control with MCB (advanced)	5
	Flooding technology refrigerant side with back pressure valve (in "F" version = standard)	7
	2-way water pressostatic valve for watercooled "Z" & "O" version	9
10	Packaging	
	Standard	0
	Wooden crate with cardboard	Ň
	Seaworthy	N
11	Special	
	Standard	0
	Special	S
I		-

DIGIT for "R	"version
--------------	----------

Configuration DIGIT

Chilled water units: Example...

	· · · · · · · · · · · · · · · · · · ·		
DH C D R	0 0 8 0	1 2 3	4 5 6 7 8 9 10 11

DH : INNOV@ series

CW chilled water

C: base unit

S: slave unit without microprocessor

Air Flow

- D: downstream
- U: upstream
- X: displacement ("R" only)

Fans

R: EC Radial fan with backward curved blades

Cooling	capacity
KW / 10	

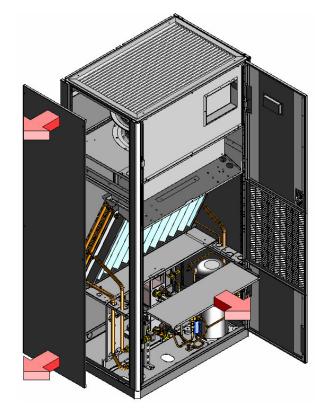
	Configuration	
1	Power supply	
	400V / 3 ph + N / 50Hz	3
	Standard: 230V / 1 ph + N / 50Hz	1
2	Control	
	Basic – Carel µAC	0
	Advanced (with local interface) Carel pCO1	В
	Slave unit without micrprocessor (Special)	С
3	Valve	
	3 way valve with 3 point motor	0
	3 way valve with 0-10 V signal activated motor	3
4	Fan	
	Brushless EC-Technology (Special)	E
5	Humidifier	
	No	0
	Dehumidification	4
	Dehumidification + Humidifier	5
6	Electrical heater	
	No	0
	Yes - 3 steps	F
7	Re-heating system	
	No	0
	Hot water coil with 3 point activated valve (Special)	5
	Hot water coil with 0-10 V signal activated valve (Special)	6
_	A to dilacation	
8	Air filtration	•
	G3 (standard) G4	0
	F5 (Special)	H P
	G3 + clogged filter sensor	۳ ۱
	G3 + clogged filter sensor G4 + clogged filter sensor	
	F5 + clogged filter sensor (Special)	Q
		v.
9	Condensing control	
3		0
		v
10	Packaging	
10	Standard	0
	Wooden crate with cardboard	Ň
	Seaworthy	N
		IN .
11	Special	
	None	0
	Special	S
		3

Main Characteristics

INNOV@ DH..R CCU Units

INNOV@ CCU self-contained units are specially designed to be installed in technological environments such as Computer rooms, laboratories and where a high precision in climate control and a 24h/day operation are requested. INNOV@ units represent the state of the art of technology and design as well as all Lennox products. Thanks to their characteristics, INNOV@ can be installed also in office environments where people are working in. A depth of 600 mm in "R" versions, allows the compatibility with standard cabinets for EDP environments. Furthermore, the innovative design and the high tech colours match the INNOV@ units to the last generation of IT devices. The internal design of the units is developed primary on the background of efficiency and reliability, but guaranteeing unhindered accessibility: all components, such as e-heaters, fans, compressors, valve, etc. can be easily maintained from the front of the unit. Moreover, the door/s are dismountable in just a few seconds thanks to an innovative hinge: this is a very important additional feature, specially developed to enable accessibility when units are installed in small corridors. The exclusive use of components of internationally well-known brands and a fully integrated development process (CAD+CAM, CAE) represents the highest possible quality level in efficiency, reliability, maintenance time, pre and after sales support. All DX units are available in single circuit version.

Frame

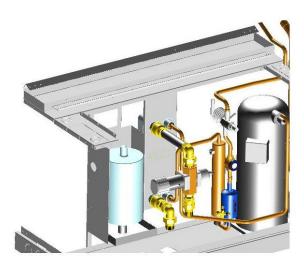

INNOV@ units are designed with a self-supporting frame and all components are made "in-house", using sophisticated computer driven machines and special tools. All sheet metals are galvanized; the external panels moreover are powder coated RAL 7016 "anthracite grey" colour, or RAL 9002 "grey white", giving the units an image and a look such as the last generation of IT devices. The units are completely closed, only frontal access is required. Nevertheless, a side access is also possible in order to reach the steam tube, the drain pan, or simply to replace a damaged side panel: all these problems are very unusual, but with INNOV@ units, it is possible to solve them, in spite of most other product on the market. The shape of the units is characterized by rounded edges of 26,5 mm radius, as it happens for all Lennox products. This special feature is produced using special tools and it gives a new aesthetic appearance together with advantages in injury prevention. The compressor compartment is separated from the air-flow. The special internal design allows a simple dismounting of the upper part of the compartment ensuring an insuperable accessibility to all refrigerating components.

All fixing elements are made either of stainless steel or of non-corroding materials. The drain pan is made of stainless steel in order to ensure long lifetime operations without damage.

All panels are thermally insulated with a polyurethane foam class 1, according to UL 94 norms: this material, thanks to the open cells, achieves good performances in sound absorption. Sandwich panels are available as an option. They are made of synthetic fibres, laid between the external panel and a second metal sheet, to get the highest value of internal smoothness. The sound insulation is better than in standard versions, but the level of the internal reflected sound-power will increase on airflow discharge side.

Refrigerating circuit

The entire refrigerating circuit is assembled in Lennox's production, including all pipe work and using only primary brand for the components. The employees involved in the welding and pipe work processes are qualified by a third part according to the CEE 97/23 PED directive: this kind of qualification for workers is not a requirement, but Lennox's policy is for the care of the product quality and of the customer's satisfaction. All DX units are in single circuit execution and are precharged with dry nitrogen for "A", "D" or with R407C refrigerant in "W", "F", "Q" versions. Units for different re-



frigerants such as R22, R134a, and R410A are available on request.

Compressors: Only primary brand scroll compressors are installed in INNOV@ units (fig.1). The scroll compressor represents the best solution in terms of efficiency and reliability for CCU units. The internal compression ratio is very close to the typical operating condition of CCU applications, bearing the maximum in terms of COP. The perfectly balanced pressures during start-up phases are a great advantage for the electrical motor and its reliability, most of all in this field, where start-ups are very frequent.

If more cooling capacity modulation is necessary, maintaining high values of the COP, the ENERGY units with <u>inverter</u> compressor are suggested. Further information about this technology is available on the product documentation of <u>ENERGY</u> units.

Plate heat exchangers: only AISI 304 BPHEs with low-carbon steel connections are used. The special design of the plates gives both the advantage of increasing the turbulence, reducing the fouling, and of increasing the efficiency, lowering the overall dimensions: this feature let the BPHE to be installed behind the compressor compartment, leaving more space for piping and other components.

Fig.1

□ Finned coil heat exchanger: All coils are made by using the 25 x 21,65 mm geometry, in combination with 9,52mm copper pipes and 0,10mm-thick aluminium fins. The expanding process, that guarantees a perfect contact between pipes and fins, is one of the most critical processes and it's 100% monitored in the whole production. The design criteria for our R&D department and our laboratories, can be summarized in 4 main points:

- Reduction of pressure losses by using coils with a large front surface
- Hydrophilic treatment on the fins to allow the film-condensation of the dehumidification water
- Reduction of the vertical length to avoid big thickness of water film and, at the same time, to have the possibility to deal with high air volumes and high relative humidity with no waterdetaching in down-flow units.
- Special Corrugated Fins increase the heat transfer coefficient on air-side and consequently improve the SHR.

A great care has been taken over the chilled-water units by checking the behaviour of the Reynolds number inside the pipes during the modulation of the three-way valve: a transition between laminar and turbulent flow may lead to a big benefit for the heat exchange efficiency, but with loss of accuracy in T control.

In order to reduce the stocking of spare parts, as usual for all Lennox products, only one coil is used for both up- and down-flow units.

- Remote condenser: coils are made using the 25 x 21,65 mm geometry for the 9,52mm copper grooved pipes (5/16" for R410A refrigerant fluid) and 0,10mm-thick aluminium louvered fins. The combination of these technologies allows the maximum reduction of the internal volume and consequently a reduction of the refrigerant charge quantity. The adopted fans come only with external-rotor motor and in 4- or 6-pole execution, depending on the selected sound power level. There are already two available selections in the catalogue, but on special request, our R&D department can work further solutions out. Panels are made of galvanized precoated metal sheet and special brackets for horizontal installations are available for the whole range (as an option). For different climatic areas you can choose among three different type of condensing controls:
 - o None
 - Modulating fan-speed control installed on-board of the CCU \rightarrow down to -15 °C
 - Flooding technology in <u>addition</u> to the fanspeed control for temperatures below -15°C and down to -30°C. This last option will be supplied as a kit (including a liquid receiver, a back pressure valve, a safety valve and a protection cabinet) and needs to be installed on-site just next to the condensing unit.
- Refrigerating components:
 - Filter with molecular sieve and activated alumina.
 - Sight glass with humidity indication.
 - Thermostatic valve with MOP function and external equalization.
 - Electronic expansion valve for insuperable performances in middle and winter season: the pay-back of the solution in North-Europe countries is less than one year.

- Liquid receiver according to the CEE 97/23 0 PED directive
- HP pressostat with manual reset according to 0 cat. IV CEE 97/23 PED.
- LP pressostat with automatic reset and delayed 0 time during start-ups.
- Schrader valves for maintenance and/or con-0 trol.
- Long distance kit if needed. 0

Electrical panel & components

- Electrical panel: the electrical panel is fully integrated into the unit and is designed according to the CEE directives 72/23, 89/336 and related norms. An access to the electrical panel even with open doors is needed: with open doors the protection still remains IP 30 thanks to a transparent plastic sheet protection in front of the components. All remote signals are with low voltage 24 Vac, obtained by a safety transformer. The electrical panel has a circulation air system in order to manage the inside thermal dissipation when the unit is running. All connected loads are protected with automatic switches in addition to those, which are already provided within the compressors and fans. All 3phase units are standard equipped with a phase sequence relay: this device checks the sequence of the phases, avoiding the start-up of the compressors in the wrong direction. With the electronic valve option (EEV), the microprocessor manages the evaporating temperature; therefore, SHR is under control also with constant air-flow.
- Microprocessor: two different types are available: - Basic – Carel µAC

- Advanced – Carel serie pCO.

The Lennox Software Development Team is always ready to customize the software for these controls, according to customer specifications.

The main functions are summarized in:

- Input of main parameters by means of the key-0 board:
- Display of operating conditions, alarms and de-0 vices status:
- ON/OFF switching or modulating (three-way 0 valve, humidifier) resources to keep the environment parameters constant;
- Modulation of the three-way valve for hot water 0 re-heating (option);
- Activation / Deactivation of the solenoid valve 0 for hot gas re-heating (option) in DX version only;
- Modulation of the humidifier capacity; 0
- Activation of the different steps in electrical 0 heating (option);
- Alarm management: 0
- High / Low ambient temperature: 0
 - High / Low pressure refrigerant circuit

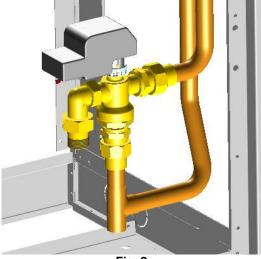
- Air Flow;
- Dirty filters;
- Electrical heating;
- Humidifier general alarm;
- Management of maximum compressor starts:
- LAN connection for stand-by rotation (only with 0 Advanced pCO).

Serial port / protocols

0

- 1. Advanced:
- RS485 / Carel o Modbus®; •
- Modem GSM + RS 232 / sms (units status advice by sms in case of alarm);
- LonWorks® FTT-10 card / LonWorks®
- pCOweb Ethernet connection / BACnet™ o SNMP (TCP-IP) pCOweb RS485 connector / BACnet™
- TREND® serial card / TREND®
- 2. Basic:
- RS485 / Carel .
- External Modbus® gateway / Modbus®
- Display for advaced microprocessor
 - pGD0 basic display: 0

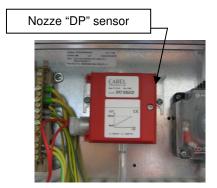
pGD3 Graphical Touch screen color display:


Aeraulic section

Fans of backward-curved blades type, Plug Fans, in combination with EC motors (standard). Fans are statically and dynamically balanced ensuring a drastic reduction for noise and vibrations. This technology allows reductions of energy consumptions mainly at partial loads and allows keeping an exact air-flow apart from external conditions. The air circuit is provided with an air-flow switch that continuously checks for a fan faulty situation.

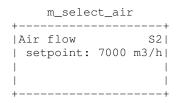
Hydraulic Circuit

CW units are fully assembled and pressure tested in a factory final test. The three-way valves (Fig.2) are selected according to their characteristic Kvs and to the coil pressure drop, in order to give enough authority to the valve for a good water-flow control. The valve body is made of brass OT 58 and the shutter is plated in RILSAN for the maximum tightness: the Unit system is <u>PN16</u>. The external connections are standard supplied with 3-part quick connections to reduce the on-site working time.



Automatic air flow control option

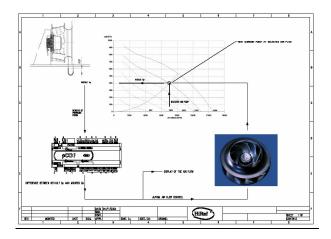
Air differential pressure sensor


Inside of the electrical panel is installed an air differential pressure sensor, to measure **the nozzle pressure drop dP**.

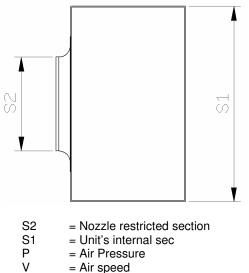
Using this value is possible to calculate the air flow and to regulate the fan speed (0-10V) to obtain the desired air flow (Air flow setpoint).

Air flow setpoint setting

To configure the air flow setpoint is necessary to enter in the setpoint menu and press DOWN to reach the screen S2. Then press ENTER and UP or DOWN to change the value: only step of 250 m3/h are possible.



Operating air differential pressure and related air flow To see the actual air differential pressure (**Nozzle differential pressure**) and the actual air flow is necessary to enter in the Input/Output menu, and press DOWN to reach the screen.


m_synoptic3b	
+	+
Analog inputs:	IZal
Coil temp: 000	.0°C
Diff.press.:000.0) Pa
Air flow: 00000 n	n3/h
+	+

Important note

The automatic flow control is made using a PI (proportional + integral) regulation. The regulation is set with parameter to grant the stability of the system. Please take in account that the mean time to reach the stable value is 5-10 minutes.

Note: the following calculation doesn't consider the friction and the flow coefficient of the nozzel, which are

instead considered into the formulae memorized into the mP

$$\frac{p_1}{\rho} + \frac{v_1^2}{2} = \frac{p_2}{\rho} + \frac{v_2^2}{2}$$
 Bernoulli Principle ;

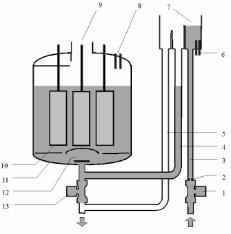
 $v_1 \times S_1 = v_2 \times S_2$ (same air flow through the two sections)

for ENERGY units the ratio S2/S1 = 0.17 so that combining both the equations, the influence of the V1 is negligible

$$\frac{p_1 - p_2}{\rho} = \frac{v_2^2}{2} \times \left(1 - \left(\frac{S_2}{S_1} \right)^2 \right) \implies$$

$$v_2 \cong \sqrt{\frac{2 \times (p_1 - p_2)}{\rho}} \implies \text{Air Flow} = S_2 \times V_2$$

Air Filter


The filter is positioned on the suction side just before the coil and is made of synthetic material with metallic frame. Filtration efficiency is G4, according to the Eurovent 4/5 document. To reach the filter you just have to simply open the door/s, so you can remove it. As an option, in the same frame, it is possible to install filters up to F5 class but, due to the higher pressure drops, HP fans are needed. For better filtration efficiency up to F9, an external plenum can be provided. In this case, an G3 filter will be part of the option as a prefilter; for up-flow units the high filtration plenum is positioned on the delivery side.

Humidifier Section

The steam humidifier is fully controlled by the mP as well as all the operating parameters, like the water level, the water conductivity and the current through the electrodes. Fixing the tension, the current (and so the steam capacity) depends on the water conductivity and the water level: the algorithm that mixes all the parameters ensures the right steam production, avoiding at the same time foam grooving into the cylinder. After a certain period - depending on the water characteristics- the cylinder has to be replaced by a new one: an European average is 3 cylinders per year for a full time operation.

Description of Immersed Electrode Humidifiers:

N. Description

- 1 Fill solenoid valve
- 2 Flow rate limiting device
- 3 Supply pipe
- 4 Fill pipe
- 5 Overflow pipe
- 6 Conductivity measuring Electrodes
- 7 Fill tank overflow device
- 8 High level electrodes
- 9 Steam outlet
- 10 Electrodes
- 11 Cylinder casing
- 12 Bottom filter

13 Drain solenoid valve Important water supply characteristic:

For these units there are three options:

- medium-low conductivity
- normal-high conductivity
- high conductivity

In the <u>Appendix "A"</u> are indicated the supply water limit values needed for the right choice among the three cylinder options.

Humidity control

INNOV@ units can be supplied with a humidity sensor (option). For an independent control between T and r.h. it is necessary to adopt one of the re-heating possibilities (options):

- Electrical re-heating.
- Hot Water with three-way modulating valve.
- Hot gas re-heating: this solution is for DX versions only with no additional energy consumption for the heating process. The coil design criteria allow to have a higher heating capacity than sensible cooling capacity and then to dehumidify even when there is no thermal load inside. The Hot gas reheating can be:
 - ON / OFF
 - Modulating with a three-way valve for a precise control of the environment parameters

Water-condensed versions

"W", "Z", "Q" and "F" DX water condensed units are equipped with an AISI 304 brazed plate condenser. They are fully tested and charged with POE oil and refrigerant: during the final factory test procedure, all operating parameters are measured.

Depending on the water T, but normally mandatory for "Z" versions, it is possible/necessary to add a two-way condensing control valve (Fig.3). In case of impossibility of reducing the water-flow, flooding technology is the alternative: in this case, only a refrigerant side action occurs and the water-flow remains the same.

Fig. 3 The condenser is located behind the compressor compartment and is fully accessible from the front of the unit.

Fresh air kit

The fresh air kit consists in a flexible pipe and a cartridge G3 filter. Under normal conditions, it supplies about 100 m³/h, no matter the unit size. In down-flow units, the filter is located in the fan sector. Before changing the filter, it is necessary to stop the unit and remove the sheet metal in front of the fan compartment. In up- flow units an additional <u>booster fan</u> is provided, to supply nearly 80 m³/h for all models, and the relative filter is located just next to the main filter.

Plenum kit

A suction/delivery plenum (Fig. 4), 300mm or 500mm high, is available as an option. For down-flow units such plenums can be equipped with silencer cartridges, high efficiency filters, or, as a special option, a damper section with direct Free-Cooling configuration. In case of up-flow units, the discharge plenum can be delivered with aluminium grills for frontal air discharge.

Fig.4 Base Frames / Floor stands

Made in galvanized steel, they are available in three different sizes (300 - 500 - 800 mm), with an excursion of +/- 25mm.

Electrical Heaters

Electrical heaters are realized for 3 steps operations and are made of aluminium with a large surface, in order to keep the lowest possible surface temperature (less than 130 °C), (Fig.5). Each heating element is provided with an independent safety thermostat. Despite the very small depth of the unit, the elements are mounted in a rail that allows their extraction from the front of all models, up and down-flow.

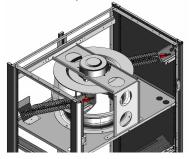
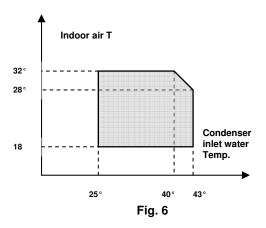


Fig. 5

Before any maintenance on the electrical heaters, disconnect the unit from the power supply and wait for 30

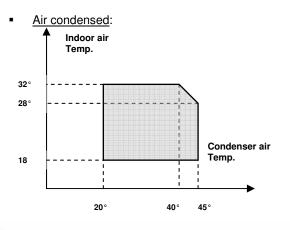
minutes, allowing the temperature to decrease



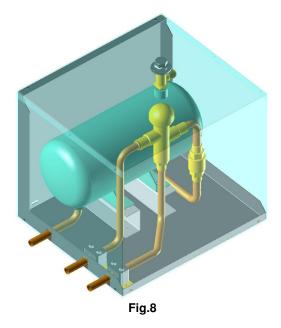
Application Field

INNOV@ units are designed for indoor installations in technological environments, but have been tested also under extreme conditions, typical e.g. of Far and Middle East markets. The indoor temperature limits are covered from 18 °C and 32 °C and the r.h. limit up to 75% for the whole range. Their reliable operation practically covers all indoor conditions.

The following diagram (Fig.6) shows the application of the water-cooled DX units.


Water condensed:

Water temperatures below 25 °C require a condensing control valve (option):


- □ Two-way modulating valve on water side: the valve is installed in the inlet piping to avoid large amounts of water flowing into the system in case of a broken pipe on refrigerant side.
- Flooding technology: this has <u>no influence on</u> the water flow, but a flooding of the heat exchanging surface by a constant back pressure valve and a large liquid receiver.

The next diagram (fig.7) shows the application of aircooled DX units with Lennox condenser selection.

Fig. 7

If extended application ranges are needed, please contact Lennox's R&D department or your local **Aipplications** with an external air temperature below 20°C, require a condensing control to ensure enough pressure drops through the expansion valve. Temperatures below -15° and down to -30°C require a flooding device (Fig.8) in order to flood the condenser internal surface and get the right condensing T, even in case of strong and cold winds. This device is added as a kit, consisting in a backpressure valve, a receiver, a safety valve and assembly instructions. The installation is very simple, just close to the condensing unit at the bottom side.

Compressors Oil Heaters

Fig.9 shows a specific property [Charles' law] of gasses: the higher the pressure, the more they get soluble in liquids; on the other hand, the lower the temperature, the less they become soluble: if the oil in the crankcase heater is kept at a constant pressure, an increase in temperature will significantly reduce the amount of refrigerant dissolved in it, thus ensuring that the desired function is maintained.

The problem of not enough lubrication occurs when the crankcase is not properly heated, most of all after a long time of standstill when, due to the suction effect of the compressor, there is an abrupt drop in pressure inside the crankcase, which results in a considerable evaporation of the refrigerant previously dissolved in the oil. With no heating elements, these circumstances would cause two problems:

- Dilution of the oil, hence insufficient lubrication
- Migration of the oil towards the cooling circuit, due to the dragging effect of the refrigerant.

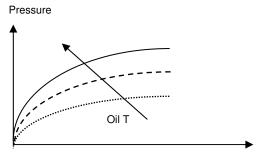


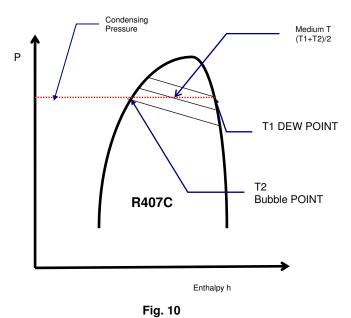
Fig. 9 % R407C in oil

Heating elements are very important, especially when starting up for the first time; in this case it is recommended to leave them switched on for at least 12 hours before starting the compressor.

Application limits short table

- operating fluid : water or e-glycol mixtures
- synthetic non dangerous and non flammable refrigerant HFC R407C
- □ PN water side: 16 bar
- □ Max P refrigerant cycle HP side = 28 bar-r
- □ Max piping T HP side = 125°C
- □ Max P refrigerant cycle LP side= 22.6 bar-r (*)
- Dever supply: +/- 10% to the nominal value
- □ Max storage T = + 50 °C
- □ Minimum storage T = 10 °C
- $\Box \quad Max r.h. during storage = 85\%$

(*) This value influences the maximum storage T for the units that have a closed refrigerating circuit, like "W" water cooled, "F" free cooling or "Q" Dual cooling" units.


Technical Selection

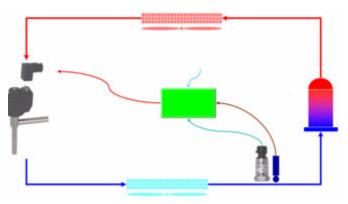
Thermodynamics

Refrigerants

INNOV@ units are charged exclusively with HFC refrigerants, which do no harm, according to specifications of the EEC regulation 2037/00. Standard units are configured for the use of R407C, a ternary mixture of R32 (23%), R125 (25%) and R134a (52%). This mixture displays a typical phase change temperature called "GLIDE" [from GLIDER = which loses height as it travels]. The glide effect is due to the fact that the three constituents have very different phase change temperatures and this leads to a sort of fractional evaporation/condensation. This means that the heat exchangers must be designed very accurately and that a careful choice of the kind of flow which occurs in them, i.e. in the opposite or same direction, must be Tradeliagram (Fig.10) illustrates this "temperature glide" as well as the beginning condensing T (dew point) and the saturated liquid/end of condensation process T (bubble point)

- Begin = DEW POINT
- End = BUBBLE POINT

Expansion Valves


The expansion valve is just a mass-flow regulator that ensures the right flow by checking the superheating at the evaporator outlet. The mass-flow depends mainly

on the percentage of the opening and on the available Delta pressure through the valve. Mechanical valves have a very little modulating capacity and a significant Delta P through them has to be maintained to ensure the mass flow. On every Lennox product, it is possible to install innovative electronically controlled electric expansion valves (optional), which have a much bigger modulating capacity compared to traditional mechanical thermostatic valves. This makes it possible to operate below reduced pressure differentials during middle and winter seasons. The minimum condensing T allowed (Dew Point) is 28 ℃, due to the scroll compressor mechanical limits.

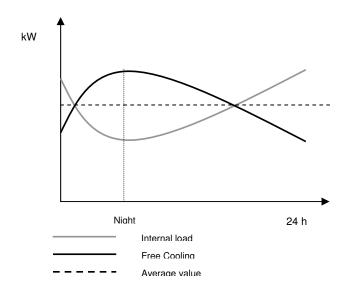
In this period it is possible to cut the energy consumptions even to 51 %, since the compression process occurs between two levels that are very close to each other; the limit is represented only by the intrinsic fixed compression ratio of scroll compressors. Return of investments can thus be achieved in shorter time. Lennox can support you with calculations for a different specific thermal load and outside T profiles.

The simple scheme shows how the valve is managed: a pressure transmitter reads the evaporating pressure and a T sensor measures the Refrigerant T. The mP calculates the superheating and, using special algorithms, one of which is patented by Lennox S.p.A. (pat. nr. BO2002A000785 ITA) drives the valve to open/close by means of a stepper motor. Only two valves cover the INNOV@ Range, giving important advantages for eventual res. A similar technology is used to modulate hot gas bypass in units.

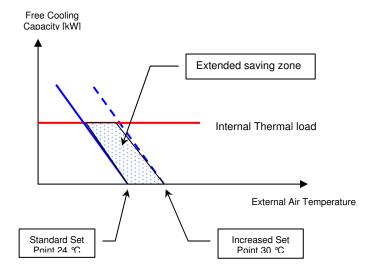
ETV scheme

ETV picture

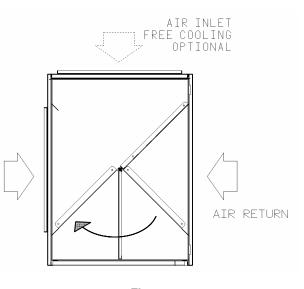
LENNOX


Free Cooling

Direct FREE COOLING

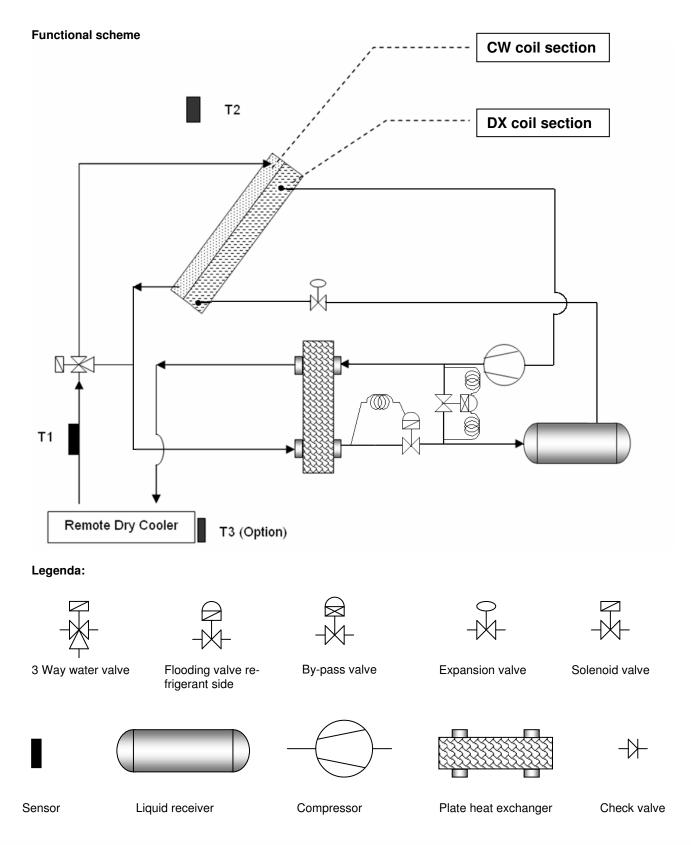

When the outdoor conditions allow it, the free cooling is the best solution to save energy. It should be considered that the external air, mixing with the internal air, will be heated without adding humidity: the lowest acceptable indoor conditions in terms of T and r.h., identifies the minimum outdoor condition at which is still possible to have free cooling.

The internal thermal load is not constant but increases during the day, and, at the same time, the external air T also raises up reducing the capacity of the free cooling. To have the maximum performance in energy saving, the peaks in cooling demands have to be phased with the peaks in free cooling capacity: the way to get this is to use the thermal inertia of appliances and structures to accumulate cool as much as possible i.e. during the night time. This is possible allowing the set-point to shift down to the limit fixed by the ETSI norms; for example, during the night, when the thermal load is low and the FC capacity is maximum, the CRAC will cool down the room(s) to the minimum allowed T (15 °C) and humidity (15%). All this accumulated cool energy will help during the day, when the free cooling capacity could be lower than the internal generated load.


During the day, allowing the set point to raise up to the ETSI limits (30° in T and 70% in r.h), it is possible to avoid using the compressors as much as possible. The free cooling capacity depends directly on the T difference between the indoor environment and the external air: by allowing the Room Temperature to rise up, it is possible to extend the Freecooling operating field extending the saving period

This "floating" set-point is made according parameters (T and r.h) fixed by the ETSI norms and in any case it is possible to modify this values using the "service password" for the microprocessor, or set the conventional modality with a fixed set point.

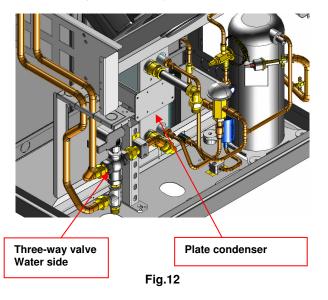
Plenum for direct free-cooling version



In Fig. 11 is showed the scheme of the plenum installed in the direct free-cooling version. The microprocessor manages the position of the dumper, allowing the external air-flow when the free-cooling conditions are reached.

Note: the direct free-cooling option could be select for all INNOV@ models only with down-flow version. With this solution an overpressure damper, installed on a room's wall, is necessary.

Indirect FREE COOLING



Functionality

Indirect free-cooling begins when the external dry cooler outlet temperature (T1) is lower than the room air temperature (T2) of a preset ΔT (3° as default).

In this condition, the three-ways valve (see fig.12) let the cooled water flow through the CW section of the coil. If the free-cooling capacity is not enough, the Both work compressor starts. circuits can simultaneously thanks to the flooding valve system: this allows to reduce the condenser area by moving the refrigerant from the liquid receiver to the condenser, so the condensing pressure remains the same even when the water temperature is very low.

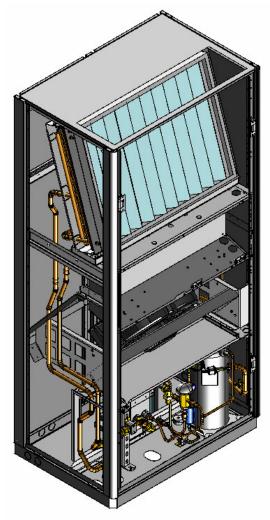
The T3 sensor (optional) allows the control the dry cooler fan speed:

- If the external temperature goes below (T2 10°), than the fans are speeded up to the max rpm, in order to have the largest help from the free-cooling action.
- If the external air temperature is higher than (T2 -10°) the fan speed is modulated to have an

FREE COOLING: direct Vs indirect

Comparing these two free-cooling solutions leads to the following remarks.

Thermodynamic point of view:

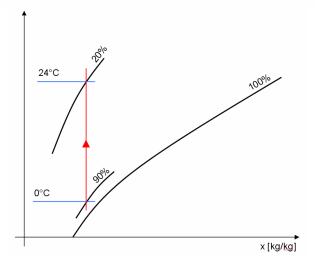

With the indirect free-cooling it's possible to avoid some thermodynamic losses, which are due to the airto-water exchange in the dry cooler and in the cooling coil, even made worse by using glycol. This means that the direct free-cooling allows more cooling capacity, at the same external air temperature, and a higher FFT (full free-cooling temperature).

Economic point of view:

Direct free-cooling is to prefer even under economic aspect. The starting investment costs, due to the structural complexity, and the working cost, due to the theraddictional condensing control, and to reduce the noise level.

The T3 sensor has to be installed on site, on the dry cooler suction side and sheltered from sunshine.

Drawing



modynamic efficiency, represent a penalty in the indirect free-cooling. In this surplus cost, also the power consumptions of the water circulation pump have to be considered in indirect solution.

Air quality point of view:

Indirect free-cooling is the only way of air-conditioning when the room has to be insulated from the external air, when hard-filtering is requested (as white rooms) or if is not possible to link the unit to the external environment. Using the direct free-cooling, the specific humidity will be the same as in the outside and, for this reason, the r.h. can drop down below 20% (fig.12). For avoid this, an humidifier is needed and the related cost should be considered.

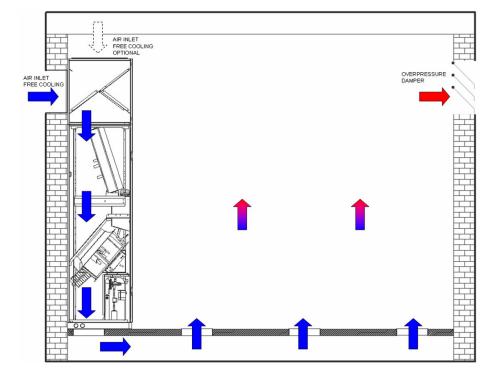
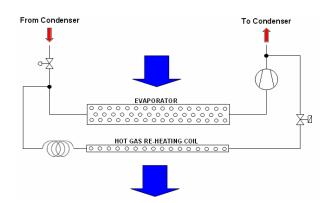


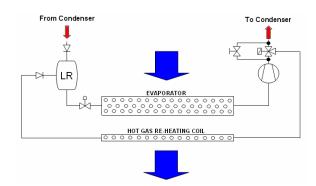
Fig.12

<u>Overpressure damper:</u> When direct free-cooling, there has to be an overpressure damper to let the free-cooled air flow outside. This device will be installed on a wall and has to be designed for a ΔP of 30 Pa in the nominal air-flow conditions.

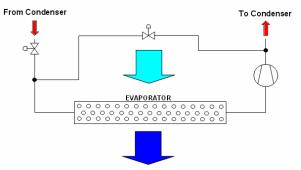
The direct free-cooling option is available only for the down-flow configuration.



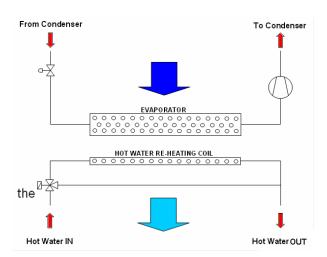
Re-heating Systems and Capacity Control


INNOV@ units different options can be chosen in order to control temperature and humidity. Below functionality schemes and function of different options:

Hot Gas Re-heating Coil ON/OFF

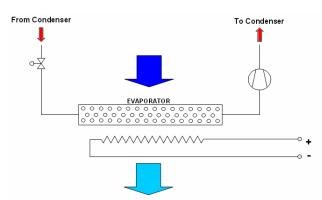

In the hot gas re-heating coil ON/OFF option a 2-way valve with no modulation (ON/OFF) is used. The function is reheating in dehumidification, but there can be no temperature close control and additional heating. The hot gas re-heating coil is designed to kill up to 90% of the total sensible cooling capacity provided by the refrigerating circuit.

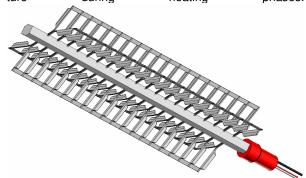
Hot Gas Re-heating Coil PRECISE


In the hot gas re-heating coil PRECISE option a 3-way valve modulates the hot gas flow through the re-heating coil. The 3-way valve cannot completely by-pass the whole hot-gas mass flow into the re-heating coil; this to avoid HP alarms to switch on. The functions are re-heating in dehumidification, precise temperature control, but not additional heating. The hot gas re-heating coil is designed to kill up to 90% of the total sensible cooling capacity provided by the refrigerating circuit.

Hot Gas BY-PASS

the hot gas BY-PASS option a modulating valve manages the hot gas flow into the evaporating coil. The aim is to control the cooling capacity from 30% to 100%.


Hot Water Re-heating Coil


With this option, a hot water connection is needed. In the hot water re-heating coil option, a 3-way valve modulates the hot water flow through the re-heating coil. The function is reheating in dehumidification, but not temperature close control. Together with the next solution (electrical heaters), this is the only way of heating while the compressor is kept off. The heating capacity of the hot water re-heating coil depends on the inlet water conditions available.

Electrical heaters

The function of the electrical heaters is reheating in dehumidification and heating while the compressor is off, but there can be no temperature close control. The heating capacity of the electrical heaters is 1.6 kW: only one module can be installed in Frame1 units and two in Frame2. The electrical heaters heating elements are in aluminium, with a wide surface that allow low temperature during heating phases.

Technical data DX unit, air cooled

		DHADR0060	DHADR0080	DHADR0100	DHADR0110	DHADR0130	DHADR0160	DHADR0190	DHADR0205
		DHAUR0060	DHAUR0080	DHAUR0100	DHAUR0110	DHAUR0130	DHAUR0160	DHAUR0190	DHAUR0205
Power supply	[V/Ph/Hz]	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50				
Air Flow	[m3/h]	1.785	2.150	3.530	3.530	3.700	5.100	5.100	5.100
Frame H	[mm]	1.875	1.875	1.875	1.875	1.875	1.875	1.875	1.875
Ľ	[mm]	600	600	900	900	900	900	900	900
D	[mm]	600	600	600	600	600	600	600	600
Compressor Type		Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Cooling Capacity @ 24 °C 50%		301011	301011	301011	301011	301011	301011	301011	301011
UR – Condensing temperature 45 ℃ (Dew point)	[kW]	6,0	8,0	9,9	11,0	13,0	17,2	19,9	22,0
Cooling Capacity @ 24℃ 50% UR – external air temperature 35℃*	[kW]	5,9	7,7	9,3	10,6	12,7	15,8	18,4	20,5
Power consumption	[kW]	1,5	1,9	2,3	2,6	3,2	4,2	4,9	5,5
Nominal current	[A]	2,8	3,6	4,4	5,1	6,2	8,0	8,7	10,5
FLA	[A]	5	6	6	7	10	13	13	15
LRA	[A]	24	32	40	46	50	66	74	101
Oil charge	[I]	1	1	1,1	1,1	1,36	1,65	1,65	1,65
Finned Coil Evaporator	[0.07	0.07	0.45	0.45	0.15	0.50	0.50	0.50
Front surface	[m2]	0,27 25 x 21 65	0,27 25 x 21 65	0,45 05 x 01 65	0,45 05 x 01 65	0,45 25 x 21.65	0,53	0,53 25 x 21 65	0,53
Geometry Rows	r ı	25 x 21,65 3	25 x 21,65 4	25 x 21,65 3	25 x 21,65 3	25 x 21,65 4	25 x 21,65 4	25 x 21,65 5	25 x 21,65 5
Type of fins	[-] [-]	Hydrophilic	4 Hydrophilic	Hydrophilic	3 Hydrophilic	4 Hydrophilic	4 Hydrophilic	Hydrophilic	5 Hydrophilic
Fin pitch	[mm]	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
SHR	[-]	1,00	0,96	1,00	1,00	0,98	0,99	0,94	0,92
Indoor Fan		,	- ,	,	,	- ,	- ,	- , -	-) -
Туре		Radial -EC	Radial -EC	Radial -EC	Radial -EC				
Power supply	[V/Ph/Hz]	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Number of fan		1	1	1	1	1	1	1	1
Nominal current	[A]	0,24	0,33	0,51	0,51	0,47	1,05	1,19	1,19
Power consumption	[W]	151	203	315	315	291	652	743	743
AESP	[Pa]	30	30 505	30	30 477	30	30	30	30 144
AESP @ max fan speed Air Filter	[Pa]	557	505	477	477	453	174	144	144
		<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
Filtration Overall surface	[0]	G3	G3	G3	G3	G3	G3	G3	G3
	[m2]	2,2	2,2	3,6	3,6	3,6	5,0	5,0	5,0
Fire resistance class Electrical heaters		1	1	1	1	1	1	1	1
Total heating capacity	[kW]	1,6	1,6	3,2	3,2	3,2	3,2	3,2	3,2
N° of heaters		1,0	1,0	2	2	2	2	2	2
Material	r ı	Aluminium	Aluminium		Aluminium	Aluminium	Aluminium	Aluminium	Aluminium
	[-]	Aluminum	Auminum	Aluminium	Aluminium	Aluminium	Aummun	Aluminum	Aummum
Hot Water Reheating Coil Heating capacity @ water									
45/40°C	[kW]	4,2	4,6	7,8	7,8	8,0	9,2	9,2	9,2
Front surface	[m2]	0,22	0,22	0,37	0,37	0,37	0,37	0,37	0,37
Water Flow	[m3/h]	0,730	0,792	1,365	1,365	1,393	1,595	1,595	1,595
Water side pressure drop	[kPa]	8,2	9,4	15,5	15,5	16,1	20,3	20,3	20,3
Water valve pressure drop	[kPa]	3,3	3,9	4,4	4,4	4,6	6,0	6,0	6,0
Internal volume	[dm3]	0,9	0,9	1,3	1,3	1,3	1,3	1,3	1,3
Humidifier	[]	-) -	- , -	<u> </u>	, -	<u> </u>	, -	, -	,-
Max theoretical capacity	[kg/h]	2,80	3,17	4,45	5,22	5,01	10,09	6,90	6,50
Effective capacity	[kg/h]	3	3	3	3	3	3	3	3
Power consumption	[kW]	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25
Sound pressure level**	[dB(A)]	46	48	48	49	51	52	53	53
Weight	[dB(A)] [kg]	150	40 157	195	210	230	245	255	257
	[,,8]				tion (see na		240	200	207

* With Lennox condenser selection (see page 29) ** At 1,5 meters height, 2 meters frontal distance in free field – down flow units (30 Pa AESP), nominal air flow

Technical data DX unit, water cooled

					,				
		DHWDR0060	DHWDR0080	DHWDR0100	DHWDR0110	DHWDR0130	DHWDR0160	DHWDR0190	DHWDR0205
		DHWUR0060	DHWUR0080	DHWUR0100	DHWUR0110	DHWUR0130	DHWUR0160	DHWUR0190	DHWUR0205
Power supply	[V/Ph/Hz]	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50	400/ 3+N /50
Air Flow	[m3/h]	1.785	2.150	3.530	3.530	3.700	5.100	5.100	5.100
Frame									
н	[mm]	1.875	1.875	1.875	1.875	1.875	1.875	1.875	1.875
L	[mm]	600	600	900	900	900	900	900	900
D	[mm]	600	600	600	600	600	600	600	600
T water in/out 40/45 °C (**)									
Cooling Capacity @ 24°C, 50%	[kW]	5,3	7,0	8,9	10,0	11,7	15,5	17,8	19,7
Power consumption	[kW]	1,7	2,2	2,6	3,1	3,7	4,6	5,3	6,1
Water flow	[l/h]	1205	1568	1966	2222	2625	3424	3936	4385
Water pressure drop	[kPa]	5,79	9,58	9,82	7,48	10,29	8,87	11,59	14,10
Compressori	[גו מ]	5,75	3,50	3,02	7,40	10,23	0,07	11,55	14,10
Туре		Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
	[]]	3,1					8,5		11,3
Nominal Current (**) FLA	[A]	5	4,0 6	4,8	5,5 7	6,8 10		9,4	
LA	[A]		6 32	6 40	46	50	13	13	15
	[A]	24			-		66 1.05	74	101
Oil charge	[I]	1	1	1,1	1,1	1,36	1,95	1,65	1,65
Finned Coil Evaporator	[m 0]	0.07	0.07	0.45	0.45	0.45	0.50	0.50	0.50
Front surface	[m2]	0,27	0,27	0,45	0,45	0,45	0,53	0,53	0,53
Geometry		25 x 21,65	25 x 21,65	25 x 21,65	25 x 21,65	25 x 21,65	25 x 21,65	25 x 21,65	25 x 21,65
Rows	[-]	3		3	3		4	5	5
Type of fins	[-]	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic
Fin pitch	[mm]	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
SHR	[-]	0,98	0,95	1,00	1,00	0,92	1,00	0,93	0,89
Indoor Fan									
Туре		Radial -EC	Radial -EC	Radial -EC	Radial -EC	Radial -EC	Radial -EC	Radial -EC	Radial -EC
Power supply ,	[V/Ph/Hz]	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Number of fan		1	1	1	1	1	1	1	1
Nominal current	[A]	0,26	0,35	0,54	0,54	0,50	1,05	1,19	1,19
Power consumption	[W]	163	215	337	337	310	652	743	743
AESP	[Pa]	30	30	30	30	30	30	30	30
AESP @ max fan speed	[Pa]	550	531	473	473	453	174	144	144
Air Filter									
Filtration		G3	G3	G3	G3	G3	G3	G3	G3
Overall surface	[m2]	2,2	2,2	3,6	3,6	3,6	5,0	5,0	5,0
Fire resistance class		1	1	1	1	1	1	1	1
Electrical heaters									
Total heating capacity	[kW]	1,6	1,6	3,2	3,2	3,2	3,2	3,2	3,2
N° of heaters		1	1	2	2	2	2	2	2
Material	[-]	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium
Hot Water Reheating Coil									
Heating capacity @ water	[kW]	4,2	4,6	7,8	7,8	8.0	9,2	9,2	9,2
45/40°C			,			,	,	,	
Front surface	[m2]	0,22	0,22	0,37	0,37	0,37	0,37	0,37	0,37
Water Flow	[m3/h]	0,730	0,792	1,365	1,365	1,393	1,595	1,595	1,595
Water side pressure drop	[kPa]	8,2	9,4	15,5	15,5	16,1	20,3	20,3	20,3
Water valve pressure drop	[kPa]	3,3	3,9	4,4	4,4	4,6	6,0	6,0	6,0
Internal volume	[dm3]	0,9	0,9	1,3	1,3	1,3	1,3	1,3	1,3
Humidifier	F 1 4 7	0.00	o · =				10.55	0.00	0.50
Max theoretical capacity	[kg/h]	2,80	3,17	4,45	5,22	5,01	10,09	6,90	6,50
Effective capacity	[kg/h]	3	3	3	3	3	3	3	3
Power consumption	[kW]	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25
Cound processing lower (****)		40	40	40	40	E 4	50	50	50
Sound pressure level (***)	[dB(A)]	46	48	48	49	51	52	53	53
Weight	[kg] or air 35	162 ••••••••••••••••••••••••••••••••••••	169	207	232	265	273	285	287

[kg] 162 ** @ our dry cooler, air 35 ℃, e.g. 30%

*** At 1,5 meters height, 2 meters frontal distance in free field – down flow units (30 Pa AESP), nominal air flow

Technical data DX unit, dry cooler water cooled "Indirect Free Cooling"

	/ u iii,		nor mato		manot		Joomig		
		DHFDR0060	DHFDR0080	DHFDR0100	DHFDR0110	DHFDR0130	DHFDR0160	DHFDR0190	DHFDR0205
		DHFUR0060	DHFUR0080	DHFUR0100	DHFUR0110	DHFUR0130	DHFUR0160	DHFUR0190	DHFUR0205
Power supply	[V/Ph/Hz]	400/ 3+N /50							
Air Flow	[m3/h]	1.785	2.150	3.530	3.530	3.700	5.100	5.100	5.100
Frame									
Н	[mm]	1.875	1.875	1.875	1.875	1.875	1.875	1.875	1.875
L	[mm]	600	600	900	900	900	900	900	900
D	[mm]	600	600	600	600	600	600	600	600
T water in/out 40/45 °C (**)									
Cooling Capacity @ 24 °C, 50%	[kW]	5,4	7,1	9,1	10,2	11,9	15,9	18,1	20,1
Power consumption	[kW]	1,7	2,2	2,6	3,1	3,7	4,6	5,3	6,1
Water flow	[l/h]	1220	1593	1990	2254	2658	3493	3987	4462
Water pressure drop	[kPa]	20,97	32,09	32,14	36,39	49,53	61,75	79,43	98,39
FFT	[°C]	1,7	0,8	-1,3	-1,0	-1,8	-2,6	-3,5	-5,3
Compressori									
Туре		Scroll							
Nominal Current (**)	[A]	3,1	4,0	4,7	5,5	6,8	8,5	9,4	11,3
FLA	[A]	5	6	6	7	10	13	13	15
LRA	[A]	24	32	40	46	50	66	74	101
Oil charge	[1]	1	1	1,1	1,1	1,36	1,95	1,65	1,65
Cooling Finned coil				-	-				
Front surface	[m2]	0,27	0,27	0,45	0,45	0,45	0,53	0,53	0,53
Geometry		25 x 21,65							
Rows	[-]	5	6	5	5	5	6	6	6
Type of fins	[-]	Hydrophilic							
Fin pitch	[mm]	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
SHR	[-]	0,99	0,96	1,00	1,00	0,93	1,00	0,93	0,89
Indoor Fan									
Туре		Radial -EC							
Power supply ,	[V/Ph/Hz]	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Number of fan		1	1	1	1	1	1	1	1
Nominal current	[A]	0,28	0,36	0,64	0,64	0,58	1,23	1,34	1,34
Power consumption	[W]	175	226	397	397	360	768	834	834
AESP	[Pa]	30	30	30	30	30	30	30	30
AESP @ max fan speed	[Pa]	537	486	441	441	418	138	138	138
Air Filter									
Filtration		G3							
Overall surface	[m2]	2,2	2,2	3,6	3,6	3,6	5,0	5,0	5,0
Fire resistance class		1	1	1	1	1	1	1	1
Electrical heaters									
Total heating capacity	[kW]	1,6	1,6	3,2	3,2	3,2	3,2	3,2	3,2
N° of heaters		1	1	2	2	2	2	2	2
Material	[-]	Aluminium							
Hot Water Reheating Coil									
Heating capacity @ water	[kW]	4,2	4,6	7,8	7,8	8,0	9,2	9,2	9,2
45/40°C									
Front surface	[m2]	0,22	0,22	0,37	0,37	0,37	0,37	0,37	0,37
Water Flow	[m3/h]	0,730	0,792	1,365	1,365	1,393	1,595	1,595	1,595
Water side pressure drop	[kPa]	8,2	9,4	15,5	15,5	16,1	20,3	20,3	20,3
Water valve pressure drop	[kPa]	3,3	3,9	4,4	4,4	4,6	6,0	6,0	6,0
Internal volume Humidifier	[dm3]	0,9	0,9	1,3	1,3	1,3	1,3	1,3	1,3
Max theoretical capacity	[ka/b]	2 00	2 17	4,45	5,22	5,01	10,09	6.00	6,50
Effective capacity	[kg/h] [kg/h]	2,80 3	3,17 3	4,45	5,22 3	5,01 3	10,09	6,90 3	6,50 3
Power consumption	[kg/h] [kW]	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25
	[\ \ \ \]	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20
Sound pressure level (***)	[dB(A)]	46	48	48	49	51	52	53	53
Weight	[kg]	162	169	207	232	265	273	285	287
- 3	r.,91							_00	

** @ our dry cooler, air 35°C, e.g. 30%
 *** At 1,5 meters height, 2 meters frontal distance in free field – down flow units (30 Pa AESP), nominal air flow

Technical data DX unit, city water cooled

		DHZDR0060	DHZDR0080	DHZDR0100	DHZDR0110	DHZDR0130	DHZDR0160	DHZDR0190	DHZDR0205
		DHZUR0060	DHZUR0080	DHZUR0100	DHZUR0110	DHZUR0130	DHZUR0160	DHZUR0190	DHZUR0205
Power supply	[V/Ph/Hz]	400/ 3+N /50							
Air Flow	[m3/h]	1.785	2.150	3.530	3.530	3.700	5.100	5.100	5.100
Frame	F	4.075	4 075	4.075	1.075	4.075	4 075	4 075	4.075
н	[mm]	1.875	1.875	1.875	1.875	1.875	1.875	1.875	1.875
L D	[mm]	600 600	600 600	900 600	900 600	900 600	900 600	900 600	900 600
T water in/out 15/30 °C	[mm]	000	000	000	000	000	000	000	000
Cooling Capacity @ 24°C, 50%	[kW]	6,2	8,3	10,3	11,5	13,6	18,0	21,0	23,1
Power consumption	[kW]	1,2	1,5	1,7	2,1	2,5	3,2	3,7	4,2
Water flow	[l/h]	422	558	686	772	918	1210	1406	1554
Water pressure drop	[kPa]	3,70	6,37	9,54	8,67	12,26	16,61	22,34	24,73
Compressori									
Туре		Scroll							
Nominal Current	[A]	2,4	3,1	3,7	4,2	5,3	7,0	7,0	8,8
FLA	[A]	5	6	6	7	10	13	13	15
LRA Oil chorge	[A]	24 1	32 1	40	46	50 1,36	66 1,95	74 1,65	101 1,65
Oil charge Finned Coil Evaporator	[1]	I	I	1,1	1,1	1,30	1,95	1,05	1,05
Front surface	[m2]	0,27	0,27	0,45	0,45	0,45	0,53	0,53	0,53
Geometry	[=]	25 x 21.65	25 x 21,65						
Rows	[-]	3	4	3	3	3	4	5	5
Type of fins	[-]	Hydrophilic							
Fin pitch	[mm]	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
SHR	[-]	0,87	0,86	0,99	0,9	0,85	0,92	0,87	0,81
Indoor Fan									
Туре		Radial -EC	Radiale -EC	Radial -EC	Radial -EC				
Power supply ,	[V/Ph/Hz]	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Number of fan Nominal current	[A]	1 0,26	1 0,35	1 0,54	1 0,54	1 0,50	1 1,05	1 1,19	1 1,19
Power consumption	[W]	163	215	337	337	310	652	743	743
AESP	[Pa]	30	30	30	30	30	30	30	30
AESP @ max fan speed	[Pa]	550	531	473	473	453	174	144	144
Air Filter									
Filtration		G3							
Overall surface	[m2]	2,2	2,2	3,6	3,6	3,6	5,0	5,0	5,0
Fire resistance class		1	1	1	1	1	1	1	1
Electrical heaters	[[_]]]	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0
Total heating capacity N° of heaters	[kW]	1,6 1	1,6 1	3,2 2	3,2 2	3,2 2	3,2 2	3,2 2	3,2 2
Material	[-]	Aluminium							
Hot Water Reheating Coil		,							
Heating capacity @ water	[kW]	4,2	4,6	7,8	7,8	8,0	9,2	9,2	9,2
45/40°C			,						
Front surface	[m2]	0,22	0,22	0,37	0,37	0,37	0,37	0,37	0,37
Water Flow	[m3/h]	0,730	0,792	1,365	1,365	1,393	1,595	1,595	1,595
Water side pressure drop Water valve pressure drop	[kPa] [kPa]	8,2 3,3	9,4 3,9	15,5 4,4	15,5 4,4	16,1 4,6	20,3 6,0	20,3 6,0	20,3 6,0
Internal volume	[dm3]	0,9	0,9	4,4	4,4 1,3	4,0	1,3	1,3	0,0 1,3
Humidifier	[amo]	0,0	0,0	.,0	.,0	.,0	.,0	.,0	.,0
Max theoretical capacity	[kg/h]	2,80	3,17	4,45	5,22	5,01	10,09	6,90	6,50
Effective capacity	[kg/h]	3	3	3	3	3	3	3	3
Power consumption	[KW]	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25
Sound pressure level (**)	[dB(A)]	46	48	48	49	51	52	53	53
Weight	[0B(A)] [kg]	162	40 169	40 207	232	265	273	285	287
	1.,91			_0,	-0-	_00	_, 0		

** At 1,5 meters height, 2 meters frontal distance in free field – down flow units (30 Pa AESP), nominal air flow

Technical data for CW units

		DHCDR0080	DHCDR0110	DHCDR0140	DHCDR0160	DHCDR0200	DHCDR0230
		DHCUR0080	DHCUR0110	DHCUR0140	DHCUR0160	DHCUR0200	DHCUR0230
Power supply	V/Ph/Hz	400/ 3+N /50					
Frame							
н	[mm]	1.875	1.875	1.875	1.875	1.875	1.875
L	[mm]	600	600	900	900	900	900
D	[mm]	600	600	600	600	600	600
Air Flow	[m3/h]	2.300	2.400	3.800	3.800	5.100	5.100
Water flow @ 7/12°	[l/s]	0,36	0,50	0,67	0,75	1,00	1,06
Water pressure drop @ 7/12 °	[kPa]	24,59	52,46	23,26	32,18	41,45	49,25
Water flow @ 10/16°	[l/s]	0,25	0,33	0,44	0,50	0,65	0,71
Water pressure drop @ 10/15° Cooling Capacity	[kPa]	12,24	23,30	10,42	14,62	17,90	22,15
Cooling capacity @ w, 7/12 °	[kW]	7,7	10,6	14,2	15,8	21,2	23,4
Cooling capacity @ w, 1712 Cooling capacity @ w, 10/15 °	[kW]	5,3	6,9	9,4	10,5	13,8	23,4 14,8
Cooling Finned coil		0,0	0,0	5,4	10,0	10,0	14,0
Frontal surface	[m2]	0,26	0,26	0,44	0,44	0,51	0,51
Geometry	[=]	25 x 21,65	25 x 21,65	25 x 21.65	25 x 21.65	25 x 21,65	25 x 21,65
Rows	[-]	3	4	3	4	4	5
Type of fins	[-]	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic	Hydrophilic
Fin pitch	[mm]	1,8	1,8	1,8	1,8	1,8	1,8
SHR @ water 7/12 °C	[-]	0,88	0,84	0,84	0,83	0,84	0,83
SHR @ water 10/15 ℃	[-]	1,00	1,00	1,00	1,00	1,00	1,00
Indoor Fan							
Туре		Radial -EC					
Power supply ,		1	1	1	1	1	1
Number of fan	[A]	0,34	0,39	0,63	0,64	0,91	1,03
Nominal current	[W]	211	245	395	397	564	643
Power consumption	[Pa]	30	30	30	30	30	30
AESP Air Filter	[Pa]	506	473	432	401	174	144
Filtration		G3	G3	G3	G3	G3	G3
Overall surface	[m2]	2,2	2,2	3,6	3,6	5,0	5,0
Fire resistance class	[]	1	1	1	1	1	1
Electrical heaters				•	•		·
Total heating capacity	[kW]	1,6	1,6	3,2	3,2	3,2	3,2
N° of heaters		1	1	2	2	3	3
Material	[-]	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium
Hot Water Reheating Coil							
Heating capacity @ water 45/40°C	[kW]	4,7	4,8	8,1	8,1	9,2	9,2
Front surface	[m2]	0,22	0,22	0,37	0,37	0,37	0,37
Water Flow	[m3/h]	0,815	0,830	1,409	1,409	1,595	1,595
Water side pressure drop	[kPa]	9,9	10,3	16,4	16,4	20,3	20,3
Water valve pressure drop	[kPa]	4,15	4,31	4,70	4,70	6,20	6,20
Internal volume	[dm3]	0,9	0,9	1,3	1,3	1,3	1,3
Humidifier	[kc/h]	0.00	0 F F	6 4 4	E 00	0.07	9.66
Max theoretical capacity	[kg/h] [kg/h]	2,92	3,55	6,44	5,83	9,87	8,66
Effective capacity Power consumption	[kg/h] [kWl	3 2,25	3 2,25	3 2,25	3 2,25	3 2,25	3 2,25
	[kW]	2,20	2,20	2,20	2,20	2,20	2,20
Sound pressure level (**)	[dB(A)]	48	50	51	51	52	52
Weight	[kg]	125	135	150	160	170	175
-	. 01						

** At 1,5 meters height, 2 meters frontal distance in free field – down flow units (30 Pa AESP), nominal air flow

Remote Condenser Technical Data Collection

	STANDARD EXECUTION											
Model		SVHN 7/7	SVHN 13/9	SVHN 13/9	SVHN 13/9	SVHN 20/4	SVHN 20/4	SVHN 23/2	SVHN 38/1			
INNOV@ Model		0060	0080	0100	0110	0130	0160	0190	0205			
Nr. Of fans x Ø	Mm	1 x 350	2 x 330	2 x 330	2 x 330	2 x 350	2 x 350	3 x 350	4 x 350			
Air Flow	m3/h	2.400	3.200	3.200	3.200	4.600	4.600	7.200	8.400			
Power supply	V/ph/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50			
Absorbed power	W	180	270	270	270	360	360	540	720			
Absorbed current	A	0,85	1,2	1,2	1,2	1,7	1,7	2,5	3,4			
Sound pressure level in free field	dB(A)	40	41	41	41	43	43	45	46			
.	Lmm	723	1.057	1.057	1.057	1.294	1.294	1.853	1.298			
Dimensions (vertical airflow)	P mm	600	500	500	500	600	600	600	1150			
(vortiour uniterry)	H mm	763	600	600	600	763	763	763	763			
	Lmm	723	1.057	1.057	1.057	1.294	1.294	1.853	1.298			
Dimensions (horizontal air flow)	P mm	363	305	305	305	363	363	363	363			
(nonzontal dir now)	Hmm	560	460	460	460	560	560	560	1130			
Weight	Kg	16	25	25	25	37	37	42	64			

	LOW NOISE EXECUTION											
Model		SVHS 8/2	SVHS 18/0	SVHS 18/0	SVHS 18/0	SVHS 20/2	SVHS 20/2	SVHS 27/1	SVHS 36/0			
INNOV@ Model		0060	0080	0100	0110	0130	0160	0190	0205			
Nr. Of fans x Ø	Mm	2 x 330	3 x 350	4 x 350	6 x 350							
Air Flow	m3/h	2.200	4.500	4.500	4.500	3.900	3.900	5.200	9.000			
Power supply	V/ph/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50			
Absorbed power	W	130	210	210	210	210	210	280	420			
Absorbed current	A	0,6	1,0	1,0	1,0	1,0	1,0	1,3	2,0			
Sound pressure level in free field	dB(A)	32	35	35	35	35	35	36	38			
	Lmm	1.057	1.853	1.853	1.853	1.853	1.853	1.298	1.853			
Dimensions (vertical airflow)	P mm	500	600	600	600	600	600	1150	1150			
(ventical annow)	H mm	600	763	763	763	763	763	863	863			
.	L mm	1.057	1.853	1.853	1.853	1.853	1.853	1.298	1.853			
Dimensions (horizontal air flow)	P mm	305	305	305	305	305	305	363	363			
(H mm	460	460	460	460	460	460	1130	1130			
Weight	Kg	21	42	42	42	48	48	64	72			

• Selection related to 35 °C Air Temperature

• N.B. The standard condenser selection is done to reach a maximum external temperature of 45 ℃, in spite of the most other products on the market

	STANDARD EXECUTION											
Model		SHLR 15M	SHLN 24D	SHLN 24D	SHLN 29L	SHLN 30D	SHLN 50C	SHLN 58D	SHLN 58D			
INNOV@ Model		0060	0080	0100	0110	0130	0160	0190	0205			
Nr. Of fans x Ø	mm	1 x 500	1 x 500	1 x 500	1 x 500	1 x 630	2 x 500	2 x 500	2 x 500			
Air Flow	m3/h	2.820	6350	6.350	6.440	7.800	12.700	12.880	12.880			
Water flow	m3/h	2.1	3.6	3.6	3.9	3.9	7.2	8.1	8.1			
Water pressure drop	kPa	33	35	35	23	23	28	53	53			
Power supply	V/ph/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50			
Absorbed power	W	136	741	741	741	620	1.482	1.482	1.482			
Absorbed current	A	0.60	3.30	3.30	3.30	2.80	6.60	6.60	6.60			
Sound pressure level in free field	dB(A)	29	47	47	47	45	50	50	50			
Dimensions	L mm	1.085	1.085	1.085	1.085	1.393	1.895	1.895	1.895			
(vertical airflow)	P mm	810	810	810	810	1110	810	810	810			
	Hmm	1.070	1.070	1.070	1.070	1.270	1.070	1.070	1.070			
Dimensions	Lmm	1.085	1.085	1.085	1.085	1.393	1.895	1.895	1.895			
(horizontal air flow)	P mm	470	470	470	470	705	470	470	470			
	Hmm	830	830	830	830	1.040	830	830	830			
Weight	kg	56	56	56	60	123	94	102	102			

Dry Cooler Technical Data

	LOW NOISE EXECUTION											
Model		SHLR 15M	SHLS 19M	SHLS 19M	SHLS 38D	SHLS 38D	SHLS 38D	SHLS 59D	SHLS 59D			
INNOV@ Model		0060	0080	0100	0110	0130	0160	0190	0205			
Nr. Of fans x Ø	mm	1 x 500	1 x 500	1 x 500	2 x 500	2 x 500	2 x 500	3 x 500	3 x 500			
Air Flow	m3/h	2.820	4.500	4.500	8.300	8.300	8.300	12.400	12.400			
Water flow	m3/h	2.1	2.8	2.8	5.7	5.7	5.7	8.5	8.5			
Water pressure drop	kPa	33	57	57	51	51	51	46	46			
Power supply	V/ph/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50			
Absorbed power	W	136	272	272	544	544	544	816	816			
Absorbed current	А	0.60	2.80	2.80	2.40	2.40	2.40	3.60	3.60			
Sound pressure level in free field	dB(A)	29	38	38	41	41	41	42	42			
Dimensions	Lmm	1.085	1.085	1.085	1.895	1.895	1.895	2.705	2.705			
(vertical airflow)	P mm	810	810	810	810	810	810	810	810			
(=	Hmm	1.070	1.070	1.070	1.070	1.070	1.070	1.070	1.070			
Dimensions	Lmm	1.085	1.085	1.085	1.895	1.895	1.895	2.705	2.705			
(horizontal air flow)	P mm	470	470	470	470	470	470	470	470			
(Hmm	830	830	830	830	830	830	830	830			
Weight	kg	56	56	56	94	94	94	132	132			

• Selection related to 30 °C Air Temperature and 45/40 °C 30% e.g. water conditions.

• Max Air T = 40 °C

Correction Factors

DX Units- Air Cooled

Cooling Capacity

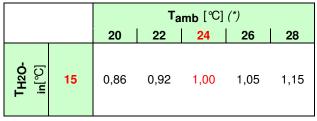
			T_{amb} [℃] <i>(*</i>)							
		20	20 22 24 26 28							
	25	0,97	1,04	1,13	1,19	1,30				
Ş	30	0,91	0,91 0,98 1,07 1,13 1,2							
	35	0,85	0,91	1,00	1,05	1,15				
Fest	40	0,79	0,85	0,93	0,98	1,08				
	45	0,72	0,78	0,85	0,90	0,99				

(*) R.h. 50%

Absorbed Power

			T_{amb} [℃] (*)								
		20	20 22 24 26 28								
	25	0,809	0,804	0,795	0,789	0,774					
Ş	30	30 0,906 0,900 0,891 0,886 0,87									
<u>,</u>	35	1,015	1,009	1,000	0,997	0,985					
Test	40	1,135	1,132	1,123	1,120	1,111					
	45	1,279 1,276 1,270 1,267 1,258									

(*) R.h. 50%


Absorbed Current

			T_{amb} [°C] <i>(*)</i>								
		20	20 22 2 4 26 28								
	25	0,878	0,873	0,866	0,863	0,855					
	30	0,939	0,936	0,929	0,926	0,919					
	35	1,008	1,005	1,000	0,997	0,990					
Test	40	1,087 1,084 1,079 1,076 1									
	45	1,179	1,177	1,174	1,171	1,166					

(*) R.h. 50%

DX Units - Water Cooled

Cooling Capacity

(*) R.h. 50%

Absorbed Power

		T_{amb} [℃] (*)								
	20	22	24	26	28					
TH20- in[°C]	1,017	1,010	1,00	0,990	0,976					

(*) R.h. 50%

Absorbed Current

		T_{amb} [℃] (*)								
	20	20 22 24 26 28								
TH20- in[°C]	1,013	1,007	1,00	0,995	0,986					

(*) R.h. 50%

Chiller water units

Cooling Capacity

					Тa	mb [℃]	(*)	
				20	22	24	26	28
်	7	ŧ	12	0,680	0,817	1,00	1,159	1,360
12 0- in	8	ි. [ි	13	0,629	0,731	0,881	1,076	1,282
TH2	10	Ę	15	0,524	0,628	0,729	0,897	1,104

(*) R.h. 50%

Refrigerant Pipes

On-site piping has to be installed by professional workers using only CUB quality copper pipes. Take care in use of nitrogen during all brazing operations in order to avoid humidity and dirty in pipes.

Refrigerant		R407C	R407C	R407C	R407C	R407C	R407C	R407C	R407C
Cooling Capacity	[kW]	4-5	6-7	8-9	10-11.5	11.5-13	14-16	17-18	19-24
HP Gas line 0-10m	[mm]	12	12	12	16	16	16	16	22
Liquid line 0-10m	[mm]	10	10	10	12	12	12	12	16
HP Gas line 11-20m	[mm]	12	12	16	16	16	18	18	22
Liquid line 11-20m	[mm]]	10	10	12	12	12	12	12	16

Standard Copper pipes

Diameter [mm]	Thikness [mm]	Minimum bending ra- dius [mm]	System de- sign pres- surePS [bar]	PED Cate- gory	Max Copper σs [N/mm2]	Real copper σ [N/mm2]	Safety ratio
10	1	36	28	A3 P3	227	11,2	20,3
12	1	36	28	A3 P3	227	14	16,2
16	1	46	28	A3 P3	227	19,6	11,6
18	1	56	28	A3 P3	227	21	10,8
22	1,5	67	28	A3 P3	227	17,3	13,1
28	1,5	96	28	A3 P3	227	23,3	9,8
35	1,5	70	28	A3P3	227	29,8	7,6
42	1,5	84	28	A3P3	227	36,4	6,2
54	2,0	108	28	A3P3	227	35	6,4

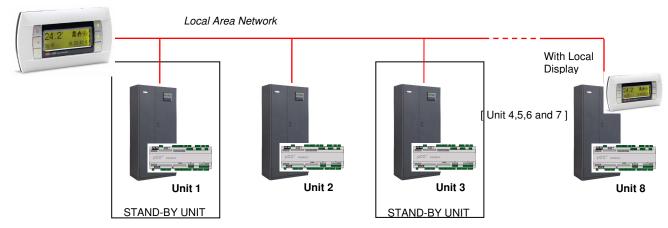
Refrigerant Charge

The following table gives an idea of the total refrigerant charge (unit + condenser): this should be used just as first reference but the right charge should be performed on site by a qualified installer.

Note: The INNOV@ units as well as the remote condenser are shipped filled with nitrogen or dry air.

INNOV@ Model		060	080	100	110	130	160	190	205
Unit + Condenser Charge	[kg]	2,26	3,86	4,36	4,38	6,21	6,58	7,72	8,24
Charge for line *	[g/m]	91	91	98	98	98	98	98	98

Note: approximated values (± 20%), to be verified on site.


(*) referred to distance between inside and outside unit.

Interconnectivity Systems

Advanced Control pCO - Local Area Network (LAN)

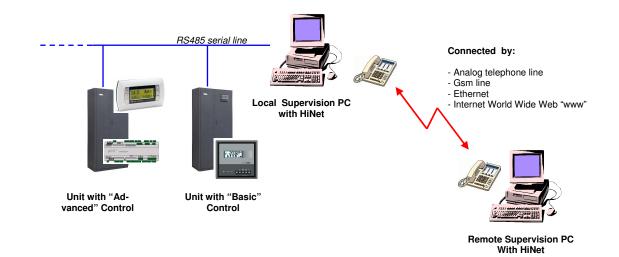
Remote Display

Description:

Stand-by rotation:

- Max. Number of units: 8
- Stand-by rotation of 1 to N unit (N is the number of installed unit).

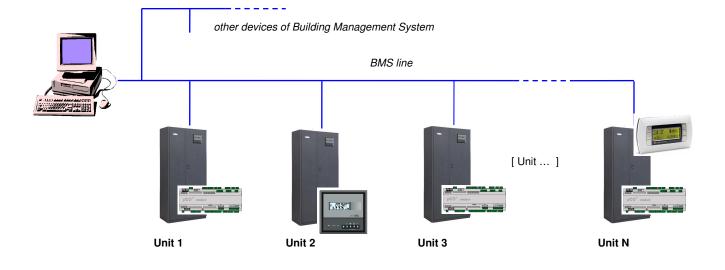
- Stand-by rotation activated by timing, time band or by alarm.


Master function:

The "Master" unit's temperature and humidity probes must be located in an "intermediate" position inside the controlled environment. The "Master" unit drives the logic that is adopted by every connected unit. This is important to avoid situations in which units in dehumidification and units in humidification contra-work at the same time in the same environment. The "Master" unit changes the working logic in case of exceeding the set point by the measured temperature or humidity, even of just a few decimal points. In case of black-out or of disconnection of the "Master" unit from the pLAN network, the connected units will start to operate stand-alone based just on the their own probes.

DataWeb Supervising Systems

The system allows air-conditioning to be monitored and controlled using just a simple Internet browser: the pages displayed on the PC are in HTML format, the language of the worldwide web.


BMS integration

INNOV@ units can be connected to BMS in the following ways:

- Directly, without using a gateway, thanks to the ability of the advanced control pCO to select the protocol used;

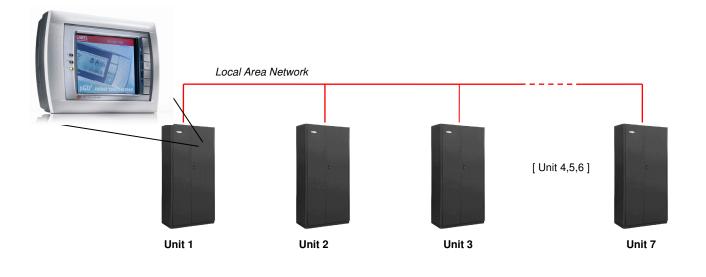
- using a gateway that translates the Carel proprietary protocol to the specific BMS protocol;

- integrating the driver for the management of the Carel specific protocol into the BMS.

Following Serial port / protocols are used by Lennox to ensure connectivity to the other systems:

With advanced microprocessor:

- $\circ \quad \ \ \mathsf{RS485} \ / \ \mathsf{Carel} \ o \ \ \mathsf{Modbus} \\ \mathsf{B} \ ;$
- Modem GSM + RS 232 / sms (units status advice by sms in case of alarm);
- LonWorks® FTT-10 card / LonWorks®

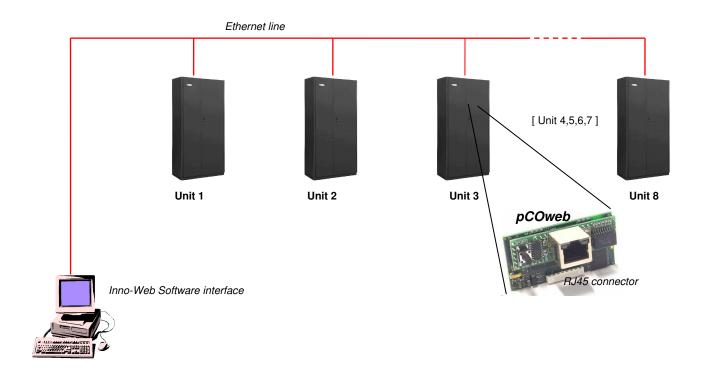

- pCOweb Ethernet connection / BACnet[™] o SNMP (TCP-IP)
- o pCOweb RS485 connector / BACnet[™]
- TREND® serial card / TREND®

With basic microprocessor:

- o RS485 / Carel
- External Modbus® gateway / Modbus®

pGD3 Graphical touch screen color display (panel mounted)

The pGD3 display can show:


- Temperature trend graphics of the single unit or the average value between all the units connected on the LAN.
- Humidity trend graphics of the single unit or the average value between all the units connected on the LAN.

Note:

- With pGD3 display, at most 7 units can be connected on a LAN
- Inside the electrical panel of all the units connected, a pGD0 display is installed; this allows the unit to manage when it is disconnected from the LAN and for the advanced configuration.

Inno-web Interface card for BACnet/SNMP with Ethernet RJ45 connection

The pCOweb Ethernet connection function are:

a) Only hardware

Hardware requirements:

- pCOweb interface card

Functions:

- BACnet protocol converter
- SNMP protocol converter
- Data logging of a maximum of 10 variables and download of the data via FTP
- Sending of an email in case of alarms using an external mail server

b) Complete Lennox solution

Software requirements : -Inno-Web for pCOweb (option)

- Hardware requirements:
- Inno-web interface card

Functions:

- Reading the status of the units
- Modification of the parameter of the units
- Data logging of a maximum of 10 variables and download of the data via FTP
- Sending of an email in case of alarms using an external mail server.

Appendix "A": Supply water limit values for immersed electrode humidifiers

			MEDIUM-LOW CONDUCTIVITY		NORMAL-HIGH CONDUCTIVITY		HIGH CONDUCTIVITY	
			MIN	MAX	MIN	MAX	MIN	MAX
Specific conductivity at 20 ℃	σ ₂₀	µS/cm	125	350	350	750	750	1250
Total dissolved solids	TDS	mg/l	(¹)	(¹)	(¹)	(¹)	(¹)	(¹)
Dry residue at 180℃	R ₁₈₀	mg/l	(¹)	(¹)	(¹)	(¹)	(¹)	(¹)
Hydrogen ion activity	рН	-	7	8.5	7	8.5	7	8.5
Total hardness	ТН	mg/I CaCO ₃	-	200	150	400	150	400
Temporary hardness	ТН	mg/I CaCO ₃	-	150	-	200	-	200
Chlorides		ppm Cl	-	20	-	30	-	30
Iron + Manganese		mg/I Fe+Mn	-	0.2	-	0.2	-	0.2
Silica		mg/I SiO ₂	-	20	-	20	-	20
Residual chlorine		mg/I Cl	-	0.2	-	0.2	-	0.2
Calcium sulphate		Mg/I CaSO ₄	-	60	-	100	-	100

(¹) Values depend on the specific conductivity; in general: TDS \cong 0.93 * σ_{20} ; $R_{180} \cong$ 0.65 *

www.lennoxeurope.com

